ELECTRIC MOUTH LAMP AND LARYNGOSCOPE

 In diagnosing lesions of the teeth and associated parts the small electric lamp shown in the accompanying engraving will be found an invaluable assistant to the dentist, and by its aid the exact location of the disease may be determined. By the use of the appliances beretofore in vogue this could not be accurately ascertained, and as a consequence many soųnd teetb bave been sacrificed in the fruitless search for the seat of neuralgic pains for which, owing to the in sufficiency of the means of diagnosis, no satisfactory cause could be established. This lamp illumivates the oral cavity so brilliantly that any departure from normality can be unerringly detected; and as it is placed within the arch, be bind the object to be lighted, its rays fall upon the lingua surfaces of the teeth while the eye of the operator is directed to the labial surfaces, and thus every portion of the teeth and gums is thrown into strong relief-the sound teeth appearing translucent and showing no variations in texture, while the unsound teeth have an opaque or dark appear anceThe lamp, E, is an incandescent electric ïgbt mounted permanently in a non-conducting case of bard rubber, and provided with metal conductors which pass outside of the smaller section of the case. The lamp is carried in another bard rubber cylinder, D, called the lamp holder, which is also supplied with metal conductors fitting those on the case, the two parts when adjusted being clamped together by the set screw, F, thereby bolding the lamp firmly in its socket The conductors of the lamp bolder are connected to the ban dle, A, by binged joints, so that almost any desired adjust ment can be readily secured. This handle is called a resist ance handle because it is wrapped with wire of a low con ducting power, by which, through the agency of the ring I, the flow of current is regulated. When the ring is placed at the end of the bandle nearest to the battery cord, the re sistance is reduced to the minimum, and the current from the battery flows freely to the lamp. Sliding the ring to the opposite end of the handle compels the current to travel through the wire with which the bandle is wrapped to the ring and back again, thus forming a resistance. The connection to the battery cord, B , is made by the spring coup-

ELECTRIC MOUTH LAMP aND LARYNGOSCOPE.

ling, C. A non-conducting sbield, G, is placed over the lamp globe for the double purpose of preventing the radia tion of beat and of directing the light to any desired point. At H is a screw for breaking the circuit, which sbould be broken occasionally during a prolonged examination, and also, whenever the lamp is not in use to prevent its becoming so bot as to be unbearable in the mouth. In order to dmit of the examination of posterior cavities a mirror, se at an angle of forty-five degrees, is attached to the end of
the guard. With this attachment the lamp forms a perfect aryngoscope.
The battery to operate this lamp consists of three improved Bunsen cells baving large carbons. The porous cups are filled with the bichromate solution (made in the following proportion: One-balf gallon of boiling water, in which is dissolved balf a pound of bichromate of potasb; when cold bere are added ten fluid ounces of chemically pure sulphuric acid), and the glass jars with water to which two ounces of chemically pure sulphuric acid are added. This battery is

The Indians scattered along the foot-bills of the Sierra re a quiet, inoffensive people. They do not appear to be governed by any tribal laws, yet adbere to many of their old raditions. One or two men of superior ability and industry orm a nucleus around which others less ambitious gather Hence they fence with brusb and logs a tract suficient for beir requirements of hay-making, pasturage, etc. Althougb they often indulge in the food of civilized nations, the acorn is still a favorte article of diet in every well-regulated wig wam. The process of converting this bitter nut into bread is curious. Under the branches of a grand old pine I found them at work. They bad shucked and ground in the usua manner a large mass of the acorn meats. A number of cir cular vals had been bollowed out of the black soil, mucb in the shape of a punch-bowl. Into these was put the acor pulp. At band stood several large clothes-baskets filled with water, and into these they dropped bot stones, thius beating the water to the required temperature. Upon the mass of crushed bitterness they carefully ladled the bot water, making it about the color and consistency of cream Not a speck appeared to mix. A buxom muhala stood by each vat, and with a small fir bough stirred the. mass, skill fully removing any speck that floated upon the surface. The soll gradually absorbed the bitter waters, leaving a firm white substance, of which they made bread. I asked to taste it, at which they said something in their language, and all laughed. I asked again, and after more laugbter I was handed a small particle on a fig leaf, and found it sweet and palatable. They began to remove it , and so adroitly was this done that but a small portion adbered to the soil. They spread it upon the rocks, and in a short time it was fit f_{0} use. This, I am told, they mix with water, put it into thin cakes, and bake before the fire.-San Jrancisco Chronicle.

hoisting machine.

The boiler, engine cylinders, the hoisting drum, and all the otber parts of the machine are supported upon a truck esting upon wheels. The bed plate carrying the boiler and engines 19 formed with rear stands on which the cylinders re attached at an inclination of forty-five degrees. Th stands are made with guides for the crossheads, and the rods are connected to the same wrist pin on the crank disk of the sbaft, so that the engines work at right angles and carry each other over the dcad center. The driving shaft carrie two eccentrics for operating the valve rods of both engine througl the medium of links. (The construction and ar rangement of these parts are shown in Fig. 2.) By the movement of a lever the links are simultaneously shifted to reverse the engines.
On the drivine sbaft is a pinion, attached by a feather, so that it can be moved on the sbaft by means of a lever to engage with the internally tnothed rim on the end of the drum. The rim is provided with flanges, between which is -
 d quite dark. For tempering, a bat ounds of gans or wor empering a dozen picks, but some car is needed not to bave the bath too cold, as it tends to chill; bence the workman often dips a bot iron in his bath before be begins to temper his picks. When the pick is at a dark cherry beat, it is dipped just at the point, the rest being cooled in the ordinary way. We suggested mercury to a skilled workman as a good thing with which to temper, but the great trouble is to control this substance for this purpose it makes the steel so bard that it is brittle, the entire edge often cracking off, so sudden is the reaction.
As to the comparative merits of American cbrome and Englisb steel for making picks, opinions vary; though American steel seems to have the most friends. When English steel is used, the tool is beated only moderately in forging-not sufficient to scale-and when the redness leaves it is not bammered; it is bardened by beating to a low red beat, dipping in warm salt water, and tempered to a brown; while with the American steel it is beated to a yellowisb color for forg ing, to a low red for hardening. and at once quenched.
The best weight for a pick seems to be alout four pounds and to be perfect sbould be ground only with moderate pressure, with plenty of water, down to the edge, but no sharpened on a large stone.-Midland and Industrial Gazette.

Value of Hay for Stock.

Experiments bave been made in England as to the comparative value of good bay for stock, with the result that it is estimated that 100 pounds of hay are equal to 275 pounds of green Indian corn, 400 pounds of green clover, 442 pounds of rye straw, 360 pounds of wheat straw, 160 pounds of oat straw, 180 pounds of barley straw, 153 pounds of pea straw, 200 pounds of buckwheat straw, 400 pounds of dried corn talks, 175 pounds of raw potatoes, 504 pounds of turnips, 300 pounds of carrots, 54 pounds of rye, 46 ponnds of wheat, 59 pounds of oats, 45 pounds of mixed peas and beans, 64 pounds of buckweat, 57 pounds of Indian corn, 68 pounds of acorns, 105 pounds of wheat bran, 167 pounds of wheat, pea, and oat chaff, 179 pounds of mixed rye and barley, 59 pounds of linseed, and 330 pounds of mangel-wurzel.
a brake strap operated by a lever. The drum is in two parts, the larger portion fixed on the shaft and the smalle and portion fitted to slide on the shaft, the two parts being connected by pins in a middle head. A nut bolds the slid ing part up to place, so that when it is necessary to take up or let out the boisting rope the nut is screwed back and the part moved on the sbaft, and then rotated to wind or un wind the rope. The ropes pass off from opposite sides of he drums over pulleys, and to the platforms, so that in peration one platform is raised as the other is lowered. By this construction and arrangement the machine is rendered very compact, and can be conveniently operated, especially or supplying material to buildings in course of erection and it can be easily moved from place to place.
Further particulars concerning this machine may be ob Gined by addressing the inventor, Mr. G. M. Viernow Room 33, 8. E. corner Olive and Fifth Streets, St. Louis Mo.

Governor Begole, of Michigan, in a late address as serted that be bad found, from an acrurate stuady of statis ics, that 91 per cent of the crime and pauperism of the State came directly from the use of intoxicating drinks.

stray Plants.

An interesting botanical lecture was lately delivered by Prof. Rothrock, in Horticultural Hall, Fairmount Park Philadelphia, on Stray Plants. The lecturer stated that he did uot intend confining bimself to those larger plants which we can all see, but would embrace also a brief statement o those minuter forms which we never see by the unaided vision, and whose presence was only geverally recognized by the evils which they wrought and by the enormous death rates which they induced.
Twenty years ago or more, Bentham and Hooker, the two most distinguished English botanists, began preparation of their great book, the Genera Plantarum. It was intended to bring together in the naturalorder of their siructural affinity all the flowering genera of the existing flora on the globe. What are genera or, as used in the singular, what is a genus All the species of pine constitute one genus, all the spruce nother, all the firs a third, all the cedars a fourth, and al bese are grouped in the order of cone-bearing trees. Modern cience teaches that all these have descended from a few species of parent plants, and that time and physical surroundings bave produced the variations we now see in the vast aggregate of plants representing the order. A study of the Genera Plantarum shows a marked tendency in the maller orders to a localization in a portion of the globe The larger orders are, as might be expected, more widel pread. The very increase in the number of their gener mplies the greater diversity of physical coudition which they have encountered in their descent through the ages. Genera are in the main more localized than the orders. This oo, is to be expected. Thus, for example, the genus Cras sula, of 120 species, was mamly localized at the Cape o Good Hope. Just in the same way the asters and golden rods found their maximum development in our own region Sometimes, however, plants would wander off from thei birthplaces. Illustrating this, we had the bickory group, of which there are but ten known species. Nine of these grow in the United States and one in Mexico. It is strange that he Mexican species has a four-winged fruit, and strange still that the Pecan hickory, which, on the whole, is it earest geographical associate, should also sliow a marke lendency to the production of fruit of the same kind.
Just, too, as there were in the past vast migrations of men who invaded and took possession of other lands after extir pating the native population, so there had been such migra tions among plants. The original forest on the island of aint Helena bad been superseded by European cone-bea ing trees. Instances of the same thing on a much larger scale could be named. The strangest examples were wher the same species of plaut would be found here and in Japan but nowhere else. Our blue cobosh was sucb an instance Hardly less remarkable was it that of the two species of podophyllum (May apple), one grew here and the other in the far-()ff Himalaya region. We have no reason to doub that they are blood relatives, but how is it that one or both bave strayed from the original birthplace?
It is one of the unexpected things (which Professor Gray bas so well shown) that we have more plants here of the Japanese flora than Europe bas, and that even the Pacific coast of America has not so many of them as the Atlantic slope bas. Europe may bave received (by natural means) some few American plants; but, in the main, the line of plant migration bas been from the Old World to us-from west to east.
The lecturer then introduced the in visible stray plants, which are only seen clearly by the best powers of the best microscopes, plants that are destitute of the green color which makes our larger and more familiar forms self-sustaining They (more than the mistletot) are parasitic. They are the babitual associates of decay, disease, and death; though as yet it would be premature to assert that they are the cause of disease, yet the facts appear to point to that conclusion Thus we have one supposed to be the cause of diphtberia, nother of splenic fever, another of pulmonary tuberculosis, and another of cholera. Take the one last named (commasbaped), i. e., that of cholera.
First. It is found in persons suffering from cholera
Second. It is found only in the organs affected by cho era, and, therefore
Third. It is not found in healthy persons,
Fourth. It diminishes in numbers as the patient con valesces. Hence it is proportionate in number to the gravl y of the disease.
Fifth. It has marked powers of locomotion.
Sixth. It lives and multiplies rapidly in the clothing of cholera patients if this be kept damp for twenty-four bours
Seventh. It will die if kept dry for twenty-four hours.
Eighth. It develops only in substances which have a lkaline reaction.
Ninth. It dies when brought in contact with solutions whicb contain only a little freeacid.
These are substantially the conclusions reached by Koch who has been the most careful investigator of the subject Clearly they point to the following cautions in cholera sea sons: Cleanliness of the person, of the clothing, and of the surroundings; isolation of cholera patients; destruction by fire of clothing and bedding used by the sufferers; absolute purification and frequent acidulation of drinking water, and be rejection of all water which can in the slightest degre be tainted with sewage from cholera infected districts. All of these conclusions are amply sustained by the experience which epidemics have but too largely furnished. One
thing more the importance of this subject teaches. It is,
hat local, State, and national health boards should be absolutely free from political restraints or from any measure of party expediency; that they should be invested with powe which is final; and that they should ba
These germs of disease then come fairly under head Stray Plants. They float in the air we iubale and in the water we drink. And once started in their career of de struction, it is possible for them to incircle the globe with badges of mourning.

TREATMENT OF DEFORMITIES OF THE NOSE.

This is the season of the year when contests at font ball base ball, bicycle riding, fox hunting, and kindred outdoo ports are at their beight, bringing in their train broken rms, dislocated sloulders, sprained ankles, and not in requently broken noses. The surgeon's skill is called iuto requisition more at this time of year than at almost any ther, and the cause of this fesults in casualties of a greate variety than occur to persons in their ordinary pursuits, and ence the doctor and stirgeon is sometimes puzzled to de ermine the best meaias for treating the peculiar case befor him. W. J. Walsham, Assistant Surgeon in charge of the Orthopædic Department at St. Bartholomew's Hospital London, communicates through the Lancet his experience in reating deformities of the nose following injury, which is imely, and will no doubt be found useful to the surgica profession.
"During the last few years," says the distinguished writer "I have had a considerable number of cases of deformities of

MASK FOR STRAIGHTENING THE NOSE

he nose due to injury under my care; and as the treatmen of such deformities is but lightly touched upon in works on urgery, it may be interesting to some to learn the result of m experience. . . . For convenience of treatment they ay be divided into those affecting, first, the lateral cart " 1 , second, the nasal bones.
one or other side, or they mariously bent or twiste to one or other side, or they may be depressed at the spo where they join the nasal bones, giving the nose in this in stance a sunken appearance. In the former case the septum nasi (the central column of support) will as far as I know be ways found deflected in a direction opposite to that of e bent lateral cartilage, blocking up more or less com when the cartilages are depressed, the septum may not only be deflected, but also, as is unfortunately too often the case, fractured with lateral displacement of the fragmente or else dislocated from the maxillay crest. In addition to he deformity, therefore, there will exist the usual train of symptoms accompanying nasal stenosis from other causes one of voice, etc. In neither class of cases will eithe operative or mechanical treatment alone suffice. 'The sep thm must be straightened, and the lateral cartilages at the sametime be forced into position, and there retained by mecbanic

For retaining the septum in position, in my earlier cases 1 used Adams' retentive apparatus, modified so as not to in jure the columnella. More recently I bave had an instru ment made of vulcanite, which, however, is open to the objection that the vulcanite is apt to become softened by the beat of the nose, and lose itsshape and retaining powers. The advantages of the softer vulcanite may be obtained by having the blades of a steel instrument coated with this ma erial. For solid ivory plugs I have now substituted holluw pluge of vulcanite, which can be worn with greater com ort, as they allor the patient to breathe through them Many forms of retentive apparatus for bolding the latera cartilages in position were in use before I found one whic fulfilled all the indications. At first the ordinary nose truss, which is fastened to the forehead by a band round the head was tried. This, however, proved of little service, inas much as it is liable to shift, and thus give no fixed point to work from. The same objection holds to the spectacle method of flxing the truss. At length this difficulty wa overcome by having a mask accurately moulded to the face, shown in the accompanying wood cut. A plaster of Pari ast is first taken of the face, and in this the leather for the mask is moulded, apertures being left for the mouth, eyes and nose itself. The mask when thoroughly dry is lined with soft chamois leather, and fits accurately to the irregu secured by suitably arranged straps around the head

Having thus obtained a fixed point to work from in th mask, it is easy to bring pressure to bear upon the nose in ny direction required by means of suitablescrews, springs, tc., attached to the mask."

A Telegraphic Contest

A prize contest for fast telegraphic transmission took place, on August 17, in the Western Union Telegraph Com pany's building. The prizes were three in number-the firs gold medal, the second a silver medal, and the third a decorated telegraph key. Tbey were given by J. H. Bunnell \& Co., of New York, and the only conditions were tha the Morse steel lever key should be the one used. The rizes were for "clearness of character and speed combined." The judges of the contest were J. H. Dwight, night force manager; W. B. Waycott, cable manager; and E. F Howell, cbief operator, all of Western Union. The affai was in charge of Mr. F. Catlin, chief operator.
At eleven o'clock, when the contest began, over one bun dred leading operators and telegraph managers were present On a printed slip was the work to be done. This consisted f 500 words, 15 periods, and 4 commas, in all 2,368 charac ers, as published in the Operator of August 15. The mes ages were sent on a local circuit. There were ten contest nts, all of whom did remarkable work, and at one o'clock be contest was finished. Shortly afterward the judges an nounced their decision, which was as follows: First prizeW. L. Waugh, "superior" work, each letter and characte perfect; tıme, 11 m 27 s . Second prıze-W. M. Gibson, good" work; time, 11 m .3 s . Third prize-F. J. Kıhm fair" work; time, 10 m .32 s . It is notable that not on of the winners is a Western Union man, Waugh belonging to the Commercial Telegram Company Stock Exchange Gibson to the Bankers and Mercbants' Stock Excbange, an Kihm to the United Press Association.
The names of the otber contestants, with their time, are a follows: J. W. Roloson, 10 m .10 s .; L. E. Liddy, 11 m 58 s. ; M. J. Doran, 11 m .32 s ; W. A. Hennessy, 11 m .51 s . E. Delaney, 11 m .52 s . ; Harry Ziegler, 12 m .29 s ; P. J Byrne, 13 m .50 s.
Roloson's time of 10 m .10 s . is the most remarkable on record, but his work was too indistinct and unreadable to obtain a prize. He is an operator of the Bankers' and Merchants' Company, and with coaching will be a mos formidable opponent. The prizes are quite bandsome. Th gold one is a bar from which bangs a shield-sbaped pendant on which are the name and date of the contest, and in th center the design of a band holding the lightning. The sil er one is a bar to which bangs a round medal, the top o which is cut out, and in its place stands out the same design as the gold one contains. -Electrical World.

Great Rafts.

The Cleveland Press tells the following: Two of the larg est rafts of pine logs ever brought to this port, and the only rafts ever brought from Lake Superior, lie just outside the reakwater. One covers about five and the other eight acre f territory. The largest raft contained about $3,000,000$ fee P lumber, and the smallest a little over $2,000,000$ feet There are in both rafts about 16,000 logs, ranging from 12 o 16 feet in length. The rafts left a point on the south slior of Lake Superior, between Grand Marias and Grand Island about 100 miles west of the Sault, a little more than two weeks ago. 'They were made up in two sections each, pear shaped, and inclosed in booms. Through the rivers the ser tions were towed separately, and they also went through the rapids in the same shape, without loss or damage. The un is about oue mile in length, and the fall in the neighbor hood of 20 feet. The entire distance from start to destina tion is about 600 miles. The run from Detour was made in 14 days, the average speed being about $1 \frac{1}{2}$ miles an hour.

A Perilous Pathway

The travels of the native East Indian explorers, thei stratagems and their disguises, their hazards and sufferings, their frequent hair-breadth escapes, are teeming with excite ment. One of them describes a portion of bis track at the back of Mount Everest, as carried for a third of a mile along be face of a precipice at a height of 1,500 feet above the Bhotia-kosi River, upon iron pegs let into the face of th rock, the path being formed bs bars of iron and slabs o tone stretching from peg to peg, in no place more than 18 aches, and often not more than 9 inches wide. Nevertheess this path is constatitly used by men carrying burdens.
One of the finest feats of mountaineering on record was performed last year by Mr. W. W. Grabam, who reached an elevation of 23,500 feet in the Himalayas, about 2,900 feet bove the summit of Chimborazo. Mr. Graham wasaccom panied by an officer of the Swiss army, an experienced mountaineer, and by a professional Swiss guide. They as cended Kabru, a mountain visible from Darjeeling, lying to the west of Kanchinjunga, whose summit still defies the strength of man.

Burnt Umber.

To produce this most important pigment the crude umber is put in iron retorts and subjected to a heat more or lessintense The result is the changing of the tone of the color to a very much deeper and more red brown. The drying property i Iso increased by burning. Burnt umber, with white and orange clbrome yellow, will give a variety of sbades of clea warm drabs. Burnt umber, with white and lemon chrome yellow and scarlet lake, will give a rich shade of tan color.

