WIRE MEASURING DEVICR

The engraving shows a wire measuring device for surveying and other purposes, recently patented by Mr. Alfred Atkins, of Wanganui, New Zealand. Figs. I. and II. show very clearly the form and constructiou of the reel. Be tween the head of the screw and the spindle is inserted a wasber. which rests upon the upper edge of a bearing fixed to the wheel. The spindle is fixed to the back of the frame, which is separated from the wheel by a leather washer. Upon the periphery of the wheel is tormed a groove, in which the wire is wound. The reel is provided with a jointed bandle, and is placed in a case or frame, in one side of which is a large circular aperture as shown in Fig. II.
The wire is fractionally divided, thereby dispensing with a separate tape or measure for giving the fractional parts, and is composed of seve ral sections, which are united by swivels to prevent kinking. The swivel may be formed as shown at. 4, Fig. III., and furnished with a tally to indicate the distance; or it may be made as shown at 3 , in which the number is cut upon the flat portion in the center. The smallest divisions -say links-are formed by a very small swelling, shown at 1; those for the next larger divisions.say tive links-by a larger swelling of the same form, as at 2 ; and those for the next larger di-visions-say ten links-by a slightly larger but flatened swelling with the number cut upon it, as at 5 . When considered necessary, a spring swivel can be attached to the inner end of the wire next to the reel, to be used when any distance is to be measured with extreme accuracy.
By inserting swivel joints in the wire at regular intervals all danger of kinking and breaking is obviated; and as the marks separating the several divisions are easily and quickly perceived, distances-as in surveying-can be measured rapidly and with almost no chance for error.

Change of Plumage in the wild Duck.

ATKINS' WIRE MEASURING DEVICE.

The drake leaves bis mate, says a writer in Familiar Wild Birds, as she commences to batch, and then undergoes, in common with many other male birds of the duck tamily, one of the strangest transformations known to naturalists. The plumage of the drake is, up to this time, exceedingly handsome. The bill is yellowish green; the irides hazel; the head and upper part of the neck a rich glossy green, with a ring of white; the lower part of the neek and the back a grayish chestnut-brown; the rump and upper tail-coverts bluish-black; the middle tail feathers velvet black, and curled upward; front and sides of the neck rich dark chestnut; breast, belly, vent, grayish-white; under tail-coverts velvet black; legs orange yellow. As already

An Invention Wanted

A correspondent suggests that a simple and cheap device for registering the distance traversed by a bicycle or other wheeled vehicle would be an invention of which great num bers could be sold. Here is a chance for some ingeniou individual to rack his bram.

REVERSING RAIL MILL ENGINES.
The accompanying engraving represents a pair of high pressure rail finisining engines recently erected by W. and J.

Disinfecting the Spata of Phthisis.
Dr. J. Sormani, Professor of Hygiene at the University of Pavia, gave some interesting details at the Hygienic Congress of the Hague concerning experiments made this year on 150 Guinea pigs with the sputa from phthisis. The object in each case was to ascertain what chemical or other methods would neutralize the bacillus which, it was previously ascertained, existed in large numbers in the sputa. The results of these experiments were summarized in the following manner: 1. The bacilli of tubercolosis were generally very difficult to destroy; dryness, exposure to oxygen, putrefaction, and most disinfectants failed to produce any effect. 2. A temperature of $100^{\circ} \mathrm{C}$. only killed the bacilli after at least five minutes of ebullition. 3. The artificial digestion of bacilli showed that they were the last of all living organisms to be destroyed by the gastric juices or chloridic acid. A very active digestion is necessary to kill this microbe. A bealthy man may destroy the bacilli in bis stomach, but an infant or an adult with his digestive faculties impaired would easily allow the germ to pass the stomach intact, and retain its virulence in the intestinal tube. This determined enteric ulceralions, etc. 4. The bacillins of tuberculosis can be preserved intact for a whole year when mixed with water. It is probable, though not proved, that it bas retained its virulence during that time. Thus drinking water may become the means of propagating tuberculosis. It is probable that contaminated linen retains its virulence for tive or six months. 5. Alcohol does not destroy the germ, and bard drinkers often suffer from tuberculosis. 6. Cod liver oil, ozone, oxygenated preparations, and other similar remedies have no effect in killing the bacillus, nor are benzoate of soda, salicylate of soda. sulphate of zinc, and carbolicacid, iodide of silver, bromide, camphor, etc., of much greater use. They injure, perhaps, but do not absolutely destroy, the bacillus, at least not in the doses that can be taken without danger. 7. A more decisive action may be at-

Galloway \& Sons, Manchester, for which we are indebted to the Engineer. The pair of engines bas cylinders 50 inches bore, and a stroke of 4 feet 6 inches, the pistons being unusually deep, to dispense with back s!ides. The crank shaft is of the double sweep description, with journals 18 inches diameter, the crank pin being of the same diameter by 15 inches long. As will be seen from the engraving, the framing is of most substantial character, and one of the principal features in connection with these engines is the arrangement of the steam admission and exhaust valves, which consist of simple flat plates, which are found in practice to maintain during wear their original efficiency and tightness. The
ributed to creosote, eucalyptol, pure carbolic acid, the aphthols, and bichloride of mercury. 8. For disinfecting spittoons, carbolic acid solution at 5 per cent is thought ufficient, and Dr. Sormani asserts that the breath never contains any bacillus. He also suggested that essences of turpentine or eucalyptol should be diffused in the houses as an agent for the destruction of this special germ. -Lancet.

A Large Gun Tube.

Sir Joseph Whitworth \& Co., Manchester, have completed for one of the 110 ton guns now being built for the govern-

IMPROVED REVERSING RAIL MILL ENGINE,

mentioned, a wonderful change takes place in the appearance of the drake at the time of breeding. First, the back and breast change color, then the curled feathers are lost, the splendid plumage of the head and neck becomes dull and gray, and about the flrst week in July all the handsome markings have disappeared, and the bird has assumed the markings have disappeared, an
dull brown color of the famale.
exbaust valves being placed underneath the cylinders, en-
able any water that may pass into the cylinders to be discharged freely, without the necessity for special relief valves The engines are fitted with link motion of the Allen type; the reversing is effected by a steam cylinder, the piston being suitably cushioned, and actuated from the stage where the driver stands.
ment a steel tube which is the largest that has ever been made for ordnance purposes. The length of the tuhe is 42 feet 6 inches, the outside diameter 27 inches, and it is made of fluid pressed steel forged hollow, with a hole through 143/4 inches diameter. The weight of the tube, as delivered by inches diameter. The weight of the tube, as delivered by
Sir Joseph Whitworth \& Co., is 26 tons, but if it had been made in a solid casting it would have exceeded 40 tons.

The Human Blood Worm.

This parasite, the Filaria Bancrofti of Cobbold-Filaria sanguinis hominis of some authors-is second only to the dreaded Trichina spiralis in its interest, producinglas it does a long list of diseases in the human system, some of which frequently prove fatal.
The male worm is unknown; the female presents the fol lowing characters: Body hair-like, smooth, and of uniform thickness. The head is furnished with a circular mouth without papillæ. The neck is narrow, and the tail blunt. The reproductive outlet is situated close to the head, and the anus just above the extreme tip of the tail. Length, three inches. The embryos attain a length of oue two-hundredths inch, and the ova measure about one one-thousandtl inch from pole to pole.
The embryo form of the blood filaria was first discovered by Waucherer in Babia, in 1866, in chylous urine from a female patient in the Misericordia Hospital there; and six years later Lewis found the embryos in human blood, as well as in chylous urine, and in several organs of the body, notably the kidneys. As an instance of the enormons numbers of this parasite which sometimes infest the buman body, the latter author calculated in one case that 140,000 filarix were present in the blood of a single unfortunate patient.
The babitat of the adult parasite above described is the alimentary tract of man. Here fecundation takes place, and, finally, scores of embryos of a worm-like form, and measuring one two-hundredths inch in length, are extruded from the reproductive outlet of the female. These make their way into the blood, and there produce some or all of the following list of symptoms: Chyluria, bloody urine (bæmaturia), wandering muscular pains, elephantiasisvery common symptom, occurring in more than one-half of all cases-leprosy, and various forms of lymphatic abscess, anæmia, and general ill bealth, ending frequently in complete destruction of the vital powers and death.
The Filaria Bancrofti bas been found in Egypt, Australia China, India, and Soutl America, and doubtfully in several European countries, and in the southern United States; certainly, of the ready possibility of the disease being intro duced into any temperate or tropical climate therecan be no doubt.
In Bahia and in Brazil generally the blood filaria is es pecially common, $81 / 3$ per cent of the entire population of Bahia, it has been calculated, at some period of their lives barboring this parasite.
Nothing could be more interesting than the mode of propagation of this species of filaria. It is well known that the class of the entozoa generally must go through at least one stage of their metamorphoses outside the body of their host, frequently within the body of another animal, and at first sight it is difficult to imagine how this can take place in the case of a parasite which inhabits human blood; but the subject has now been entirely cleared up by the laborious in vestigations of Manson, Lewis, Cobbold, and others. The female mosquito, after gorging itself with blood, repairs to some pool of stagnant water, there to digest its meal, and finally deposit its eggs. Should the victim of the mosquito bave been a person whose blood contaived filariæ, these parasites are sucked into the digestive tract of the insect, and during the period while its sanguinary meal is being digested the embryos there undergo marked changes, finally developing a four-lipped mouth, and becoming cylindrica in shape, with an abrupt, slarply pointed tail. When they have attained the proper stage of development they abandon their insect host, and take up their abode in the stagnan water. Should a single pair of these microscopic larvæ be introduced into the digestive tract of man through drinking water containing them, or by eating water plants to which they had aduered, they rapidly develop into mature specimens of Filaria Buncrofti, and, fecundation having taken place, a new brood of embryos are produced to populate the blood, cause the diseases above mentioned, and form a new center of this bideous disease
As the parasite under discussion can only be propagated through the agency of the mosquito or nearly allied bloodsucking insects, it is evident that if the race of mosquitoes were exterminated blood filaria disease would very soon cease to exist; but such a proposition needs only to be stated to show its absurdily, and the only praclicable method of preventing the disease is to avoid taking the larvæ into the stomach, by the use of only carefully filtered water-except, of course, where a spring of pure water is the immediate source of supply-or of that which has been raised to the boiling point before being used for drinking or culinary purposes; a temperature considerably below 212° being absolutely fatal to this worm in all its stages of development.
The treatment of blood filaria disease is exceedingly unsatisfactory, no known mode of procedure having any great influence over the progress of the disease; a decoction of mangrove bark is a tropical remedy of great repute; gallic acid has been used with asserted benefit by European prac titioners. Fortunately, however, the symptoms appear to be to some extent self-limiting. The percentage of deaths in cases of blood filaria disease, calculating from published records, is not high; but this is owing more to the insidious nature of the pathological condition than to its harmlessness to life, death frequently occurring suddenly in the course of the disorder from some acute disease, the latter always running its course rapidly, and often to a fatal termination when the constitution has been broken down by the ravages of filaria. Death may be often traced directly to the presence
of this parasite in the blood, and $i t$ is certain that all severe attacks of blood filaria disease markedly injure general bealth and shorten life.

Ralph W. Seiss, M.D.

CLOTHES REEL.

Mounted on an upright is the reel, the track plate of which fits as a cap on top of the post. In the upper surace of this plate is a circular grooved track, fitted loosely within which are anti-friction rollers which run on the bo tom of the groove and against the under surface of the head plate, which carries the wooden arms of the reel. This plate is formed with a circular rim on its under side, that re ceives the upper end of the track plate freely but snugly within it, to protect the rollers and track from rain and dirt. The track plate is formed with a tapering bollow upight projecting up through the eye of the head plate, which rotates around the upright aud is centrally guided thereby. The head plate is constructed with radial sockets for holding the ends of the arms. The several working parts ar held together by a bolt and nut, as shown in the engraving

sChwendler's clothes reel.
This device, which has been patented by Mr. William Schwendler, of Appleton, Wis., forms a roller carriage clothe reel working with the greatest freedom and steadiness.

The Electro-chemical and the Thermic Colored Rings
If we expose a plate of copper to the flame of a spirit lamp, of a Bunsen burner, or, better, to the fixed and narrow jet of an enameler's lamp, there are produced upon the meta iridescent coronæ around the heated point. If the experiment is well managed there are obtained fixed colored rings apparently inalterable in the air. These thermic rings are quite similar to the electro-clemical rings of Nobili; like hem they follow one upon another, and are"propagated in waves. In both cases the colors succeed each other in the same order, which is that of Newton'sringsas seen by trans mission. Multiple thermic riugs may be produced by means of drums surmounted by $2,3,4$, etc., gas burners. These same pieces serve equally for the production of the electro-cbemical rings, by fixing in the fine openings of the tubes needles of steel of equal length for each system. The hermic rings, simple or multiple, approximate the more closely to the corresponding electro-chemical rings as the jets of flame are fecbler and less oxidizing.- O. Decharme.

SHADE HANGER.

The engraving illustrates a new slade hanger, which can easily aud readily be adjusted for shade rollers of different lengths, and for which letters patent bave been issued to

fink's shade hanger.
Mr. Isaac M. Fiuk, of Akron, Ohio. The holder is formed of a tube, Fig. 2, in the ends of which wires are held, whose outer ends are bent down to form eyes, B. The extreme end of one wire is bent to form a book to receive the round pin of the shade roller. On the under part of the other wire is formed an elongated eye, C , which holds the flattened pin of the roller, and below which is the guide eye, D. In the side of one wire are cut ratchet teeth, in which the spring pawl, A, engages, and by this means the hanger can be adjusted for rollers of any desired length by pushing the wire further into the tube or witludrawing it. Cords secured to the eyes, B, are so arranged that by puiling on them or by releasing them the shade roller can be raised or lowered at will uniformly at both ends.

The New Orleans Exhibition

The exbibition opens at New Orleans December 1, and ontinues to May 31.
The main building is 1,378 feet long by 905 feet wide, without courts, and has a continuous roof composed largely of glass so arranged as to afford an abundance of light without subjecting the interior to the direct rays of the sun. The machinery department occupies a space of 1,378 feet long by 300 feet wide, within the main building, and has an extension added in iron 350 feet long and 150 feet wide for heavy machinery, described under the beading of factories and mills. Music Hall, with a seating capacity, in commodious chairs, for 11,000 people, a platform capacity for 600 musicians, and a mammoth organ built to order for the exposition, occupies the center of the interior. The main building will contain general exbibits. It is situated about in the center of the grounds.
The United States and State exbibils building is 885 feet long by 565 feet wide. It is one of the largest exposition buildings ever erected. At the time of the adoption of the plans it was supposed that the main building, baving the largest capacity of nny building beretofore erected, in conjunction with the borticultural hall and such minor outside buildings as were necessary, would afford ample space and accommodation for all exbibits; but the interest in the World's Exposition liad hecome so widespread, and the inquiries and applications for space became so numerous, that the necessity for additional accommodation became imperative, and the management determined upon the erection of this magnificent structure specially for the United States and State exlubits. The government exhibition will be complete-of itself, almost a mammoth exposition. Each department will have its distinctive exhibit. The Department of State showiug samples of cotton, wool, and cosmos fibers, and of the fabrics made from them from all parts of the world. This exhibit will be arranged in continental groups representing thegeographical divisions of the woria's commerce, etc. The Post Office Department will exhibit all the improvemeuts in mail facilities, and establish a branch office in the building for the accommodation of visitors and to show the practical workings of the postal system. The Treasury Department will exbibit coast survey, light housing, life saving service, customs, interual revenue, engraving, printing, etc. The War Department will show arms, ordnance, engineering, medical, surgical, and hospital services, progress in same, etc. The Navy Department will show naval arms, ordnance, projectiles, torpedoes, dynamoelectric machines for firing, models of war vessels, ancient and modern, etc. The Interior Department, everything pertaining to the inventions and improvements in American industries and to the history, customs, and babits of the aboriginal races, etc. The United States Fishery Commission, the Department of Justice, Bureau of Agriculture, the Bureau of Education, and especially the Smithsonian Institution, will be exhaustively represented. The government exhibit will vastly exceed that made at Philadelphia. In addition to the government exhibits, the collective State exhibts and the general educational display will be located in this building. This structure presents a very attractive appearance. The Horticultural Hall is 600 feet in length and 194 feet wide through its center. It is the largest conservatory in the world.
The art gallery is 250 feet long by 100 feet wide. It is a tructure built of iron. The buildiug is an elegant and artistic structure, so arranged for mounting, accessibility, and light as to preseut the best effects, and with ample accommodation for as large a collection as was ever exhibited on this hemisphere.
The grounds embrace the space of 247 acres, bounded on the north side by St. Charles Avenue, on the south by the Mississippi River. The buildings front east toward the main portion of the city. An electric railway incircles the grounds.
The appropriation by the general government of $\$ 1,300,000$, the contribution by the citizens of New Orleans of $\$ 500,000$, and the appropriation by the city of New Orleans and the State of Louisiana each of $\$ 100,000$, afford an ample fund.

Coloring Transparencies and Photographic Cards.
Mr. E. Edwards says: The first thing to be done is to prepare the paints. Get from any wholesale chemist a small quantity of different aniline colors or dyes, and dissolve them separately in spirits of wine, gradually adding the spirit until all is dissolved; dilute by about its own bulk of water, and add ox gall until the colors flow smonthly from a camel-hair brush over glazed paper; when this has been attained the colors are ready for use, and the painting may be commenced. It is advisable for the beginner to commence with a portion of the transparency which bas the smallest suiface of the same color, as it requires a little practice to lay on an even coat on a large surface, such as the sky or sea. If the color is piled on by degrees with dilute color, it renders the laying on of a smoother coat much easier. It is as well to give the transparency a coat of varnish when the coloring is completed and quite dry. For coloring cards the colors should be laid on very dilute (especially the flesh color), and should be laid on in successive wasles until the desired color has been attained. The colors must useful are: Lemon-yellow, green, orange, red, blue, violet.
For flesh color-lemon-yellow and red. For different shades of green-lemon-yellow and blue. For lilac and pur-le-violet and red. For jewelry and fair hair-orange.
The commonest water coior brushes will do.

