
[Entered at the Post Office of New York, N. Y., as Second Class Matter.]
a Weekly journal 0f Practical information, art, Science, mechanics, chevistry, and manufactures.

THE THOMSON-HOUSTON EXHIBIT AT THE INTERNATIONAL ELECTRICAL EXPOSITION, PHILADELPHIA.
Visitors to the Exposition, upon entering the main gate and then turning to the right, had their attention attracted, before they bad proceeded far, by a multitude of powerful are lights suspended above a raised and richly carpeted flooring. Here were displayed a series of finely wrought mechanisms, from an exposed core of a dynamo to the perfected machine. This was the headquarters of the Thom-son-Houston Electric Company, of Boston, Mass., which of late has become widely known for the efficiency of its apparatus and the business-like thoroughness of its system.

In the general exbibit this company had five dynamo ma chines in constant action, two having a capacity of 30 are lamps, two more of 12 lights capacity, and still another of 6 lights. Besides these there were models of the unfinished Thomson-Houston dynamo, soarranged that the parts could be inspected, and other specimens of the latest improved type.
To those who had the time and inclination to attentively study this exhibit-and there were many such-conclusive evidence was presented of its possession of novel and striking features when compared to other systems of the same type. It was noticed that the bissing and sputtering, so common in some are systems, were here reduced to a minimum, and the lights were powerful, constant, and steady. A diminutive dynamo and plant designed by Prof. Thomson illustrated the system in all its workings far better than could have been done by a plant distributed to distant parts of the building. It showed clearly the relations between current, electromotive force, and work. A small dynamo generated a constant current, which kept aglow six and, in order to avoid the shaft, changes its course and re- hand dynamo. As exhibited, it showed that it is capable arc lights, each of the intensity of sixty candles, and by turns via the opposite circumference of the core. After of generating asmall arclight or several incandescent lights,

or providing a strong and constant current for other purpose of illustration or experiment, at times showing nearly a one Iorse power energy.
The motors displayed by this company showed themselves particularly adapted for the transmission of power from a distance, which from present appearances would seem to he one of the great problems of the future.
Perbaps the most important feature of the Thomson Houston exhibit was the little mechanism inclosed in a small hox by which the electric current can be transferred from arc lights, and made to feed incandescent lights of from twelve to sixteen candle power. It is called the Thomson-Rice incandescent distrihutor. Heretofore little has been done in this direction; either arc or incandescen lights being exclusively distrihuted, because it was found that the cracking of one or more incandescent lamps usu ally led to the breaking of many more in the same group. By the device exhibited, bowever, an arc light can be turned out, and a group of eight incandescent lights be made to glow instead. Furthermore, all the lamps or any particular number of these in one circuit can be lurned on or off with the same facility asgas jets can be operated, and without danger to other lights in the circuit. The little mechanism acts automatically and electrically, and is at no time subject to accident by reason of careless bandling As a whole, the Thomson-Houston system shows, as exbibit ed, that it is founded upon a correct interpretation of natural laws, and that its workings are directed by men who are conversant with the theory as well as the practice of electrical engineering.

The National Academy of Sciences.

A session of this society was held at Newport, R. I., Oct. 14 to 18. The National Academy was incorporated by Congress in 1863, to " consist of not more than fifty ordinary members," and the custom has been that these sball be selected specialists such as will best represent every department of knowledge. We believe there are now about one hundred members of the Academy, but it is nevertheless a very select organization as compared with that much larger body, the American Association for the Advancement of Science, and mauypapers read at its meetings are such as would he of little interest to other than specialists in the subjects treated of
Among the papers read was one by Prof. E. D. Cope to show the evolution of certain bones of the ear in Pelicosauria involving a study in comparative anatomy as well as evolution.

Prof. Fairman Rogers, of the University of Pennsylvania, described experiments on the motion of animals, as depicted by instantaneous photography. In some experiments conducted last summer at Fairmount Park, Pbiladelphia, forty cameras were placed in a row, and so adjusted as to be suc cessively opened by the motiou of an aninal passing in front of them. These experiments will throw light on the mechanism of animais, and, it is suggested, mas give valua ble application in machinery. For instance, marine engineer do not agree on the best form of steamer screws, and it is intimated that an exhaustive study of the fisb's propeller would throw light on this. There will prohably be no diff culty in arranging a glass tank through which fish can be made to swim, and be photographed in transit. The motion of dogs, horses-especially racers-deers, and other-animals, in running, were described; and interesting and prolonged discussion ensued. Professor Rogers stated an interesting point to be the flexure of the long pastern. When a horse gallops, he moves in a horizontal line. His body keeps al most a uniform direction, notwithstanding that his feet rise and fall. He bends his pastern to keep level. In race horses it touches the track. He cited as an instance a celebrated race horse, which used to make eight marks on the ground, four for the pasterns as well as the four foo tracks.

Professor Tylor, of Oxford, England, the eminent an tbropologist, considered at great length the "Civilization of the American Races," particularly the Zuni, Navajo Mojave, and Wallopi tribes, among; which he had traveled.

Among those present at this meeting of the Academy were President O. C. Marsh, Professor of Paleontology o Yale; Home Secretary Asaph Hall, Astronomer of lhe National Observatory; Treasurer J. H. C. Coffin, United States Navy; W. H. Brewer, Professor of Agriculture Yale; G. J. Brush, Professor of Metallurgy, Yale; Josiah P Cooke, Professor of Mineralogy, Harvard; Edward S. Dana, Professor of Physics at Yale; Walcott Gihbs, Professor of Chemistry at Harvard; Julius Hilgard, Superintendent of the Coast Surves; Samuel P. Langley, astronomer in charge of the Allegheny Observatory; J. S. Packard, Professor of Zoology at Brown University; Edward C. Pickering, director of the United States Geological Survey; Samuel H. Scudder, editor of Science, of Cambridge Mass.; Williau P. Trowbridge, Professor of Mechanics at Columbia College; and Francis A. Walker, President of the Massachu setts Institute of Technology.

A New Pavement in Berlin.

A new form of paving has heen in use in Berlin since last year. Layers of bricks are put down impregated with asphalt. After a time they absorb from 15 to 20 per cent of the bituminous matter, becoming remarkably elastic and capable of resisting pressure and damp. This new paving it is said, lasts mucb longer than any of the orher kinds, and it offers a sure foothold to horses. It is a very popula pavement in the capital o? Prussia.

Strixtific बhmeriran.

HSTABLISHED 1845.
MUNN \&̇c CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK.

O. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCLENTIFIC AMERICAN.
One eopy, one year postaqe included....
One copy, six months postake included
. .8360
$\ldots .160$
Clubs.-One extra copy of The Scientific American will be supplie ame proportionate rate. Postake prepaid.
Remit by postal order. Address
MUNN \& CO. . 961 Broadway, corner of Franklin street, New York.

The Scientific American Supplement

is a distinct paper from the SCientific a merican. 'THE SUPHIEMEN wissued weekly. Every number contains 16 vetavo wages, uniform in siz with SCIENTific american. 'Terms of subscription for Supplement
85.00 a year, pustage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined lentes. - The scientific american and Supplement will be sent for one year postage tree. on receipt of seven dollars. Bot The sarest way to remo it is by draft, postal ord er, or re The safest way to remit is by draft, postal order, or rekistered letter.

Sclentife american Export Edition.

The Scicntific american Export fdition is a larke and splendid pertdical, issued ouce a month. Eitch number ccntains about cine hundred large quarto pages, profusely illustrated. embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Scicy plates and pages of the four preceding weekly issues of the Scicnrific
AmERICAN, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desit orld. Single copies 50 cents. Manuacturers and others who desire
to secure foreign trade may have large, and handsomely displayed innouncements publisbed in this edition at a very moderate cust.
ation in all commercial places throuzhout the world. Address MUNN
Co., 361 Broadway, corner of Franklin street, New York
NEW YORK, SATURDAY, OCTOBER 25, 1884.

Contents.
(1llustrated articles are marked with an asterisis.)

TABLE OF CONTEN'TS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT
INO. 460,
For the Week ending October 25, 1884.
Price 10 cents For sale by all newsdealers
CHEMISTRY. ETC.-Woipert's Method of Estimating the

 Endess Rope ilauiage. - - tigures

 PHYSICS. ELECTRICITY. ETC.-Steps toward a Kinetic
Theory of Matter. Adress is Sir WM. THomsonat the Montreal
meetting of the British Association

ARCHITECTURE AND ART.-The National Monument at Rome.

- With fullpage engraving
On the Evoution of Forms of Art Firomi...

A PRIZE FOR INVENTORS,- NEED OF PASSENGER AND

 FREIGHT CAR BRAKESRailroad officials seem to bave arrived at the settled con viction that no essential improvements can be made in pas senger car brakes; that the air or vacuum brakes, with ai their faults and deficiencies, are as nearly perfect as can be, and that it is useless to seek furtber. And as practically all the roads have adopted these brakes for their passenger traffic, they naturally oppose the introduction of any im provements that would depreciate their costly investments. For the present, then, the passenger car brake question may be considered settled, but it is not so with the freigbl. car brake.
It may be asked why the air or vacuum brake is not as well adapted to freight traffic as to passenger traffic. In reply the roads say that the cost of the air or vacuum brake is greater than the freight service will bear; that the air or vacuum brake must, to be effective, be continuous, or connected for all the cars in a train; that this necessary continuity or connection of all the brakes in a train can, without much trouble, be assured in passenger traffic, wherein the interchange and mixing of cars rarely occurs, but that the conditions ohtaining in freight traffic are such that each car must be equipped with a brake that will act independently of any other in the train.
. On all the principal lines of railroads the majority of the freight trains are partly madeup of "wild "cars (cars from otherr oads) and thesecarsare necessarily distributed througbout the train in the order of their arrival, so that one "wild"car without the air or vacuum brake in a train equipped with the air or vacuum brake might render all the brakes on the train ineffective,
Another objection which the roads make to the air or vacuum brakes for freight traffic is that the brake nose connections deteriorate from exposure, and that the couplings offer irresistible temptation to thieves.
If in spite of special care and watch in the yards the nose connections often give out and the brass couplings are almost daily stolen, what, they say, would become of the brake on freight cars which are run off and held on sidings all along the road for days and weeks, waiting to be loaded or unloaded?
There are other minor objections to the air or vacuum brake for freight traffic, but these mentioned appear to be inseparable from this class of brakes.
Not only, then, are the lists open to a suitable freight brake, but the roads are united in seeking for it.
This is one of the broadest fields for inventors, and will yield most abundant reward to the successful ones.
Great fortunes bave been made from the air or vacuum passenger car brakes, and yet the whole number of passenger cars in this country are less than one-thirtieth of the number of freight and coal cars, which are all in want of number of freight
their special brake.
Freight trains are still operated by the common han brake, and though many other kinds have been proposed, the roads prefer to hold to their old friend until something in all respects superior shall be produced.
It is true that the hand brake requires a crew of two or three brakemen to a train, while a suitahle brake would require no brakemen; it is true that it cannot quickly contro a train running at high speed, and consequently that for safety the trains must he run slowly; and it is true that its persistent use daily brings death or injury to one or more poor railroad employes; but nothing yet devised for the pur pose possesses all its virtues and fewer faults and is, at the same time, cheap enough.
For the henefit of inventors we have given this brake problem long and careful study, in which we have heen aided by a number of prominent experts in railroad matters.
We can say, then, that a brake which shall fulfill all the requirements of freigbt train service must be cbeap, simple, and durable, and require no special skill to repaix or keep it in order, and it must possess the following functions and advantages:

1. It must he thoroughly automatic, and entirely under the control of the engineer.
2. It must adjust itself automatically, to suit either direc tion in which the car is pulled.
3. It must operite at any and all rates of speed.
4. It must be complete in itself on the car to which it is attached, andindependent of the action of other brakes in the train, so that " wild" cars will not interfere with its action.
5. It must be capable of bringing a train to a "full stop," and, if on a descending grade, of "holding it."
6. It must admit of a train being moved a short distance at slow speed, and yet be operative to stop it again.
7. It must not interfere with the backing of a train, nor in any way with the bandling of a train in yards.
8. It must provide for the stopping of the rear portion of train when broken loose.
9. It must never cause sliding of the wheels.
10. It must never interfere with the use of the band brake staff.
11. It must be easily rendered inoperative.
12. It must operate with slight motion of the drawbar, and not be injuriously affected by excessive motion thereof.
It should be applied in place without removing car truck or axle.
And tinally, it should be so constructed that but one trusk on a car need be equipped with it.
