an electric torchlight procession.

On the evening of October 31, this city was favored with one of the most unique and attractive displays ever seen in a torchligbt procession-tbat necessary adjunct to a presidential campaign, which brings into active play tbe inventive genius of party managers and enthusiastic followers. That an electric lighting plaut, complete in every detail, and in full operation, can be moved at the uneven pace of a procession over the rough paving of a street, without interrupting the current or in any degree cbanging the brilliancy and steadiness of the light, is a fact which, while of interest to the scientific world, clearly shows the perfection to which electric ligbting machinery bas been brouglat.
The work of preparing the display was done by the Edison Electric Lighting Company, the expense being defrayed by its own employes, who united witb insurance men of the same political faitb. Placed upon the forward part of a large truck was a dynamo-a 200 ampere macbine--lebebind which was a 40 horse power engine of the New York Safety
five feet on the rope was an ordinary cut-out, or lamp receptacle, slightly cbanged to suit the requirements of this work, and within which screwed a safely catch carrying two wires, which led up the sleeve and through the back of the helmet to an incandescent lamp of 16 candle power. Wires also led to lamps hung upon the bames of each of the borses, and to 24 lamps arranged on a frame built around the truck. The leader of the procession, on horseback, carried a staff surmounted by a 200 candle power ligbt. Altogether there were some 300 lamps distributed along the rope and upon the trucks.
Upon the first and last part of the line of march every part of the plant worked most admirably, and the illumination was intense and beautiful, the light flooding every nook and crauny in the streets passed through. But in the intervening distance, which chanced to be lined with people who were particularly anxious to witness the electric light display, this portion of the parade was conspicuous solely

Ventilating Hay Mows.

After adding bis testimony to the correctness of our heory as to the cause of frequent fires in barns, an arcbitect from Iowa writes to the American Architect, into which paper our article was copied, the following letter: We believe the idea of the writer is not new, and that patents have heen granted for similar models of ventilating hay mows and grain bins, nevertheless the suggestions of the writer are good.
"As this matter is of more vital importance than most people, even scientific men, are aware of, I will," says the Architect's correspondent, " venture to suggest a mode to ventilate hay lofts, and to give veterinary surgeons sometbing to think of. I believe that one-balf of thediseases in horses and cattle is brought on by feeding spoiled bay, either taken from bay mows or stacks, also from grain feed that bas been beated and spoiled. I believe that the beating process, the mouldy parts and must that it produces, will create germs of various kinds that cause diseases in horses and cat-

THE ELECTRIC TORCHLIGHT PROCESSION IN NEW YORK.

Steam Power Company; a belt led from the engine to a
pulley on the armature shaft. Secured to the truck was the pole of one of the largest steam fire engines built by the Clapp and Jones Company. The electricians in charge of the display felt assured of the successful working of their dynamo and engine, and in order to bave an ample supply of steam, they obtained the fire engine, which they knew to be a rapid and reliable generator while in motion. Extending from this boiler to the engine were two flexible pipes, one leading to the steam chest and the other carrying the exbaust. The latter pipe was provided with a three-way valve, by means of which the steam could be directed either into the smokestack to increase the draught, or into the open air. Following the fire eugine were two ordinary watering tanks, bolding 950 gallons, which were connected to the feed pump by lines of bose. Between the tanks were the coal carts. The dynamo truck was drawn by six of the Herring Safe Company's mammoth horses, arranged tandem and guided solely by the word of the driver.
Extending from a switch board on the floor of the truck were four covered copper wires, two of which led to a rope upon one side of the truck and the other two to a rope upon the other side. This rope was 1,200 feet long, and was extended up and down the procession so as to form a bollow square, in the center of which was the machinery, before and behind which marched bodies of men. Placed at each
ruption was caused by mud from the water tanks clogging the hose leading to the pump. All went well after the hose bad been cleaned.

Fall Plowing.

Joseph Harris thinks that farm horses can be put to no better use in autumn than pulling the plow. In the September Agriculturist he says: "There is nothing pays so well as fall plowing, and getting land ready for spring sowing. The longer I live the more I am impressed with this fact. I say nothing on tbe disputed question in regard to breaking up sod land in the autumn. It is possible, as some claim, tbat there is a loss from drainage. But if any one will plow my land in the fall, I will run the risk. But what I bave specially in mind is, land not occupied with any crop-corn land, potato land, bean land, stubble land, and weed land. Stick in tbe plow if you can spare the time; if not, harrow or cultivate. Better still, do both. Light sandy land, plowed and prepared in the autumn, can be sown in the spring without: plowing. Heavy land, if plowed and worked in the fall, may need plowing again in tbe spring, but the work will be easier and the land better. Krap the horses busy until snow flies. But the earlier the work is done, the better. One plowing while the land is dry is worth two plowings when it is wet.
tle and perhaps swine. I will now venture to suggest a mode of ventilating bay mows, stacks, or granaries. I will suggest introducing various air ducts through the hay mows, both horizontal and perpendicular, opening directly outside, so as to admit a current of fresh air, which will cool and cure the bay or grain, and leave it in a healthy state. This may be done by building board ducts and perforating them as much as possible, and then running from the borizontal ducts perpendicular ducts up through the mow, not more than eight feet to ten feet from each otber. Or this may be accomplished in another manner, by using some round instrument, six inches to ten inches or even larger in diameter, say a galvanized iron tube; stand it over the opeuings in the main air duct, and as the mow is filled up, draw these pipes up through the bay, until the top is reached. This will afford complete ventilation, which will be increased as the mow becomes heated; bence the fresh air drawn in will cool and cure the bay ór grain, and by this process thousands of tons of bay and grain can be saved and a vast amount of property will be saved from the destroying alements."

Manufacture of Wood Pulp.

The autbor treats the comminuted wood or other vegetable matter with concentrated solution of sulphurous acid and water under a pressure of 5 atmospheres and at tem. peratures ranging from 75° to 80°.-Raoul Pictet.

Restoring Burnt Steel。

At the Nuremberg technical school a series of attempts bave been made to restore the original qualities of steel after it bas been burnt in the forge. Tbese tests bave been car ried out with various classes of steel in common use for tools, and with varying degrees of success. Sometimes this accidental burning can be repaired by bammering the piece of steel while hot; but more generally it is only worth returning to the scrap beap. The alteration known as burning is due to a more or less considerable decarburation of the metal. Amoug the processes that bave been devised for restoring burnt steel, the following bas given excellent results: The piece of metal is brought to a red heat and suddenly plunged in a mixture composed as follows: Pitch, 2 parts; train oil, 2 parts; tallow, 1 part; with a small addition of common salt. This operation is repeated two or three times.

A Question of Steamship Models.
The speed of the steamer Finance, of the United States and Brazil Steamship Company, which made the trip from St. Tbomas to this city in five days, is owing-according to the statement of one of ber officers to a Tribune reporter-to ber model
' Sbe is nearly flat on the bottom, and bas no keel except ber two bilge keels, or rolling keels as we call tbem. This gives her great carrying capacity as well as speed. Her bows bave a fine entrance, but the body of the ship is carried well forward under I be water-line, so that when she goes into a sea she rises like a duck and does not stagger. I think that Ameri-can-built sbips bave a greater carrying capacity and develop more speed with less coal than any others in the world. The swift steamsbip America is a much larger vessel than the Finance, yet the America only carries about 2,000 tons of cargo to the Finance's 3,166 tons. The America is, of course, the faster ship, but not enougb faster to make up for the difference in carrying capacity. The Finance can make 14 knots an bour, and the America 18. The Finance burns from 28 to 30 tons of coal a day, and the America 175.
"There is the ship San Pablo, a typical American sbip. Sbe has developed a speed of 16 knots an bour with a consumption of 32 tons of conl. Sbe carries a dead weight of cargo of 4,500 tons. She recently made the fastest passage on record between bere (New York) and Gibraltar. She is now running between New Tacoma, on Puget Sound, and San Francisco. The round trip takes 10 days. In 30 days she made three round trips and started on berfourth, and bas landed 12,500 tons of coal. In nine months she has cost only $\$ 26$ for repairs in the engineroom. She is built sometbing on the model of the Finance, but bas a keel. The City of Rome burns 320 tons of coal a day and can only carry 1,000 tous of cargo. The great freigbt sbip of the National Line is the England, which carries 3,500 tons of cargo. She makes about 12 knots an bour, and can be pusbed to 13 .
The England is 4379 feet long, $421 / 2$ feet beam, and 35 feet depth of bold. The Finance is 300 feet long, $38 \cdot 4$ feet beam, and 23.6 depth of bold. The Finance is not, of course, a fast ship, compared with the greybounds of the sea, but, as you see, attains a respectable speed, bas great carrying capacity, and besides that is a passenger ship. And look at the San Pablo with a speed of 16 knots, a carrying capacity of 4,500 tons, and consumption of only 32 tons of coal. It is all in the model. I believe that a sbip as large as the Oregon or America and with much less engine power, built on the flat bottom model, would beat their time badly, and bave twice or three times their carrying capacity.'

Cocaine Hydrochlorate.

The bonor of discovery of this new local anæstbetic is due to Dr. Kollar, a young medical student, stil! engaged in bis studies at Vienna. Hydrocblorate of cocaine has been used in this city with success in many cases, especially in ophtbalmic surgery. A few drops applied to an injured eye allays) the pain, produces immediate insensibility of the parts, and enables the surgeon to operate with success. This discovery forms an important step in the progress of medical knowledge. The bydrocblorate bas been used in the opening of felons, for sensitive throat, etc.

The Pacific coast bas nearly doubled its crop of hops this year over that of last, without materially increasing its consumption.

Fig. 2.-THE WOMAN WITHOUT A BODY.
longer or a shorter time, according to the spectator. It is quick in some, and slower in otbers; but it may be said that in almost all, this kind of spectacle strongly excites the curiosity. For this reason, ever since the first exbibition of tbe decapitated talker by Colonel Stodare at London,

Fig. 3.-EXPLANATION OF THE PHENOMENON.

prestidigitators and physicists bave been exerting their ingenuity in order to obtain analogous effects by varied processes; and so there bas appeared a large number of decapitated talkers, living buste, balf-women, persons with two or three beads, men cut in pieces, and decapitated blance of a vertical back.
bodies of all sorts. As an example of the apparent realization of several of these physiological impossibiities, we may cite a singular exbibition that is now being beld at London, in Egyplian Hall. A plysiciau and bis patient are upon tbe stage, and engage in a very animated conversation; tbe sick man seats bimself in an arm cbair, aud the pbysician cuts off bis bead and lays it upon a table. Tbe bead speaks, and tbreatens the pbysician witb the vengeance of beaven, and then the beadless body rises, and, by expressive mimicry, joins its reproaches to that of the bead. Then it takes the latter upon its arm, and the dialogue goes onthe head always talking, and the body gesticulating.

After seeing tbis sort of spectacle a certain number of persons go a way indifferent to the processes by nueans of which such effects are obtained, while otbers, on the contrary, are interested therein. It is for the latter that we sball describe in this article two new tricks, that bave recently been sbown in Paris, at the theater Folies Bergeres, under the names of Stella, and The Mystery of Dr. Lynn.
Stella.-The spectator, upon entering, sees in front of bim a large panel in which there is an aperture about. 5 feet square closed by a silk curtain. When tbe latter is drawn aside, there is seen a small and elegantly decorated stage, whose sides may be perfectly distinguisbed. In the center of this stage, suspended in space, there is a young girl's bead, the neck of which starts from a satin collar (Fig. 1). This bead is well isclated on every side; one sees the rear of We learned in early childbood that life is impossible un- the stage, the sides, the top, and the bottom, and the light der such circumstances, and yet, if the experiment be well presented, we distinctly see the reality of what our judg ment and experience are in accord in declaring impossible. We are tempted then to doubt the evidence of our eyes, not witbstanding our daily confidence in those organs.
This sort of contest between the senses and reason lasts a leaves no portion in shadow. The head is living; it speaks and smiles, the eycs move, and the exhibitor further proves it by presenting to it a lighted candle, which it extinguishes by blowing it out. The exhibitor then disappears bebind the side scenes along with the candle. He now, as it seems, draws out a panel in the back of the stage, and througb the aperture thus formed, the spectator very distinctly sees the top of a table, and, upon it, the candle that the bead bas just extinguisbed. Now this aperture is directly under the bead, but mucb farther off, and is in the direction that the body would occupy if the bead possessed one. The absence of the body is therefore well demonstrated, and the curtain drops.
Such was the evidence of the eyes, but tbe reality was entirely different. The bead was indeed real, and was seen directly, and the same was the case with the top and a part of the sides of the stage, but aside from this the rest was ouly an illusion. The stage bad no back, no floor, no sides, and the apcrture seeu in the rear was not in that place.
The illusion was obtained by means of a simple mirror, which, starting from the upper part of the back of the stage, descended obliquely to the front. In the center of this there was an opening which was concealed by the satin collar of whicb we bave just spoken, and through this the young girl passed ber bead. The inclination of the mirror was very easy to determine; it was in fact indicated by a gold rod designed to hide the line of junction of the mirror and side. Tbrough their reflection in this mirror the anterior part of the top seemed to be the bottom, and the posterior part of the same produced the back of the stage. The sides, of which only the upper portion was seen, seemed to be prolonged and join the bottom. As for the aperture through which the table was seen, that was in reality at the top; tbe table was vertical, and the candle, which was firmly fixed to it, was borizontal. Thefarce of blowing out the candle and carry. ing it behind the scenes was only designed to make the spectators believe that it was the same candle that was seen at the rear of the stage, while it was only a duplicate.

The arrangement of the top and sides with respect to the mirror may be perfectly ascertained by means of a very simple experiment. Take a small, square mirror and incline it at an angle of about 35° or 40°, while it rests upon a book; then place above $i t$ a piece of cardboard, or anytbing else, and it will be found by experiment what inclination sbould be given it in order to obtain, througb reflection, the sem-

Upon bringing the same cardboard near to the sides of the mirror, the part that will be above the latter will seem to be prolonged beneath. If one wisbes to take the trouble to fix several pieces of cardboard in these different positions with pins, be may produce the semblance of a space which is apparently completely empty, while it is cut into two by an inclined mirror. It would be easy thereby to get an idea

