detect, with the hand, any change in the temperature of the gun
The velocities of three consecutive shots were measured. The tenth bullet traveled at the rate of 482 feet per second, the eleventh 492 feet, and the twelfth 523 feet per second.
After the last shot had been fired the tube was disconnected from the gear, and, the valve at the magazine being opened, the visitors were allowed to examine the inter-atomic ether as it issued from the pipe.
It had but a trace of odor, no taste, and had no effect upon the lungs. This ended the trial.
We saw nothing done by the Keely Vaporic Gun which cannot be duplicated by the aid of compressed air.
A gas check made of the same material Mr. Keely used and beld in the same way is strong enough to withstand air at a pressure amply suffienough to withstand air at a pressure amply sufti-
cient to drive a bullet with the velocity be obcient to
tained.

At the lowest calculation and allowing a wide margin for safety, his reservoirs would hold air at a pressure of 20,000 pounds to the square inch; this quantity would be sufficient to fire twice nineteen rounds, and since the thickness of the gas check would govern the velocity of the ball, the last shot would have a velocity equal to the first. Many more than nineteen shots could be thrown by the aid of the same apparatis he used, substituting air for inter-atomic ether:
We estimate that Keely used an air pressure of We estimate that Keely used an air pressure of
800 to 1,000 pounds to the square inch to break his gas checks and discharge the bullets.
Although when new inventions appear it may be necessary to coin appropriate terms, we should not think it essential to resurt to a heterogeneous commingle ment of absurdities.

Furniture Woods

A gencration or more ago the most admired wood for furniture purposes was mahogany. Until quite recently the taste for mahogany has been beld in abeyance, and black walnut bas long reigned the king of the furniture woods. Before mahogany controlled the popular desire, cherry was a favorite, and our white walnut or bickory was used to a considerable extent. These old fashioned woods are coming into favor again, and very fine effects are produced by the contrasts of cherry and bickory, and by mahogany and bickory. Mahogany and cherry blend admirably as shades of color instead of con-
trasts. The so called "branch " mahogany, that in trasts. The so called " branch " mahogany, that in
veneers on the fronts of burcaus and in the frames veneers on the fronts of bureaus and in the frames
of mitrors formerly produced such impossible effects of grain, bas given place to that of plain straight grain, the effect of color rather than of grain being desired.
Except yellow and black birch and the satin and birdseye maple, there are few of our native woods that show a very distinctive grain. This makes them valuable as foils to the more erratic grained woods of the tropics. One of these, the coco bolo, of a deep red color, with broad striated grain, works up beautifully with the cherry, making a complement of tints, or with the bickory, showing a contrast of color and of grain.
According to the statement of a prominent dealer in furniture woods, our clierry and hickory are coming rap idly into demand, ard for foreign woods the mahogany and the comparatively little known coco bolo are much called for by makers of fiue furniture, carvers, and internal finishers.

John W. Garrett.

John W. Garrett, President of the Ballimore and Obio Railroad since 1858, died in Baltimore, Sept. 26, in the 65th year of his age. He was born in Baltimore, graduated from Lafayette College, entered his father's banking house at the age of 19 , and was made president of the great railroad with which his name bas since been associated at the instance of Mr. Johns Hopkins. From that time the road has regularly paid dividends, and the stock has advanced from $\$ 57$ to something over $\$ 200$ per share, largely due to his enterprising and energetic management and constant personal supervision, under which the road has been extended and branches built to make it one of the main trunk lines of the country. Mr. Garrett was also during this period the head of bis banking house, was one of the trustees of the Johns Hopkins estate, and connected with many other local institutions.

Snow Water Impurities

Under the heading of "The Beautiful Snow," the Microscope points out the kind of organic impurities found in snow, whicb, added to what we recently quoted on the same subject, very conclusively shows the fallacy of the idea that melted snow forms a good substitute for distilled water. The impurities are as follows: Living infusoria and algæ, bacilliand micrococci, mites, diatoms, and great numbers of fungi spores; also fihers of wood, mouse hairs, pieces of butterfly wings, skin of tarvæ of insects, cotton fibers, pieces of grass, epidermis, pollen grains, rye and potato flour, grains of quartz, minute pieces of rooting tile, and bits of grains of quart
iron and coal!

THE ANT LION.

Although the peculiar babits of the ant lion (Myrmeleon) have been repeatedly described by naturalists, many persons
do not yet seem to be aware of his existence. Hence it may

the pit of myrmeleon, with a cocoon near the margin.
the only thing to be done was to abandon the pit and dig a new one in a more favorable location.
When all is made ready, the ant lion lies motionless as if iead, and will continue to do so for days and even weeks, awaiting his prey. Voracious as bis babits are, he rejects whatever is dead. 'To one that bad fasted a fort night I offered a luscious blue-bottle fly, but in vain, because the fly was not alive. On catching another, and a large one, stripping off its wings, I let it fall directly into the expectant jaws, and it was seized instantly and dragged under the sand to satiate the hunger of the voracious foe. The fly was three times as large as the ant lion, but in an hour the carcass was tossed out of the pit, bereft of its juices the damaged walls of the pit had been repaired, and Myrmeleon was ready for further supplics. Seldom does any victim escape.
A young ant lion was seen by a friend of mine to grasp the abdomen of a large fly that bad invaded his den, and not being strong enough to conquer, it held on with a grasp so tenacious as to be lifted into the air and carried to a considerable distance before relaxing its hold. It is frequently the case that an ant, on finding bimself slipping into the pit, willuse bis utmost endeavor to escape; but usually a shower of sand brings him down into the vortex. It is not true that the sand is aimed directly at the victim. It is thrownup at random, and one shower is followed by another till the desired object is accomplished. The ant lion varies his methods with different sorts of ants. When the carpenter ant, whose jaws rival those of his foe, falls into the pit, he is seized and held aloft in such a way as not to be able to fight, while the ant lion complacently sucks out his juices. Equal caution is manifested in attacking the pavement ant, which carries a sting. I have to acknowbe worth while to lay before the general reader some of the ledge that I once left six ant lions of about the same age and facts that have been gathered, partlyby inquiry, but chiefly size in a cigar box balf full of sand, where each bad a sepaas the result of my own observations.

In quiet nooks, where the soil is dry and sandy, and especially in the bollows left by the roots of decayed and fallen trees, the chosen resort of busy colonies of ants, one may bave noticed conical pits, from half an inch to two inches in diameter. Each of these pits is a trap, a den, inhabited by a creature as ferocious as the tiger and as subtle Having existed for a long time in a larval state, the as the serpent. Scoop up the sand thus excavated, spread it Myrmeleon prepares for bimself a spherical cocoon, in which out on a paper, and you will see a small, oval, sluggish he passes forty-two days. Toward the last of the pupa state
 lhe jaws become serviceable, as the insect uses them o) gnaw his way through the walls of the cocoon, whence be escapes as an imago, leaving the jaws behind with the larval skin cast in the transformation. The imago is an elegantly sbaped dragon fly, bearing as little resemblance to its primitive form as does the butterfly to the crawling caterpillar.
My experiments have been limited to a single species, Myrmeleon immaculatus (De Geer); the specimens being from Indiana and Michigan. This species, however, is widely distrihuted, from Massachusetts to Georgia and Miunesota. There are two or three species of pit-forming Myrmeleons, besides several other kinds that prowl around on the surface bug, whose main anxiety is to get out of sight as quickly as for their prey. Those desirous of investigating further will possible by crawling backward into the sand. Observe him find that there have been excellent descriptions published by closely, and you will see that his head is furnisbed with a Dr. Hagen, in the "Smithsonian Miscellaneous Collections," formidable pair of jaws. This ugly little fellow is the larva of Myrmeleon.
In my library I have placed a box of sand in which are kept a number of these ferocious pets. It is interesting to watch the process of digging the pits. The ant lion plows a circular furrow, going backward all the while, and shoveling the sand with his broad and flexible tail. It is invariably thrown outward from the center. A second and inner cir

THE IMAGO OF MYRMELEON, JOST EMERGED FROM THE COCOON.
cle succeeds the first; and this continues until a conical pit is completed, at the hottom of which the ant lion lies, wholly concealed except as to his jaws. Occasionally a small pebble, or other obstruction, will tax the ingenuity of the insect worker. He will lift at the load with either head or tail, as is most convenient, trying to jerk it out of the pit. I have seen the effort repeated twenty times before patience met with its reward. In other instances the obstruction would exceed the ant lion's combined skill and strength, and then
vol. iv., and by the same author in the Entomologische
Zeitung, 1873. Other authorities are Brauer, Emerton, Zeitung, 1873. Other au
McLacblin, and McCook.
It gives me pleasure to acknowledge obligations to Mr. N. B. Pierce, of Ludington, Mich., not only for facts and references,
article.

Cholera and Macaroni.

If it is a fact, as alleged by Protessor Koch, that cholera is the result of a microbe, what is to prevent the transmission of this dread disease to other countries from Italy, not only through the export of fabrics, etc., alone, but from olives, olive oil, pressed and preserved fruits, macaroni, and other edible commodities shipped from that beautiful and productive country, where the cholera has been raging with such dire results? Be that as it may, a correspondent of the London Times writes to that journal, warning people against the use Times writes to that journal, warning people against the use
of macaroni and other pastes made in Italy, and specially in of macaroni and other pastes made in Italy, and specially in
the neighborhood of Naples. Supposing the theories of Professor Koch to be correct, we cannot imagine a more likely agent for receiving and transmitting microbes than macaroni, from what we have witnessed of its manufacture in the neighborhood of Naples. The factories for the manufacture of macaroni, between Naples and Pompeii, do not present, during the coolest and healthiest seasons, a pleasing or appetizing sensation to those who are fond of the paste and witness its manufacture for the first time. Macaroni in the course of its manufacture is hung to dry in the open air amid clouds of dust, fies, and stench of all kinds, the locality where it is made being in the dirtiest and poorest districts, and where it is said the cholera has been raging the severest. The Times correspondent cheerfully, if not playfully, closes bis article by remarking: "One has only to think of this important article of food, which is so much used, being manipulated by plague stricken workmen, who no doubt sicken and die amid the macaroni which is being prepared, under such horrible conditions, to send broadcast over the world and spread the pestilence."

Does Death Sting ?
Dr. G. L. Beardsley, in the Medical and Surgical Reporter, concludes that the dread of dying is quite as intense as the instinct of self-preservation. Indeed, it is not improbable, adds the doctor, that numbers would care less about living were the modes of leaving the world a theme for bappy con templation, or an innovation to the routine of plodding that was agreeable. One is remarkably exempt from the crime of basty induction if be aftirms that there is no sane or bealthy mortal who anticipates bis extinction with any degree of pleasure. The function of dying is absolutely vege-tative-we fall to pieces like a flower. This very fact, that the process is chemical, confirms us in the conclusion that the final "throe" is as painless as the inconvenience is nothing to the fætal pilgrim when be touches on daylight. A mnment's examination of the way we are to die will show marks of goodness in our "taking off." The degree of sensibility is proportioned to the integrity of the tissues. An inflammation beightens it; age depreciates it. Any defect in nutrition disturbs the comfort of the individual until the carbonic acid generated in the devitalization of the blood be comes fixed in the cells or is no longer displaced. The sen sory ganglia everywhere part with their irritability by vir tue of this poison, and cease to conduct currents. The cri teria of death are being satisfied, and the process is consum mated when this extinction of sensibility prevails at the ultimate filaments. During the progress of this dissolution of the nerve force, this creeping ou of the numbnessof death, the individual is rapidly passing into a condition of repose, and instead of torture or pangs, a degree of self-satisfaction oft approaching to enthusiasm is realized. The sensations pe culiar to the therapeutical operation of opium, bashish, ether etc., are not improbably akin to the mental activities of the dying. Barring the ballucinations experienced in the stupor as it gains on the subject, the moribund is familiar with naught that horders on suffering. This carbonic acid bas poisoned or uarcotized the several ganglia, and reflex productions are interdicted. A consummate analgesia prevails. In short, the notion of pain is forbidden the instant that any stimulus fails to excite a response. The condition to this stimulus fails to excite a response. The condition to this
irritability is that the nerve center and track be sound. If irritability is that the nerve center and track be sound. If
this vigor vanishes, reflex phenomena are at an end, and this vigor vanishes, reflex phenomena are at an end, and
suffering, physiologically speaking, is impossible, because of the arrest of the function of the sympathetic.
Fortunately, for a wholesome study of onc's demise, there are assurances abundant, from vivisection, the testimony of those who bave been restored to consciousness, and the aftirmations of the dying, that there is no physical recoil from death. Burney tried hard to resist the efforts made to resuscitate bim from drowning, so bewitched was be by bis prolonged slumber. Dr. Solander, the traveler, was so delighted with the sensations of excessive cold, that be was the first to lie down in the snow to realize the luxury of such a death. Wm. Hunter was sorry be was not able to "write bow easy and delightful it is to die." Infants die as serenely as they breat he, and not a few among the advanced in years treat death as a friend to their infirmities. Hanging is naturally rated, next to crucifixion, a most distressing procedure. But it is reported of those who have been saved from strangu lation, that the agony promised to be brief, and was rapidly replaced by ballucinations of a fascinating variety.
One would fain believe that the kind God who suffered us to feel no sigh in coming would take no delight in turning our farewell into writhing-nay, be does not quit us at the last. He is our greatest benefactor in allowing us to sleep out of weariness. Death is, assuredly, no tax collector; its "jaws" are not the clutches of an assailant; there is no " victory to the grave;" the ghost speeds away from us as it entered, with no ruffle. The sense of death, as Slakespeare bas it, is most in apprebension. It is the fear of the lonely night, not the throes of nature, that makes the leaving painful.

Medical Herbs.

The indigenous plants of Great Britain are too much neglected in the present:age, for persons are apt to run after all that is rare or novel in the form of medicine in preference to cultivating our native berbs, so many of which are rich in curative propertics. The balm and the dandelion, forinstance, are little valued, yet the first is an admirable tonic, and the other a first-rate liver medicine. The balm is, strictly speaking, a native of the south o! Europe, butit bas been gro $w n$ in our gardens from time immemorial, and the first record I can discover of its being usedmedicinally rests with the Arabs, who are said to bave taken it to strengthen the nerves: but I can remember the time when "balm lea" was drunk by the litboring classes in South Wales almost as freely as tea is now taken by English cottagers, and most certainly hysteria was at that period a disease unknown among the working classes. Not so now, alas!
Dandelion i.s admitted into our British Pharmacopœia under the vame of Taraxacum, and regularly prescribed in dis eases of the liver and spleen; but the poor people were at one time accustomed to make a- decoction with the roots, which answered nearly as well as the chentically prepared extract, and the leaves when blanched are taken by the French in salads. It is likewise a valuable antiscorbutic. People put great faith in the docirine of signatures during the fourteenth and fifteenth centaries, but it is now nearly exploded. It was based upon the following bypothesis, that every natural production indicates by some obvious external mark the diseases in which it is efficacious; and for my own part I really believe that there is a great deal of trutb
in the idea that not only the colors of a flower, hut various other marks on leaves, stems, or roots are typical of thei medicinal properties; for example, the spotted lungwor possesses healing powers in consumption, the scarlet poppy has been used with good effect in erysipelas, and the asarabacca, provincially called the foal's foot, or wild ginger with its curious ear-sbaped leaf, was formerly an unfailing remedy for all the pains that affect that organ.-Science Monthly.

GAS PRESSURE MODERATOR

March 13, 1880, we bad occasion to notice this invention. The inventor says he took the advice given in our band The inventor says he took the advice given in our band
book to inventors, entitled "Hold the Fort," to retain the controlling interest inhis patent; and that from small beginning thousands of these machines have been manufactured and are now in use.
The manner in which this pressure regulator operates will be readily understood by reference to the illustration. The gas is received from the street through the service pipe, and passes into the meter at its inlet; there it is measured, and passing up into the moderator (the arrows indicate the course of the gas), fills the space under the float, A. When one burner is open this float drops and opens the valve D , and lets out of the gas meter just enough gas for that
one, at a rate of pressure from which all the light is deone, at a rate of pressure from which all the light is de-
rived from the gas, and so on for every burner that is opened. If one burner is closed, the float, A, rises, causes the valve

de Palos' gas pressure moderator.
D, to close also, and so on for every burner that is closed. If the pressure from the gas works increases while one or more
burners are in use, the valve, D, drops and retards the flow of gas. If the pressure of gas goes down from the works, the valve, D , opens and lets out more gas, which is not orced to the burner or burners, but is admitted througb the meter just as the demand is made.
Those who bave used this invention furnish some strikng testimonials of its efficiency as a gas saver. One large New Yorkhouse, whose consumption formerly amounted to $\$ 6,000$ per annum, claim to bave reduced the same by the use of this moderator to $\$ 4,000$ per annum; and the iu ventor estimates $331 / 3$ per cent as a fair average of the reduc tion of gas bills by its use. Among other things, which is not a very small matter, it accomplishes a more perfect combustion of the gas, thus preventing the smoking and where " water ceilings, due to imperfect cornbusion. Also bonic oxide. This water gas is now a large proportion o the production in this and many other cities, although the companies usually try to keep it a secret
The inventor says: "The consumer who neglects to place his inveution on his meter loses every three to six months a sum of money equal to the cost of one of these instruments; that is to say, be pays the gas company for the value f the gas wasted in bis bouse." A bout September 21, 1881, and up to November 27, 1883, this instrument was known as "the Owl Gas Pressure Moderator," but by legal pro ceedings the name was changed.
The inventor is Mr. James S. De Palos, No. 822 Broad way, New York.

Manufacture of Etching Ink.

According to Muller, a liquid for etching on glass bas recently been introduced intncommerce, and can be used with an ordinary pen. It consists of bydrofluoric acid, ammonium fluoride, and oxalic acid, and is thickened with barium sulphate. A better ink is obtained as follows: Equal parts of the double bydrogen ammonium fluoride and dried precipitated barium sulphate are ground together in a porpartar. The mixture is then treated in a platinum until the latter ceases to react.-Dingl. Polyt.

The International Electrical Exposition,

Philadelphia.

(fifth paper.)

These are the last days of the Exposition, and, as one succeeds another, it brings with it an increased number of visitors. Barring Pbiladelplians, there may safely be said to be very few, if any, visitors who come here out of pure curiosity. The observations of the officers of the Franklin Institute, favorably situated to learn the facts, do much to prove that those visitors who come frons a distance are, for the most part, acluated by either commercial or scientific motives. It is not strange, therefore, that, despite the experience at most exhibitions, there should bere be a maxi mum amount of serious attention to the exbibits and a minimum amount of studied inobservance. The good nature of the exhibitors and their employes seems to bave no bounds, and rare are the occasions when they address them selves to the inappreciative or those wholly unfamiliar with applied science.
Of the multitude which daily pours through the doors, the majority appears to be more or less interested in comparing the various electric lighting systems. They seem to derive much pleasure though little profit from this, as the various companies, though unsparing of so-called statements of what their several apparatus are capable of, will not permit, save in a few exceptional cases, tests to be made on the premises.
Those desirous of buying an electric lighting plant with an idea of selling light are, naturally enough, as much interested in knowing the amount of current used and the cost of generating it, as they are in the intensity of the light and the arrangement of the apparalus. As to the arc light urban as well as suburban capitalists and projectors have learned ere this how elusive are its promises of profit, save when installed under peculiarly favorable conditions.
The services of the diplomat as well as those of the electrician seem to be required in disposing of arc light plant, and nolittle ingenuity is shown at the beadquarters of the various arc light companies in explaining why, there being so much profit in selling the light, they should so being so much profit in selling the light, they sho
strictly confine their efforts toward selling the plant.
strictly confine their efforts toward selling the plant.
It is something of a disappointment that the scheme of charging secondary batteries placed in dwellings and offices from the arc light wires ruvning through the slreets bas not been practically illustrated, so that it could be seen in all its workings.
It is an ingenious project, and, if it could be publicly shown that the batteries can be economically charged by day by means of the same electric mains which at night furnish the current for the arc lights in the streets, it would prove a dangerous rival to those systems in which the lights are fed directly from a central station. For the steam engine is, at best, uncertain, and like all mechanisms subject to accidents; and though this may be foreseen and provided for through the agency of auxiliary engines, the provision dues butadd to the cost of the plant.
Many of the electricians gathered here at the Exposition take an absorbing interest in the so-called "underground problem." Opinion seems very equally divided as to the practicability of the scheme. To all appearance, for every electrician interested in an electrical company, who calls it impracticable, bis fellow may be found bolding the contrary opinion, and able to maintain it with equally convincing proofs. This does much to sustain a learned jurist, who has defined au expert as one who can testify on either side of a case with equal facility.
Among those who believe the wires may be efficiently and economically buried is Prof. Preece. the eminent English electrician. At a recent meeting of the telephone managers a paper was read by an emplnye of the American Bell Telephone Company, whose duty it is to keep the lines in running order. The object of the paper was to show that telephone lines, at least, could not be efficiently operated un derground. At the conclusion of the reading Professo Preece took the writer of the paper severely to task for the incorrectness of bis conclusions, and remarked that if tha was "the result of bis investigations be must have sadly neglected his business." In support of that part of Professor Preece's assertion regarding underground wires which attributes to them efficiency of working, there are some experiments making bere in the Exposition building. This underground line extends from the Exposition build ing in West Philadelpbia to the Pennsylvania Railway sta tion in Kensington, a distance, when the route taken by the wire is considered, of more than eight miles.
It must be said that the results bad with the telephone wires-the most sensitive to induction and retardation of al the wires that it is proposed to bury-are more lhan en coaraging. Indeed,it is very doubtful-so say telephone ex perts who are watching the experiments-if an overbead telephone line could be operated more satisfactorily, even under the most favorable conditions.
Mr . Frempt, the superintendent of the underground company whose conduit and system is being used, is very anxious to have a comparative trial between bis line and an overbead line. While offlicially inviting such a test, he begged the telephone people to appoint a day of trial wheu the con ditions of weather should be most favorable to the overbead system.
This experimental underground line does something toward the solution of the important problem. But it Whald he remembered that it is an experimental line Whether it would remaiu in the excellent condition it \boldsymbol{i}

