or providing a strong and constant current for other purpose of illustration or experiment, at times showing nearly a one orrse power energy.
The motors displayed by this company showed themselves particularly adapted for the transmission of power from a distance, which from present appearances would seem to be one of the great problems of the future.
Perbaps the most important feature of the Thomson Houston exhibit was the little mechanism inclosed in a small hox by which the electric current can be transferred from arc lights, and made to feed incandescent lights of from twelve to sixteen candle power. It is called the Thomson-Rice incandescent distributor. Heretofore little has been done in this direction; either are or incandescen lights being exclusively distrihuted, because it was found that the cracking of one or more incandescent lamps usu ally led to the breaking of many more in the same group. By the device exhibited, bowever, an arc light can be turned out, and a group of eight incandescent lights be made to glow instead. Furthermore, all the lamps or any particular number of these in one circuit can be lurned on or off with the same facility as gas jets can be operated, and without danger to other lights in the circuit. The little mechanism acts automatically and electrically, and is at no time subject to accident by reason of careless handling As a whole, the Thomson-Houston system shows, as exhibit ed, that it is founded upon a correct interpretation of natural laws, and that its workings are directed by men who are conversant with the theory as well as the practice of electrical engineering.

The National Academy of Sciences.

A session of this society was beld at Newport, R. I., Oct. 14 to 18. The National Academy was incorporated by Congress in 1863, to "consist of not more than fifty ordinary memburs," and the custom has been that these shall be selected specialists such as will best represent every department of knowledge. We believe there are now about one bundred members of the Academy, but it is nevertheless a very select organization as compared with that much larger body, the American Association for the Advancement of Science, and mauypapers read at its meetings are such as would be of little interest to ol her than specialists in the subjects treated of
Among the papers read was one by Prof. E. D. Cope to show the evolution of certain bones of the ear in Pelicosauria, involving a study in comparative anatomy as well as evolution.
Prof. Fairman Rogers, of the University of Pennsylvania, described experiments on the motion of animals, as depicted by instantaneous photography. In some experiments conducted last summer at Fairmount Park, Philadelphia, forty cameras were placed in a row, and so adjusted as to be suc cessively opened by the motiou of an aninal passing in front of them. These experiments will throw light on the mechanism of animals, and, it is suggested, mas give valuable application in machinery. For instance, marine engineers do not agree on the best form of steamer screws, and it is intimated that an exbaustive study of the fisb's propeller would throw light on this. There will prohably be no diffi culty in arranging a glass tank through which fish can be made to swim, and be photographed in transit. The motion of dogs, horses-especially racers-deers, and other-animals, in running, were described; and interesting and prolonged discussion ensued. Professor Rogers stated an interesting point to be the flexure of the long pastern. When a borse gallops, he moves in a horizontal line. His body keeps al most a uniform direction, notwithstanding that his feet rise and fall. He bends bis pastern to keep level. In race borses it touches the track. He cited as an instance a celebrated race horse, which used to make eight marks on the ground, four for the pasterns as well as the four foo tracks.
Professor Tylor, of Oxford, England, the eminent antbropologist, considered at great length the "Civilization of the American Races," particularly the Zuni, Navajo Mojave, and Wallopi tribes, among;which be had traveled.
Among those present at this meeting of the Academy were President O. C. Marsh, Professor of Paleontology o Yale; Home Secrelary Asaph Hall, Astronomer of the National Observatory; Treasurer J. H. C. Coffin, United States Navy; W. H. Brewer, Professor of Agriculture Yale; G. J. Brush, Professor of Metallurgy, Yale; Josiab P Cooke, Professor of Mineralogy, Harvard; Edward S. Dana Professor of Pbysics at Yale; Walcott Gibbs, Professor of Chemistry at Harvard; Julius Hilgard, Superintendent of the Coast Surves; Samuel P. Langley, astronomer in charge of the Allegheny Observatory; J. S. Packard, Professor of Zoology at Brown University; Edward C. Pickering, direct or of the United States Geological Survey; Samuel H. Scudder, editor of Science, of Cambridge Mass.; Williau P. Trowbridge, Professor of Mecbanics at Columbia College; and Francis A. Walker, President of the Massachu setts Institute of Technology.

A New Pavement in Berlin.

A new form of paving bas been in use in Berlin since last year. Layers of bricks are put down impregnated with asphalt. After a time they absorb from 15 to 20 per cent of the bituminous matter, becoming remarkably elastic and capable of resisting pressure and damp. This new paving it is said, lasts mucb longer than any of the orber kinds, and it offers a sure foothold to horses. It is a very popular pavement in the capital of Prussia.

Frimutific Ammerican.

HSTABLISHED 1845.

MUNN \&̊c CO., Editors and Proprietors. PUBLISHED WEEKLY AT
No. 361 BROADWAY, NEW YORK.

O. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCLENTIFIC AMERICAN.
One eopy, one year postaqe included....
One copy, six months postake included
8390
160
Clubs.-One extra copy of The Scientrfic Am erican will be supplie
andis for every ciud of five subscribers at $\$ 3.20$ each; additional coples ame proportionate rate. Postake prepaid.
Remit by postal order. Address
MUNN \& CO . 961 Broadway, corner of Franklin street, New York.

The Scientific American Supplement

is a distinct paper from the Scientific a merican. THE SUPHIEMIEN'T is issued weekly. Every number contains 16 vectavo nages, uniform in siz with SCientific American. T'erms of subscription for Supplement
85.00 a year, pustage paid, to subscribers. Single conies, 10 cents. Sold by all news dealers throughout the countrs.
combined lentes. - The Scientific american and Supplemen will be sent for one year postage tree. on receipt of seven dollars. Bot The sarest way to remit is by draft, postal ordes, The safest way to reinit is by draft, postal ord er, or rezistered letter.

Sclentife american Export Edition.

The Scicntific american Export Fdition is a larke and splendid pertdical. issued ouce a month. Eich number ccntains about cine hundred arge quarto pages, profusely illustrated. embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Scicy Ames and pages of the four preceaing weekly issues of the Scinvitelc
American, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single copies 50 cents. Manueacturers and others who destren World. Single copies 50 cents. Manueacturers and others who desire
to secure foreign trade may have large, and handsomely displayed :innouncements publisbed in this edition at a very moderate cust.
The SCIFNTIFIC AMGIICAN Expurt Edit ion hus a
ation in all commercial places throukhout the world. Address MUNN
Co., 361 Broadway, corner of Franklin street, New York
NEW YORK, SATURDAY, OCTOBER 25, 1884.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTEN'S OF

the scientific american supplement

INO. 46O,
For the Week ending October 25, 1884.
Price 10 cents For sale by all newsdealers

 тен Rope IIailage.-- ìgures ...

 On the Evolution of Forms of Art, From a paper by Prof.
JACOBTHALIMlant Forms the archetyes of cashmere patterns.
-Ornamental representation of lants of two kinds. Architec. N. NATURAL HISTORT.-The Latest Knowledge about Gapes.-
How to keep poulry free from them
 II. HORTICULTURE, ETC.-The Proper Time for Cutting Timber.

A PRIZE FOR INVENTORS,- NEED OF PASSENGER AND

 freight car brakesRailroad officials seem to bave arrived at the settled con viction that no essential improvements can be made in pas senger car brakes; that the air or vacuum brakes, with ail their faults and deficiencies, are as nearly perfect as can be and that it is useless to seek further. And as practically all the roads bave adopted these brakes for their passenger traffic, they naturally oppose the introduction of any im provements that would depreciate their costly investments. For the present, then, the passenger car brake question may be cousidered settled, but it is not so with the freigb car brake.
It may be asked why the air or vacuum brake is not as well adapted to freight traffic as to passenger traffic. In re ply the roads say that the cost of the air or vacuum brake is greater than the freight service will bear; that the air o vacuum brake must, to be effective, be continuous, or connected for all the cars in a train; that this necessary continuity or connection of all the brakes in a train can, with out much trouble, be assured in passenger traffic, wherein be interchange and mixing of cars rarely occurs, but tha the conditions ohtaining in freight traffic are such that each car must be equipped with a brake that will act independently of any other in the train.
On all the principal lines of railroads the majority of the freight trains are partly madeup of "wild " cars (cars from otherr oads) and these cars are necessarily distributed through out the train in the order of their arrival, so that one "wild" car without the air or vacuum brake in a train equipped with the air or vacuum brake might render all the brakes on the train ineffective
Another objection which the roads make to the air or vacuum brakes for freight traffic is that the brake nose con nections deteriorate from exposure, and that the couplings ffer irresistible temptation to thieves.
If in spite of special care and watch in the yards the nose onnnections often give out and the brass couplings are al most daily stolen, what, they say, would become of the brake on freight cars which are run off and held on sidings all along the road for days and weeks, waiting to be loaded or unloaded?
There are otber minor objections to the air or vacuum brake for freight traffic, but these meutioned appear to be inseparable from this class of brakes.
Not only, then, are the lists open to a suitable freight brake but the roads are united in seeking for it.
This is one of the broadest fields for inventors, and will field most abundant reward to the successful ones.
Great fortunes bave been made from the air or vacuum passenger car brakes, and yet the whole number of passenger cars in this country are less than one-thirtieth of the number of freight and coal cars, which are all in want o number of freigut
their special brake.
Freight trains are still operated by the common hand brake, and though many other kinds bave been proposed, th roads prefer to bold to their old friend until something i all respects superior shall be produced.
It is true that the band brake requires a crew of two or hree brakemen to a train, while a suitable brake would require no brakemen; it is true that it cannot quickly contro a train running at bigh speed, and consequently that for safety the trains must be run slowly; and it is true that its persistent use daily brings death or injury to one or more poor railroad employes; but nothing yet devised for the pur pose possesses all its virtues and fewer faults and is, at the same time, cheap enough.
For the benefit of inventors we bave given this brake problem long and careful study, in which we have been aided by a number of prominent experts in railroad matters.
We can say, then, that a brake which shall fulfill all the requirements of freight train service must be cheap, simple, and durable, and require no special skill to repair or keep it in order, and it must possess the following functions and advantages:

1. It must be thoroughly automatic, and entirely under the control of the engineer.
2. It must adjust itself automatically, to suit either direc tion in which the car is pulled.
3. It must operite at any and all rates of speed
4. It must be complete in itself on the car to which it is attached, and independent of the action of other brakes in the train, so that " w ild " cars will not interfere with its action.
5. It must be capable of bringing a train to a "full stop," and, if on a descending grade, of "bolding it."
6. It must admit of a train being moved a short distance at slow speed, and yet be operative to stop it again.
7. It must not interfere with the backing of a train, nor in any way with the bandling of a train in yards.
8. It must provide for the stopping of the rear portion of train when broken loose.
9. It must never cause sliding of the wheels.
10. It must never interfere with the use of the band brake staff.
11. It must be easily rendered inoperative.
12. It must operate with sligbt motion of the draw bar, and not be injuriously affected by excessive motion thereof
It should be applied in place without removing car truck or axle.
And tinally, it should be so constructed that but one truek on a car need be equipped with it.

It is well understood that these functions and advantages can probably be combined only in a momentum brake; but 110 one has yet been able to construct a brake embracing them all.
But several so called automatic momentum brakes, however, bave been invented, some of which are noteworthy for their ingenuity, though lacking in some one or more essen tial features.
None, we believe, are constructed and arranged to stop the rear portion of a train when the train breaks apart. When it is considered that about 40 per cent of the accidents to freight trains occur from the breaking apart of the trains and the subsequent collision of the two portions, it is no easy to overestimate the value of a brake that will preven such accidents, and at the same time possess all other re quisites.
Did the limits assigned to this article permit, we could easily advance many reasons why a brake such as we bave described would also be superior for passenger traffic, but that ground is perbaps too well occupied for present ad vance upon it.
Here, then, is an opportunity for the exercise of inventive talent; upward of a million oi cars in this country alone are lacking the equipment of a perfect automatic momentum brake, and the railroad companies are all demanding it.
Who will carry off the prize?

the heavy gun edestion.

Now that Congress has made something like an effort toward protecting the coast, those officers of both military arms who bave made a specialty of heavy gun manufacture are doing their best, as might bave been expected, to see tha this effort is not misdirected. A committee of officers was it is true, appointed, at the suggestion of the last Congress to determine the very weighty questions as to national and private foundries and the quality of guns to be made there in. But, as is well known, only a few of the many expert to be found in the general service could be accommodated on the committee, and, precisely because the subjects to be considered are so weigbty, suggestions by those who
and welcome.
Among those officers whose suggestions may fairly claim
the serious attention of the committee, is Captain O. E. Micbaelis, U.S.A. In a recent paper read before the American Society of Civil Engineers, Captain Micbaelis goes into a careful and detailed consideration of the subject, content ing bimself with presenting the recent experience in gun manufacture rather than attem pting to determine the metbod or to formulate the policy from which the best results may be expected. Now that there is a disposition on the part o Congress to properly protect the coast, and new and costly foundries are to be established, we are confronted with what seems to be a very serious question, viz., who shall own or control these phats-the goveroment or private parties, or both conjointly? The evidence as gathered by Captai Michaelis sbows that each system has serious defects.
Up to the Franco Prussian war the French foundries were owned and maintained by the government; a board of officers, baving charge of the work of gun making, met only in secret session, and resisted the introduction of new processes or public criticism of the old ones. The German sss tem of relying upon a single private company for arming the country has also little to commend it; the company in order to mantain itself must Ineeds look for large foreign contracts, and when the decisive moment comes are either seri ously bampered or in a position to take advantage of the state's necessities, and demand exorbitant prices. Nor bas a partnership between the State and private parties proved altogetber satisfactory
One of the evils of this system is shown by Captain Michaelis by a recent experience of the British government, which, in addition to being charged exorbitant prices for war material, was forced to pay $£ 65,000$ to close au agree ment, while the company, besides its profits on manufacture, came into possession of a complete working plant at a mer nominal valuation.
Curiously enough, Captain Michaelis, after setting up the dummy that a copartnership betwees the State and private parties leaves the latter free at times to take advantage of the State's necessities, as shown by the evidence adduced by him, he proceeds to knock it down by expressed approval of a similar project as contained in a letter of General Benet, of the Ordnance, to Commodore Simpson. In this Gen. Benet suggests that the government sball provide a private corpofurnaces, steam haramers, large lathes, cranes, etc., the foundry to reimburse the goverument by paying a certain percentage on all work performed with said plant until the whole cost is repaid."
There is an objection to sucb a plan, which is, perhaps, even more serious than the threatened danger of extortionate charges in the hour of extremity. Even the great gun manufactory of Herr Krupp, at Essen, bas not enougb gun making to keep all bands employed the year round, and must needs take large contracts for material in no way connected with armament or war. In this latter employment, Herr Krupp bas many competitors in Germany, but if bis plant bad been supplied by the government at a nominal fig ure and upon easy payments, it is not unreasonable to suppose that no German firm could compete with Krupp, even in the manufacture of those mechanisms which are not allied
to the art of war, and lence the imperial government would
be but assisting Krupp to force other manufacturers out of the business.
In our own country, the spirit if not the letter of the Constitution is opposed to the State entering the market as a competitor with private parties, and such an arrangement as that suggested by Gen. Benet, and supported by Capt. Michaelis, smacks strongly of this. It would enable a pri vate firm or company to come into the immediate possession of a costly plaut, which, when not employed in gun manu facture, could be used in turning out other kinds of work in vast quantities, to the great disadvantage of all otber private concerns engaged in a similar manufacture.
The system now in use in France bas heen accepted by the board of officers appointed at the instigation of Congress as the proper standard for imitation, and is commended by Capt. Michaelis iu bis paper. Tbis system contains, per baps, fewer objectionable features than any other that bas been suggested during the long controversy now bappily ended. In this systen the government maintains the gun
manufactories itself wherein the parts are machined and assembled. For foundry work, on the other band, the private companies or corporations are depended upon. None vate companies or corporations are depended upon. None
of these are supplied with plant nor in any way assisted in of these are supplied with plant nor in any way assisted in
preventing competition, this being the rather encouraged, and in France some of the foundries have been induced, on their own motion, to establish gun factories to supplement the government sbops.
Concerning the quality and character of the guns that are formation.
Though the exact cost of solid cast-steel guns bas not yet been ascertained, he believes that it will be found to be about one-third the cost of hammered steel guns. It bas, he says, the range of tensile strength from 50 to 30 tons per square inch, and the corresponding elongation of 7 to 28 per cent, and is therefore destined to replace not only iron castings, but iron and steel forgings, which are very much more expensive and no stronger.
In regard to castings, a conviction has prevailed in some quarters that we bad no open bearth plants equal to those at Terre-Noire, in France, where the manufacture of large castings is a specialty, and the best methods of annealing and tempering to be applied to the metal, in order to give it all the mechanical properties corresponding to its chemical ac-
tion a study. Yet Captain Michaelis says that we bave open tion a study. Yet Captain Micbaelis says that we bave open
hearth plants fully equal, if not superior, to those at TerreNoire, and that the tensile strength of ordinary castings in this country, now sixty thousand pounds, may, with careful manipulation and special methods of casting, possibly under compression, be doubled. Indeed, Mr. S. T. Wellman, of the Otis Iron and Steel Company, whom be quotes, says be is very sure that we can produce a metal goodennugh for heavy gins without pressure; but with pressure we could do as well as Whitworth, who, so far, bas beaten the orld
It is not so many years ago that our great guns, our ma cbine guns, and breech-loading rifles bad no equals in Europe but now, on our n wn models, vast improvements bave been made, and, says an autbor quoted by Capt. Michaelis: "I we don't soon begin to manufacture ourselves, everything American will be brought back to us with a foreign name. Our mammoth powder will become 'pebble,' and perforated cake be known as 'prismatic,' our pressure gauge as a ' crusher gauge,' and the Hotchkiss case shot be credited o Col. Boxer. Prof. Treadwell's system of gun construc ion of 1840 is known as Armstrong's of 1856, but no on bas seen Armstrons's patent for it; Krupp bas appropriated he Broadwell system bodily, and Eastman's slotted-screw breech plug is known as the Frencb breech loading gun.
Mr. S. B. Dean invented a method of mandreling bronze Mr. S. B. Dean invented a method of mandreling bronze nd by which strength and bardness are greatly increased un was yroughter bis patents were taken in Austra, bis achievement. Their whole artillery is armed with it. The Russian government built a great foundry at Perm to carry out Rodman's design on a large scale, and took his powder and bis experience along. Mr. Hotcbkiss bas established a large factory near Paris, where he has very extensive orders and bas hesome in his line the main reliance of the French
Surely, a nation like ours, which bas through the genius of its sons furnished the bases for all great gun manufacture now in use abroad, should be able to at least equal in effidesigns.

TWO REMAREABLE METEORS.

A correspondent in Lafayette, Alabama, gives an interest ing account of two meteors observed by bim on the nigh f the 14th of August.
The first meteor was unusually large and brilliant, exbind. It was seen about midnight.
The second meteor was seen fifteen or twenty minutes ater, was as large as its predecessor, and exploded in a outh-soutbeast direction. After the explosion of the fir ball, a train of light remained visible for eight or ten mi-
nutes, at first motionless, and then slowly changing from a straight to a curvilinear form. The moon shone brigbtly at the time, the atmosphere was clear, and botb meteors
were sufficiently brilliant to make the shadows of the two were suffciently brilliant to make the shadows of the two
observers and the shade trees in their vicinity almost a plain as iu sunlight.

Our correspondent thinks that the first phenomenon could hot bave been a meteor, because it came to a sudden standstill," and asks, "What was it?
Both phenomean are probably due to the same origin, the matter that circulates in inter-planetary space, and, ac cording to size, isolation, or constituents, takes form as me teoric stones, fire balls, or shooting stars, all being classed under the bead of aerolites, and being merely varieties of the same phenomenon. They vary in weight from the me teoric stone in Brazil estimated to weigh 14,000 pounds to the shooting star weighing a fem grains. They vary in brilliancy from meteors shining brigbtly in the noonday pre sence of the sun to the tiny falling stars that only shar ighted observers can discern as a vanishing point of light They vary in continuance from the fire balls that burst and eave bebind, in a few recorded instances, luminous train bining for an bour after the body disappeared, to those tha plit into fragments, and leave scarcely a trace of their preseuce. They vary in the noise they produce from detonations like thunder or the firing of cannon to the slight sounds that only a vigilant ear can detect. They vary in number from the countless myriads that people the meteo ones to the solitary specimens that from time to time show hemselves in our sky, and then vanish forever.
They are all due to the same cause. The earth as she moves in her orbit encounters these cosmical atoms in be course. Both bodies are moving with immense velocity and in opposite directions. The meteors rush beadlong against our atmosphere, are ignited by the concussion and fall to the eartb as stones, or are crusbed into impalpable dust The two meteors observed by our correspondent probably belouged to the class known as fire balls. It is not impossi ble, if the train of the second meteor was yellow in color, and it radiated from the consteliation Perseus, that both meteors were members of the August meteor zone, througb which the earth was passing about that time.
Metenrs belonging to this group have been observed of great size and brilliancy, and with an estimated we:ght of seven pounds. The observer of the meteurs also records a ine show of falling stars on the 10th. As the show often continues for several nights, we are somewhat inclined to this theory, for we have not infrequently seen members of the group as large as the planet Venus exploded witha sound distinctly audible, and leave bebind a shiuing train.

The Prime Meridian Conference.

This hody, which assembled in Washington, October 1, included forty members, representing twenty-four govern ments, as follows:
Austria-Hungary, Brazil, Colombus, Costa Rica, Den nark, France, Germany, Great Britain, Guatemala, Hawaii Italy, Japan, Mexico, Netherlands, Paraguas, Russia, San Domingo,San Salvador, Spain, Sweden and Norway, Switz. erland, Turkey, Venezuela, and the United States. The conference was not as prompt to adopt the general meridian of Greenwich as bad been expected, but a resolution to tha effect was finally passed, andthat meridian recommended to all governments for adoption, the representatives of twentyne governments voting in favor of it, San Domingo agains it, and France and Brazil abstaining from voting.
The confereuce also resolved that longitude continue to be counted as at present in two directions, up to 180°, instead of in one direction up to 360°, a shad been recommendd by the Roman conference. Although the Greenwich meridian bas long been the standard for four-fifths of the world's navigators and geograpbers, its adoption by all will be a common benefit. The ancient gengraphers drew the frst meridian through Ferro, the westernmost of the Canary Islands, and this is yet followed to some extent. The French bave also used the meridian of Paris, the Spaniards that of Madrid, while we bave used both that of Greenwich and Washington. The French representatives appear to bave made the principal objection to the adoption of the Greenwicb meridian as seeming to be an English standard, but as it extends from north to south lbrough the whole of West ern France, they could remedy this by setting up an observa tory on that line, and styling the reckouing accordingly.

Henry T. Anthony.

Mr. Anthony, who was one of the pioneers in taking up he famous invention of Daguerre, and afterward amon the most prominent in developing and extending the business of photography, died at bis residence in New York city Oct. 11, aged 71 years. The immediate cause of death was the result of injuries received from a fall in attempting to run out of the way of a cab car. Mr. Anthony was graduated from Columbia College in 1832, studied engineering and became a surveyor on the Erie Railroad, was employed on the Croton Aqueduct, and wasalso an engineer on the Hudson River Railroad. His name bas for many years been most familiar, however, as that of a member of the firm of E. \& H. T. Anthony \& Co., manufacturers of and dealers in photographic materials. He bad especial cbarge of the manufacturing department, and was the originator of many improvements in practical photography.

Raw Umber

This is an ocher found on the island of Cyprus. It is known in the trade as Turkey umber, and the genuine arti cle is a soft brown pigment, transparent in oil, and abound igg in manganese, fiom the presence of which it derives $1 t$ arving pronerties.

