THE KEELY MOTOR DECEPTION.

Another cbapter in the bistory of this time-worn, stockjobbing deception was lately completed by a public exhibition at Sandy Hook, N. Y., on Sept. 20, of a pretended tinn at Sandy Hook, N. Y., on Sept. 20, of a pretended
"etheric force" gun; but which in reality, to our eye, was nothing more than a clumsy air gun, from which a few bullets were discbarged. Keely was present and performed as a juggler, much to the satisfaction of the assem bled crowd of New York stock brokers, who seemed to relisb the Keely jargonand the muddy clarity of bis absurd explanations.
In brief, Keely and bis assistants brougbt to the ground a small air gun, shown in our engrav ings, with a cylinder charged with compressed air. The cy linder was connected by a smal pipe with the breech of the gun; thin disks of hard and soft rubber formed a partition betwee the breech air cbamber and the bullet. The performance consisted first in the turning of the air faucet by Keely, then while the air was flow ing througb the small pipe into the air cbamber, he struck on the rear part of the gun with a mal let, by which be pretended to vibrate the " etheric vapor." By the time be got through with this juggle the air pressure bad accumulated bebind the disks sufficiently to burst. them, and then the bullet was driven out; Keely then turned off the air, and prepared another cbarge. By varying the thickness of the disks the velocity of the bullets could be increased or diminisbed as desired to suit the credulity of the audience; and by this juggle it was pretended that the pressure of the "etheric force" increased with the discbarging of the gun. The day following the "exbibition" the daily papers contained laudations of Keely's tion" the daily p "great success," the
stock of the "Keely
stock of the "Keely Motor Company"
was thereby sent up from 9 ceats on a dollar to 15 cents, and the money of the deluded pur chasers was thus successfully netted. The following is an account of the apparatus and mode apparatus and mode or working, as de scribed and per formed on tbis oc casion by the Keel operators. The force is derived
from an etberic vapor generated by macbinery specially de- |placed vext to the pressure-was of soft rubber packing, sinsigned for the purpose; this inter-atomic ether is composed ale ply and 1 of anch thick The exact size of these primarily of water and air mixed in the proportion of balf a wine glass of water to a bucketful of air. When this mixture is placed in the generator; which is located in the inner recesses of Mr. Keely's shop in Pbiladelpbia, it is subjected to the influence of certain vibratory impulses which "negatize" the chemical affinity binding the elements togetber and a disruption ensues.
Mr. Keely bas discovered that sound not only annibilates at omic force, but it also subdivides the atnms themselves; and bence, althougb water bas yielded only pure oxygen and by oxygen and by drogen when dis sociated unde ordinary physicists who bave been unable to cbange the ratio existing between a volume of water and the re sulting volume of gases, he bas been enabled to fill large spaces with vapor under great pressure, simply because under bis manipulation our atoms become bis molecules.
 gle ply and $\frac{1}{16}$ of an incb thick.
disks is shown in Figs. 1, 2, 3, and 4, Fig. 1 being the disk before rupture, Figs. 2 and 3 showing the bard rubber disks after the discbarge, and Fig. 4 showing the soft rubber one after the discbarge. The broken disks also show the imprint made by the end of the sleeve. A spberical lead bullet
baving a diameter of $11 / 8$ inch was used, the bore of the gun

KEELY GUN.-FULL SIZE VIEW OF GAS CHECK DISKS AND CONNECTING TUBE. urning of the valve and the discharge was, on an average about six seconds. The first blow upon the vibrator did not often cause the explosion; it was necessary to strike it several times, but, as luck would bave it, the blows always preceded the discbarge. Mr. Keely did not wait a minute or two in order to convince skeptics that no explosion would take place until be struck the vibrator. There was no appliance of any kind by which the pressure in

THE KEELY DECEPTION.-THE VAPORIC GUN.
from the breech, \mathbf{G}, of the gun to the magazine, A, which was made of wrougbt iron, and was $41 / 2$ feet long, $81 / 2$ inches outside diameter, and bas a bore 5 inches in diameter; the capacity was 5 gallons. Tbis magazine was connected by the wire, C , to a second one, B, similarly made, but only about balf the size. The supply from the small to the large magazine was controlled by valves, as shown, and a valve governed the supply to the gun. These maga zines bad been cbarged with the inter-atomic etber evolved by the generator beretofore alluded to as being in Mr. Keely's sbop, and althougb grave doubts bad been expressed as to the propriety of transporting them upon the railroad-owing to the uncertainty of the effect that would be pro duced upon the vapor by the sonorific qualities of an express train-they arrived safely at the range. When the valve of the first magazine was opened nothing could be obtained from it this was a preliminary part of the trial, a nd took place before the arrival of the guesis), and it was feared that the vapor bad become " negatized." but it was soon" revivified" by a few scientifically administered blows carefully distributed between the big and the little magazine.
It may be here mentioned that a wooden mallet which Mr. Keely held in his band produced effects which it is doubtful if the magician's wand could even equal. A stroke upon the little magazine "iniensified" the qualities of the other in which the "vivification" was kept up by a blow now and then delivered, and a slight tap upon the end of the "resonator," H , exploded the vapor in the breech and discharged the sun. So we see that the "vitalization" of the entire plant depended very materially upon the judicious use of a mallet.

In loading the gun the gas check was tirst placed in position and the muzzle screwed up tight, when the ball was introduced at the muzzle and rammed bome. The valve was then turned, to admit the vapor to the breech, and after waiting a few sec onds the end of the "vibrator," H, was struck, wben the cbarge exploded. The time intervening between the eitber the magazines or gun cruld be deter mined.
We believe we forgot to mention that the gun itself received considerable at tention from the mallet. It bad acnustic properties peculiarly its own, and blows upon its exterior set in action 'vibrators" distributed tbrougb its breech. There were also vibratorsforming part of the interior arrangement of each magazine. Nineteen rounds were fired at a target placed 500 yards distant. Tbere was no difficultyin sending the bullets that far with a 5 degree clevation. bullet pierced
being just sufficient to insure a snugfit. Vapor was admitted througb the opening, G, to a chamber, bebind the packing, baving a capacity of one-balf pint.
A copper tube, $\frac{3}{18}$ of an inch external diameter and $\frac{1}{16}$ of
an incbinternal (Fig. 5 being a cross section, full size) led
pineplank bled frem feet from gun. The noise closely resembled that caused by a common shot gun when loose powder, baving no ramming on top of it, is exploded. A small cloud of white vapor, which almost instantly disappeared, followed the discharge. It was impossible to
detect, with the hand, any cbange in the temperature of the gun.
The velocities of three consecutive shots were measured. The tenth bullet traveled at the rate of 482 feet per second, the eleventh 492 feet, and the $t w e l f t h ~ 523$ feet per second.
After the last shot had been fired the tube was disconnected from the gear, and, the valve at the magazine being opened, the visitors were allowed to examine the inter-atomic ether as it issued from the pipe.
It had but a trace of odor, no taste, and had no effect upon the lungs. This ended the trial.
We saw nothing done by the Keely Vaporic Gun which canoot be duplicated by the aid of compressed air.
A gas check made of the same material Mr. Keely used and beld in the same way is strong enough to withstand air at a pressure amply sufti-
cient to drive a bullet with the velocity be obcient to
tained.
At the lowest calculation and allowing a wide margin for safety, his reservoirs would hold air at a pressure of 20,000 pounds to the square incb; this quantity would be sufficient to fire twice nineteen rounds, and since the thickness of the gas check would govern the velocity of the ball, the last shot would have a velocity equal to the first. Many more than nineteen shots could be thrown by the aid of the same apparatis he used, substituting air for inter-atomic ether:
We estimate that Keely used an air pressure of 800 to 1,000 pounds to the square incb to break his gas checks and discharge the bullets.
Although when new inventions appear it may be necessary to coin appropriate terms, we should not think it essential to resurt to a heterogeneous commingle ment of absurdities.

Furniture Woods.

A gencration or more ago the most admired wood for furniture purposes was mabogany. Until quite recently the taste for mahogany bas been beld in abeyance, and black walnut has long reigned the king of the furniture woods. Before mahogany controlled the popular desire, cherry was a favorite, and our white walnut or hickory was used to a considerable extent. These old fasbioned woods are coming into favor again, and very fine effects are produced by the contrasts of cherry and bickory, and by mabogany and bickory. Mahogany and cherry blend admirably as shades of color instead of con-
trasts. The so called "branch " mahogany, that in trasts. The so called " branch" mahogany, that in
veneers on the fronts of burcaus and in the frames veneers on the fronts of bureaus and in the frames
of mirrors formerly produced such impossible effects of grain, bas given place to that of plain straight grain, the effect of color rather than of grain being desired.

Except yellow and black birch and the satin and birdseye maple, there are few of our native woods that show a very distinctive grain. This makes them valuable as foils to the more erred woods of the tropics. One of these, the coco bolo, of a deep red color, with broad striated grain, works up beautifully with the cherry, making a complement of tints, or with the bickory, showing a contrast of color and of grain.
According to the statement of a prominent dealer in furniture woods, our cherry and bickory are coming rapidly into demand, ard for foreign woods the mahogany and the comparatively little known coco bolo are much called for by makers of fiue furniture, carvers, and internal finishers.

John W. Garrett.

John W. Garrett, President of the Ballimore and Obio Railroad since 1858, died in Baltimore, Sept. 26, in the 65th year of his age. He was born in Baltimore, graduated from Lafayette College, entered his father's banking house at the age of 19, and was made president of the great railroad with which his name bas since been associated at the instance of Mr. Jobns Hopkins. From that time the road bas regularly paid dividends, and the stock has advanced from $\$ 57$ to sometbing over $\$ 200$ per share, largely due to bis enterprising and energetic management and constant personal supervision, under which the road has been extended and branches built to make it one of the main trunk lines of the country. Mr. Garrett was also during this period the head of bis banking house, was one of the trustees of the Jobns Hopkins estate, and connected with many other local institutions.

Snow Water Impurities,

Under the beading of "The Beautiful Snow," the Microscope points out the kind of organic impurities found in snow, whicb, added to what we recently quoted on the same subject, very conclusively shows the fallacy of the idea that melted snow forms a good substitute for distilled water. The impurities are as follows: Living infusoria and algæ, bacilli and micrococci, mites, diatoms, and great numbers of fungi spores; also fihers of wood, mouse hairs, pieces of butterfly wings, skin of tarvæ of insects, cotton fibers, pieces of grass, epidermis, pollen grains, rye and potato flour, grains of quartz, minute pieces of rooting tile, and bits of iron and coal!

THE ANT LION. by b. c. hovey.

Although the peculiar babits of the ant lion (Myrmeleon) bave been repeatedly described by naturalists, many persons
do not yet seem to be aware of bis existence. Hence it may

the pit of myrmeleon, with a cocoon near the margin.
the only thing to be done was to abandon the pit and dig a new one in a more favorable location.
When all is made ready, the ant lion lies motionless as if dead, and will continue to do so for days and even weeks, awaiting his prey. Voracious as bis babits are, he rejects whatever is dead. 'lo one that bad fasted a fort night I offered a luscious blue-bottle fly, but in vain because the fly was not alive. On catching anotber, and a large one, stripping off its wings, I let it fall directly into the expectant jaws, and it was seized instantly and dragged under the sand to satiate the hunger of the voracious foe. The fiy was three times as large as the ant lion, but in an hour the carcass was tossed out of the pit, bereft of its juices the damaged walls of the pit had been repaired, and Myrmeleon was ready for further supplics. Seldom does any victim escape.
A young ant lion was seen by a friend of mine to grasp the abdomen of a large fly that bad invaded bis den, and not being strong enough to conquer, it held on with a grasp so tenacious as to be lifted into the air and carried to a considerable distance before relaxing its hold. It is frequently the case that an ant, on finding bimself slipping into the pit, will use his utmost endeavor to escape; but usually a shower of sand brings him down into the vortex. It is not true that the sand is aimed directly at the victim. It is thrownup at random, and one shower is followed by another till the desired object is accomplisbed. The ant lion varies his methods with different sorts of ants. When the carpenter ant, whose jaws rival those of his foe, falls into the pit, he is seized and held aloft in sucb a way as not to be able to fight, while the ant lion complacently sucks out his juices. Equal caution is manifested in attacking the pavement ant, which carries a sting. I have to acknow be worth while to lay before the general reader some of the ledge that I once left six ant lions of about the same age and facts that have been gathered, partly by inquiry, but chiefly size in a cigar box balf full of stod, where each bad a sepaas the result of my own observations.

In quiet nooks, where the soil is dry and sandy, and especially in the bollows left by the roots of decayed and fallen trees, the chosen resort of busy colonies of ants, one may bave noticed conical pits, from balf an inch to two inches in diameter. Eacb of these pits is a trap, a den, ininches in diameter. Each of these pits is a trap, a den, in-
babited by a creature as ferocious as the tiger and as subtle fallen under my observation.
as the serpent. Scoop up the sand thus excavated, spread it $\begin{aligned} & \text { Having existed for a long time in a larval state, the } \\ & \text { Myrmeleon prepares for bimself a spherical cocoon, in which }\end{aligned}$ out on serpent. Scoop up the sand thus excavated, spread it out on a paper, and you will see a small, oval, sluggish he pa

THE JAWS-MAGNIFIED.

HE PUPA SIDE AND rate pit, and neglected to make provision for their being fei during my absence of several weeks. On myreturn I found on abse of but one symmetrical pit, inhabited by a sleek, fat ant lion,
while around the margin lay tbe five dry shells of his brothwhile around the margin lay tbe five dry shells of his broth-

ers. This case of cannibalism is the only one of the sort thas fallen under my observation. | eleon prepares for bimself a spberical cocoon, in which |
| :--- | the jaws become serviceable, as the insect uses them to gnaw his way through the walls of the cocoon, whence be escapes as an imago, leaving the jaws behind with the larval skin cast in the transformation. The imago is an elegantly sbaped dragon fly, bearing as little resemblance to its primitive form as does the butterfly to the crawling caterpillar.

My experiments have been limited to a single species, Myrmeleon immaculatus (De Geer); the specimens being from Indiana and Michigan. This species, however, is widely distrihuted, from Massachusetts to Georgia and Miunesota. There are two or three species of pit-forming Myrmeleons, besides several other kinds that prowl around on the surface bug, whose main anxiety is to get out of sight as quickly as \mid for their prey. Those desirous of investigating further will possible by crawling backward into the sand. Observe him find that there have been excellent descriptions publisbed by closely, and you will see that his head is furnisbed with a Dr. Hagen, in the "Smithsonian Miscellaneous Collections," formidable pair of jaws. This ugly little fellow is the larva of Myrmeleon.
In my library I bave placed a box of sand in which are kept a number of these ferocious pets. It is interesting to watch the process of digging the pits. The ant lion plows a circular furrow, going backward all the while, and shoveling the sand with his broad and flexible tail. It is invariably thrown outward from the center. A second and inner cir

THE IMAGO OF MYRMELEON, JOST EMERGED FROM THE COCOON.
cle succeeds the first; and this continues until a conical pit is completed, at the bottom of which the ant lion lies, wholly concealed except as to his jaws. Occasionally a small pebble, or other obstruction, will tax the ingenuity of the insect worker. He will lift at the load with either head or tail, as is most convenient, trying to jerk it out of the pit. I have seen the effort repeated twenty times before patience met with its reward. In other instances the obstruction would exceed the ant lion's combined skill and strength, and then
vol. iv., and by the same author in the Entomologische Zeitung, 1873. Other authorities are Brauer, Emerton, McLacblin, and McCook.
It gives me pleasure to acknowledge obligations to Mr. N. B. Pierce, of Ludington, Mich., not only for facts and refarticle.

Cholera and Macaroni.

If it is a fact, as alleged by Protessor Koch, that cbolera is the result of a microbe, what is to prevent the transmission of this dread disease to other countries from Italy, not only througb the export of fabrics, etc., alone, but from olives, olive oil, pressed and preserved fruits, macaroni, and other edible commodities shipped from that beautiful and productive country, where the cholera has been raging with such dire results? Be that as it may, a correspondent of the London Times writes to that journal, warning peopleagainst the use Times writes to that journal, warning peopleagainst the use
of macaroni and other pastes made in Italy, and specially in of macaroni and other pastes made in Italy, and specially in
the neighborhood of Naples. Supposing the theories of Professor Kocb to be correct, we cannot imagine a more likely agent for receiving and transmitting microbes than macaroni, from what we bave witnessed of its manufacture in the neighborhood of Naples. The factories for the manu facture of macaroni, between Naples and Pompeii, do not present, during the coolest and healthiest seasons, a pleasing or appetizing sensation to those who are fond of the paste and witness its manufacture for the first time. Macaroni in the course of its manufacture is hung to dry in the open air amid clouds of dust, fies, and stench of all kinds, the locality where it is made being in the dirtiest and poorest districts, and where it is said the cholera has been raging the severest. The Times correspondent cheerfully, if not playfully, closes bis article by remarking: "One bas only to think of this important article of food, which is so mucb used, being manipulated by plague stricken workmen, who no doubt sicken and die amid the macaroni which is being prepared, under sucb horrible conditions, to send being prepared, under such horrible conditions,
broadcast over the world and spread the pestilence."

