# Frixutific बgmericu. 

HSTABLISHED 1845.

## MUNN \& CO., Editors and Proprietors published weekly at

No. 361 BROADWAY, NEW YORK.

## o. D. MUNN.

A. E. BEACH.

## TELEMS FOR THE SCIENTIPIC AMERICAN.

 One copy, one year postage included..One copy, six months postage included
Clubs.-One extra copy of The Scientipio American will de supplied
grat is for every culut of five subscribers at 83.20 each; additional coples a same proportionate rate. Postane prepaid.
munn cor der. Address
The Scientific American Supplement
is a distinct paper from the Scientific american. 'Che supflement IA issued weekly. Every number contains 16 octavo pages, uniform in size
with ScIENTIFIC AMERICAN. Terms of subscription for Supplemmen, Fith SCIENTIPIC AMERICAN. Terms of subscription for SU PPLEMENT,
85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined llates. - The Scientiple American and Sopplement
will be sent for one year postage free. on receipt of seven dollars. Bot Will be sent for one year postage tree. on receipt ot
papers to one address or different addiresses as desired. The sufest way to remit is by draft, postal order, or rexistered letter. Address MUNN \& CO., 861 Broadway, corner of Franklin street, New York

Scientife American Export Edition.
Thue Sciuntific american Export Edition is a larke and splendid perlodical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated. embracing : (1.) Most of the plates and pages of the four preceding weekly issues of the Sciuntific
Amelicas, with its splendid engravings and valuable information: (2) Amelicas, with its splendid engravings and valuable fn formation: (2.
Commercial, trade. and manufacturing announcements of leading houses Commercial, trade. and manufacturing announcements of leading houses.
Terms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others wbo desire to secure foreign trade may have large. and bandsomely displayed unnouncements published in this edition at a very moderate cost.
The Sci entific Am umican Export Edition has a larke guaraut The SCI Rivipic Ambuican Export Edition has a large guaranteed circolation in all commercial places throughout the world. Ad
CO., 361 broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, NOVEMBER 1, 1884.


TABLE OF CONTEN'S'S OF
the scientific american supplement
INO. 481,
For the Week ending November 1, 1884
Price 10 cents. For eale by all newsdealers.

 I.


Iv.


VL GEOLOGY, ETC.-Thinoilite of Lake Lahontan.-By Prof. E. S

Hi. NATURAL HIBPORY, ANTEROPOEOGY, ETC.-How shonld





2. Blographr.-Mtchel Eagene Chevreul, Solentist.-With full

## crangeable speeds.

It is beyond question that our preseut method of changes of speed of latbes, drills, milling machines, planers, and other tools where cbanges of speeds are required is a crude one, and unworthy of present mechanical capability. At the best, our changes are made by moving the belt from a large driving pulley to a smaller driven pulley, or from a small driving pulley to a larger driven pulley. But each of these changes involves a positive and unalterable degree of cbange of speed. It must be "Hobbs or notbing. graded pulley may range thus in diameters: 6 inches, 8
inches, 10 incles, 12 inches. Suppose the spindle inches, 10 inclies, 12 inches. Suppose the spindle speed is
200 revolutions per minute, the small delivering pulley would give 300 feet per minute, the next 400 feet, the next 500 feet, and the last 600 feet. Between these changes of 100 feet per minute there are no intermediate speeds. I must be a change of 100 feet per minute. This is a favorable estimate of the cbauges of graded pulleys; it is seldom the grades are so near or that they range in the proportion stated- 6 inches to 12 incbes. Generally the total range of cbange of speed is much below these two proportionate extremes.
Now there is no theoretical reason, and no mechanical impediment, or binderance, to sucb an arrangement of changea ble speeds, for at least some of our machine tools, as sball greatly increase their usefulness. But our machine tool builders appear to run in ruts-shop ruts-and are slow to adopt a new thing and slow to adapt an old thing. Some of our light lathes and our light upright drills, which are fed by hand so as to be properly called " sensitive," would bave their usefulness greatly increased if the speed could be as exactly and designedly governed and regulated as the feed can be.
There is in use for the potter's wheel, and also for the sewing machine, a mecbanical device that will give a long range of speeds witbout any sudden and abrupt cbanges. It is a simple device-a rotating disk twenty-four, thirly six inches or larger in diameter, and across it from center to periphery extends a slaft feathered (witb fixed key) the entire length. On this sbaft traverses a sliding roll or small pulley controlled by a forked guide attached to a lever moved by band or foot. The roll bas a bearing by spring on the turned face of the disk, which revolves at a constant speed. If the roll is near the bub of the disk, its speed may not be fast; but if it is guided too near the rim of the disk its speed is correspondingly increased.
Suppose the disk to be 36 inches in diameter, and allow four inches for a bub. The driven wheel at the nearest point to the bub-say six incbes-will bave a speed (at the initial speed of 200 revolutions per minute) of 300 feet per minute. If the driven wheel comes away from the hub, or the six inches around it, to 16 inches beyond, it will have a speed of 800 feet per minute. But better than these extreme cbanges is the fact that any speed, from the initial 300 feet to the extreme 800 feet, can be had and be maintained. This is not possible with exact graded pulleys. And more than this, there need be no stoppage of a machine or sbifting of belt to effect all these cbanges; a movement of the foot on a treadle or the band on a lever will do the business. The
lever that guides the friction wheel across the face of the disk can be made to be secured or latcbed at any point to make a constant velocity, and the degree of velocity between the slowest and the fastest may be controlled exactly. The position of the driving disk and its shaft is immaterial. I bave seen it on a horizontal slaft driving an upright sbaft, and on a vertical sbaft driving a horizontal sbaft. The friction roll may be made of disks of raw bide or of leatber, or be of hard rubber-the latter not to be used in oil, but is unaffected by water. There is no question of the utility of this device as already used, and there seems to be no insuperable obstacle to its adaptation to smalluprigbt drills and other small machine tools.

## AUTOMATIC TORPEDOES,

During a war, where it is waged partly on navigable waters, tixed torpedoes lave proved, in some cases, effectual in preventing or at least delaying the approach of an enemy's sbips. But the torpedo branch of naval service bas long ayo extended to the offensive, and there is no maclinery in existence that bas more certainly and abundantly proved the resources of the machinist than that which isemployed in the working of the offensive automatic torpedo. As an illustration take the Lay-Haight torpedo. This is a cigar-sbaped vessel thirty feet loug and perbaps tbirty incbes diameter in its central and largest portion. It carries a cbaige of an explosive in its forward end sufficient to blow the largest and strongest ironclad that ever floated to " kingdom come." In the after compartment and all amidship are the generator, the engine, the steering apparatus, and the propeller shaft, and at the outer eud the propeller. Adjustable rudders determine its deptb under the water and direct its course. All the machinery is of the very best construction; no expense is spared for exact and perfect workmanship. From the sbore, or from an ancbored sbip, one of these destroyers can be sent a mile, one and a half miles, or even two miles, being guided in its coursc by the operator at the fixed starting point, by means of wires and electricity. The torpedo can be sent at a speed that absolutely prevents preparations to defend against it, even if any ordinary defense was possible

At the works of the Pratt \& Whitney Company, Hart ford, Cona., there is now being built, under the direction of Mr. George E. Haight, one of his torpedoes that is to be
submitted to a foreign government for approval before the award of a contract for a number of these naval weapons. This one is being made of sheet copper instead of sheet steel, the material of which most of the Lay-Haigbt torpednes has heretofore been made. The engines which are to drive the propeller are six in number, or rather the engine is a group of six cylinders working syncbronously with a speed that will develop about 1,000 revolutions of the screw propeller per minute. It is calculated and confidently believed that the speed of this torpedo will be almost if not quite at the rate of twenty miles per hour at a depth below the surface or from thirty incbes to forty-eigbt inches. A distance of two miles will be traversed in six minutes, giving little opportunity for the crew of a bostile vessel to take defensive measures, even if they could detect its starting and determine its approach. The motive power of the engines is carbonic acid gas.

## BALDNESS.-ITS PREVENTION AND CURE,

The mode of formation and growth of the hair is now so well known that there can be no question as to the cause of baldness. It is produced by a failure of normal nutrition in the papille at the base of each hair follicle. Imperfect work being done in the capillaries, which are bere richly distributed, the cells which constitute a bair sbaft are not formed in their due proportion, the old shaft thus feebly sustained becomes loose and drops away, leaving nothing in its place. This failure of nutrition may bave a suddeu cause, of which the effect will be but temporary. For instance, an attack of typhoid fever often leaves the papille of the scalp so mucb enfeebled that rapid baldness ensues. The papillæ, bowever, still retain their vitality, and as the system regains its strength they quickly recover their potentiality, and the bair comes again, perbaps thicker than before.
In the same manner certain cutaneous affections may cause the bair to fall by an action on the papillæ which is but temporary; in such cases recovery, perbaps with assistance, perbaps without it, is possible. In the great majority of instances, however, where the head is bald the failure of nutrition of each papilla bas come on so gradually, and has continued so long, that the papilla no longer exists; it bas passed away by atropby; its capillaries bave become obliterated, and even the follicle itself no longer constitutes a depression in the cutis, and the scalp bas the smooth and sbining appearance which we so well recoguize.
It is easy, therefore, to see that in such a condilion as this no renewed growth of the hair is to be expected, for the anatomical structure which caused its development and continued it bas ceased to exist, and the countless remedies which are so freely advertised as being able to rejuvenate bald heads are utterly of no avail. They serve only to illustrate the greed and the impudence of the inventors, as well as the credulity of the purcbasers. But suchis the desire to escape the appearance of "growing old" that no doubt they will hold their ground for all time to come.
But now arises the question, Cannot the application of the various agents to the scalp, at the time when the bair is beginning to lose its bold, be of service in stimulating the follicles and papillw into renewed and permanent vigor? To this question it is not possible, on theoretical grounds, to say no, absolutely; but in practizal fact that is the only true answer to give in the vast majority of cases. The cause of the falling of the bair bas been already stated, and safe reasoning tells us that our only hope can be in that whicb can estore the failing vitality, and we well know that we slould not expect to secure this on any other part of the skin by flthy oils and washes. Proper cleansing of the scalp is as important as it is of all other parts; nothing else should be applied to it but commou sense.
There can be little question that the continued close covering of the bead with bats and caps is one very constant cause of baldness. Women, in our own communities, seldom lose their bair, except from sudden causes; and among those nations where the bead is habitually left bare or but slightly covered, baldness is practically unknown. At the same time the beard, which is of the same class of tair as that of the scalp, but which is always uncovered, does not fail with age. A reform in our style of bead gear is very desirable, but it is not at all likely to be accomplished.
The suggestion was some time ago made in our columns that bald beads might perbaps be covered anew with hair by "skiu grafting," i.e., applying bits taken from other scalps and causing them to take root and spread. No doubt such bits might be attached, but the whole matter is merely a wild fancy without practical value. We can make "skin grafts" take bold, but it is only where the skin is destroyed and the surface raw and exposed, commonly rendered so by disease. Assuming that some persou (though it is difficult to believe that sucb a person could be found) would consent to bave bis scalp peeled away in preparation for the operation, and then assuming that some other person cuuld be found who would consent to appropriate bis own scalp to cntting out the proper bits for the work, yet then the very best possible success (even theoretically) must be extremely imperfect. The deéuded surface would heal so rapidly between the "grafts" that no extension on their part could take place, and a bead with small specks of bair here and there would be the only attainable result. "Crazy patchwork" is fashionable, but perbaps not many would care to wear it in tbat way.
The result of all seems to be that when baldness bas come owly and naturally, it bas come to stay, and our only wis. dom is to be content.

