

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

$\text { Vol [NI.-No. 20.] }{ }_{[\text {NEW }}$	NEW YORK, NOVEMBER 15, 1884.
eam yachis.	
lanta, the most famous yacht in Am	of this most perfect boat. Tb
ilt by Messrs. Cramp, of Pbiladelphia, her keel having	er skin is overlapped at the edges, the rivet beads being
been laid there on December 10, 1883. American ship	counter sunk. Above the water line the plating is carried up
ailders have long been noted for their excellent workman-	to the top of the bul warks, which are rather higher than usual
ip, but the skill displayed in the construction of this beau-	on yachts, the top being finished by a handsome continuous
tiful craft is proved by ber great strength, beauty of model,	rail of solid matogany. The bull is painted jet black, with
finish, and speed. Her portrait is given in upper engraving. She is of iron, 230 feet 3 inches length over all, 225 feet on	no ornaments save a gilt eagle at the bow point and ber name in gold letters on the stern.
,	The upper deck is of iron, flu
26 feet 4 inches, and ber draught 13 feet. She is one foot	a flooring of white pine. Tb
nger than Mr. Bennett's Namouna, and being of great-	are of solid mabogany, the inside of the iron bulwarks being
ward give an easy and graceful entrance in the wat	covered by a bandsomely paneed casing of the same cost

AMERICAN STEAM YACHTS.

The Atalanta, the most famous yacht in America, was built by Messrs. Cramp, of Pbiladelphia, ber keel baving been laid there on December 10, 1883. American ship builders have long been noted for their excellent workmaniful caft is proved by finish, and speed. Her portrait is given in upper engraving.
She is of iron, 230 feet 3 inches length over all, 225 feet on
deck, and 213 feet 3 inches on water line. Her extreme beam is 26 feet 4 inches, and ber draught 13 feet. She is one foot
longer than Mr. Bennett's Namouna, and being of greater beam is the largest in the American yacht fleet. Her lines forward give an easy and graceful entrance in the water; her run is long and smooth, finishing with an elliptical over- lass forward. The deck bouse is 80 feet long. Her comple-
ment of boats consists of one Herresboff steam launch, one dingy, a six oared cutter, and a wbale boat rigged as a gig. The pipe from the galley ranges discharges into the smoke stack, which is double, baving an air space of two inches between the outer and inner pipe, thereby preventing all burn. ing of the paint.
The crew consists of a captain and two mates, four quartermasters, t wo boatswains, eigbteen seamen, one sbip engineer, two assistant engineers, tbree vilers, six firemen, three coal-passers, one steward, ibree cooks, and six cabin servants. Her engine, a compound, inverted, direct-acting, with surace condenser, is of 1,000 horse power, with two cylinders, one thirty inches in diameter, the other sixty.
The yacht is lighted throughout with Edison's incandescent lights, and electric communication with all parts of the

sbip is bad by electric signals, a separate engine driving the dynamo machine supplying the lighting power. Each room bas a separate ventilating pipe from a main fan, also a steam coil for cold weather.
In the race of August 10, between the steam yacbts of tbe American Yacbt. Club Fleet, from Larcbmont, N. Y., to New London, Conn., a distance of 90 miles, this remarkable boat made tbe distance in 4 bours $443 / 4$ minutes. Allow ing some of ber competitors one hour's start, she was first in beating the Yosemite, her especial antagonist, by 26 min utes. This latter's blowing fan broke down about the middle of the contest, but it is doubtful if without the accident sbe could bave caught up, the Atalanta baving gradually drawn away from ber from the start
The day was stormy, with strong head winds. The Atalanta was well prepared for the contest. Her load line just touched the surface. All ber boats were in on deck, and ber numerous crew gatbered way aft at the start, when they moved forward as soon as she gatbered full beadway. ds ber propeller took bold of the water, a small mountain of water and foam rose up, almost obscuringber rail, but gradually subsided as ber full speed was gained
When under full beadway, a broad sheet of foam spread from ber bows, falling away amidsbips only to rise again toward the stern. The Yosemite on the contrary seemed to gather but little at the bow, but the swell rose amidships, and then fell away again before reaching the stern. Her disturbance of the water's surface was mucb less marked than that of the Atalanta, which proved herself in this contest the fastest yacht in Anserican waters.

Boring with Compressed Water.

When the French engineers first began the Mont Cenis Tunnel, says a Paris correspondent of the Boston Herald, the work was done in the old-fasbioned way by means of hand drills and blasting. Later, machines were invented driven by compressed air, whicls did away with the band drills, and by the aid of which the work was successfully completed. Similar but improved matchines were employed in the piercing of the St. Gothard; but when Mr. Braudt undertonk the piercing of the Arlberg, be proposed to the contractors to substitute compressed water for compressed air. He invented a special apparatus for the purpose, and the experiments made with it in the Westphalian mines were so satisfactory that his proposition was adopted on the western side, while the piercing of the eastern gallery was to be done by the same means as bad been employed on the St. Gotbard, known as the Ferroux macbine. After a few montbs' experience it was demonstrated that the Brandt was in perforating power the equal, if not the superior, of the Ferroux machines, while it possessed av undrultrd superiority for the ventilation of the gallery, and consequently for the bealth and comfort of the workmen. W ben I saw the Brandt machine at work, I was struck by the contrast between its smallness and the greatness of the task it bad to accomplisb. In appearance and size it resembles an oldfashioned 6 pound field piece. The drill bas a diameter of 30 inches, and consists of a circular auger, whicb is beld powerfully against the rock by means of a bydraulic pressure of from 100 to 120 atmospheres, while at the same time a rotary movement is imparted to it. The pressure against the face of the rock is the result of a column of compressed water contained in the cannon-like cylinder of the machive; inside of this cylinder is a fixed piston rod, a detail in which the Brandt machine differs from all other similar drills, in which it is the cylinder that is fixed and the piston rod that is movable.
The rotary movement is imparted to the drills by means of a cog wheel acting on the cylinder aund moved by a transversal endless screw, driven by two little bydrometric engines placed on eitber side. The drill will make, according to the nature of the rock, from 5 to 12 revolutions per minute, and it can be driven to a depth of 39 inches. Wben it is withdrawn a dynamite cartride is inserted, and the face of the gallery is blown down. By means of four of these machines, a gallery 16,300 feet long, with a beading of ten square yards, was driven into the western side of the Arlberg during the same space of time that six Ferroux machines were driving a similar gallery 17,900 leet into the eastern side of the mountain. The daily rate of progress varied greatly, according to the nature of the rock traversed
Sometimes a stratum of exceptionally hard rock would be encountered, and sometimes the sirata would be so friable that the roof and sides of the gallery bad to be immediately protected with shoring. At the start the average daily progress did not exceed $61 / 2$ feet, but toward the end 26 feet were the minimum, and 37 feet the maximum, of a day's work. As higb as 100 cubic yards of rock were sometimes removed during 24 bours, and an average of 500 cubic yards of masonry were built per day. About $2,000,000$ pounds of dynamite were used in this blast, and most of it was manufactured on the spot, in large frame buildings erected for the pur'pose in isolated spots at either end of the tunnel. In the construction of the gallery the same system employed at the St. Gothard 'lunnel was adopted. This system consists in the establishing of a privcipal gallery, and of a second gallery parallel to and above the principal one. The dimensions of the former were 8 feet bigh by 9 feet wide, which allowed six miners to work at the same time. The upper gallery, 7 feet bigb by $61 / 2$ feet wide, would only permit four men to work.

Oil is now extracted from the seeds of grapes in Italy. Young grapes yield most, and black kinds more than white.

Soriutifitic gmmericau.
ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. e. beach.

HELIMS FOR THE SCIENTIPIC AMERICAN

One copy, one year postage included....
One copy, six months postage included
5340
160
atis for eve extra copy of The Scientrio Am intcan win be supplie me proportionate rate Postage prepaid.
Remit by postal order
postal order. Address

The Scientific American Supplement

Is a distinct paper from the SCIENTIFICAMERICAN. 'The SUPPLEMEN isissued weekly. Every number contains 16 octavo pages, uniform in size 85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by 85.00 a year, postage paid, to subscribers.
all news dealers throughout the countrs.
news dealers throughout the countrs.
will be sent for one year postage free. on rimerican and Soppilicmen papers to one address or different aduresses as desired.
The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \&CO., 361 Broad way,

Scientife American Export Edition

Odical, issued once a month. Extch number contains about cine hundre large quarto pages, profusely illustrated, embracing : 1.) Most of the plates and pages of the four preceding weekly issues of the Scumatipic
AMERACAN, with its splendid engravings and valuable information: Commercial, trade, and manufacturing announcements of leading house Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies 50 cents. world. Single copies 50 cents. Manu facturers and others who desir to secure foreign trade may have large. and handsomely display
nouncements published in this edition at a very moderate cost. nouncements published in this edition at a very moderate cost.
The Scim TIFIC AM MIICAN Export Edition has a larke guaraiteed circu lation in all commercial places throughout the world.
co., 361 Broad way, corner of Franklin street, New York

NEW YORK, SATURDAY, NOVEMBER 15, 1884.

TABLE OF CON'EENT'S OF
THE SCIENTIFIC AMERICAN SUPPLEMENT INO. $\mathbf{1 6 3}$,
For the Week ending November 15,1884 . Price 10 cents. For sale by all newsdealers.

iI. TECHNOLOG Y.-The Mechanical Manufacture of Toilet Soapenind TECHNOLOG Y.-The Mechanical Manufacture of Toilet Soappand
the Machines Used.-4 engraving.
Exauna
4 flgurestion of Barometer Tubes without Appication of Heat.-
III. EL ECTRICITY.-The Telephone.-By E. J. Houston.-2..................... Mareschal's Eliectric Jaryngoscope.- -1 E. Jure
il and Electric IIghts.

AG
and tb

- NATURAL HISTORY.-Regeneration of the Scales of the German
- BOTANY, HORTICULTURE, ETC.-Native California Woods.

THE RETURN SCREW

To many machinists the production of a return screw for cbanging a rotary into a reciprocating movement is a difficult job. It is sometbing more, to be sure, than cutting a right and left band screw separately or independently; for the starting and finisbing points of the two threads must be the same, and yet there must be no abrupt corners at eitber end of the screw. To produce sucb a dual or returning screw, the work should be properly laid out before it is attempted to be completed at the lathe.
The return screw is a right and left hand thread cut on a sbort cylinder, each crossing the other, the terminals meeting at some initial point. In practice it is best to bave the threads square, with slightly inclined sides. The object of the return screw is to convert a rotary motion into a back and forth movement of perfect regularity. This back and forward moyement can best be obtained bymeans of a lever, by which the ultimate throw can be limited or extended. On a return screw of only six inches length, with four turns of one and a balf incbes pitch, the writer once produced a practically regular and even reciprocating movement of twenty inches. The lever is moved by a substitute for a half nut that rung in the scores of the thread. Unlike any balf nut, it does not reach over two threads-it engages only with one. In fact, it is a crescent shaped piece of steel, with thinned points, baving a pivot at the back of its convexity, so that it may turn freely in either direction.
In action the crescent runs along the channels of the right hand thread, as the screw revolves, until it reaches the end of the screw, when it turns sharply on its pivot and traverses the left band channels to the other end; then reversing and keeping up the reciprocating movement indefinitely. The motion is equable, smooth, and without jar. In some situationsthis contrivance is better than a cam or an eccentric, or any other method of cbange of motion from rotary to reciprocatory.
In laying out this return screw, machinists sometimes make the mistake of using one single point for the end returns. This, althougb agreeable to theory, is not feasible in practice. The crescent shaped traveler cannot turn a sharp corner; its course conforms to the spiral lines of the thread. So the ends of the threads-the places of their union-should be curved similar to the spirals of the screw. Machinists sometimes content themselves with drilling a single bole as a starter for the screw cutting tool for one thread, and the end of the cut for the other thread. This is wrong, for it 307 leaves a corner or angle of only the turn or diameter of the drill, the width of the thread. Two boles should be drilled at a little more than their diameter apart, and on the finisbing they can be connected by means of a little chiseling.; This will give a curve just sufficient to throw the guide on to the otber thread. In beginning a cut on a return screw, it is well to mark the right band thread, and then before cutting it to mark the left band thread; the change of gears is a trifling trouble.

THE ANCIENT INTERIOR AFRICAN SEA,

The very precise accounts left us by classic authors regarding an interior sea in the Libyan region of Africa, bave always attracted the attention of geographers. 'Tbe ancients called it the Bay of Triton, and spoke of it as an arm of the sea in communication with the Mediterranean, and distinguished by an island named Phla, which the waters alternately covered and exposed. Herodotus and Scylax give these particulars, and Ptolemy at a later date describes a river which flowed into it. For a long time the geographic world failed to locate this sea, but from the studies of Dr. Sbaw, of Rennell, Sir Granville-Temple, and MM. Tissot and Guerin, it was supposed that in the bistoric period the lakes bad communicated with the Mediterranean and bad formed the Bay of Triton. Commander Rnudaire, basing bis as sumptions on this identification, believed that this Bay of Triton was dried at the commencement of the Christian era in consequence of the formation of an istbmus which separated it from the sea, and tbat it would suffice to dig a canal between the basin of the lake and the Gulf of Cabe to revive this ancient sea. But later examinations proved that this bypothesis was untenable, as the bed of the Djerid Lake was above the level of the Mediterranean, and M. Fuchs recognized in 1874 that the soil of Cabe was formed, not of beds of sand or recent alluvium, but of strata of sandstone, gypsum, and limestone, and was at least 46 meters above the level of the adjoining Mediterranean waters. But recent geographical discoveries sbow there is a new basin in Tunis, that of Lake Kelbiab, which embraces all the central portion of the Tunisian plateau and the plain of Kairouan.

A large stream descends from Tabessa and empties into the Gulf of Hammanet, where it debouches between S_{s} usa and Erghela. At some distance from the shore lies the great Lake Kelbiah, which the river traverses, reappearing beyond under the aspect of a canal of exit, by wbich Lake Kelbiab during floods empties its surplusage of waters into the sea. M. Rouire, in the Cosmos les Mondes, gives some notes of a recent visit be paid to this locality. He had previously studied this region, arid bad published bis conclusions as to its being the site of the ancient Bay of T'riton, which bad almost been abandoned by scbolars as a real geographical locality. His essay awoke a lively discussicn, and be was accused of ignorance of the ancient autbors and their descriptions. A renewed careful study of Herodotus, Scylax, Pomponius Mela, and Ptolemy assured bim that the position of Lake Kelbiab corresponded with its surroundings to the descriptions of these autbors.

