THE EDIBLE CRAB.

The life bistory of the crab is extremely interesting. The strange little animal that escapes from the egg resembles in no respect the parent crab. Its form is lengthened, ending in a forked tail; on the back is a long spine curving backward, and on each side a short spine directed outward. The eyes are large but not projecting, The eyes are large but not projecting,
and the head is armed with a mosquiand the liead is armed with a mosqui-
to-like rostrum. This first stage of the to-like rostrum. This first stage of the
crab is called zoea. After remaining for a certain length of time in the zoea form, it comes forth from its infant skin an entirely cbanged animal. Here the eyes are very large and projecting, the body squarish, without the long spine seen in the first stage; it bas spine seen in the first stage; it bas
eight perfect legs and two claws; the eight perfect legs and two claws; the "tail" has become short, and turned
under; and yet it bas no resemblance to the mature crab. This second form is called the megalops or great-eyed stage. When it again cbanges its skin, the body assumes a much broader shape; a distinct spine appears on each side, and the tail-like process is doubled up under the body. When its skin again becomes too tight for it, it at length comes forth a small but perat length comes forth a small but per-
fectly formed crab, Callinectes hastatus. fectly formed crab, Callinectes hastatus.
The crab is obliged to moult or cast The crabis obliged to moult or cast
off its shell many times during its life. This moulting appears to be an unpleasant ordeal to pass, for they often die during the act. When we see that they are not only obliged to escape from the carapax or shell, but also from the bard covering of their legs, delicate mouth parts and even gulletdelicate mouth parts, and even gullet-turning themselves inside out, as it were-it is not snrprising that they perish duriug the ordeal. The crab crawls up into some secluded nook or cove in shallow water to moult, out of the way of its bard-sbelled relatives, for the belpless, newly moulted, or "soft shell crab," if found, is devoured by them, as well as by several species of fishes.
Fortunately for the crab, the soft covering bardens rapidly, and in a few hours it bas a new and strong armor, and it then goes fearlessly out into the deeper water among the eel grass.

Crab fishing is an amusing but not always exciting sport. You simply row up into some shallow cove or bay of the seacoast, which has a muddy and grassy bottom, cast anchor, tie a good sized piece of meat on a strong line, lower it to the bottom, and wait for a bite. When you perceive a tug at your line, pull it up gently until the crab is visible; you must not attempt to lift it out of the water by means of the line, for then the crab will quit its hold and escape, but with one band quietly but adroitly get the dip net under it, and with a dexterous sweep land it in the boat. Frequently two or three crabs are caught on the line at once.

Should you chance to go crabbing with a party of ladies, be extremely careful that they do not overturn the basket of lively crabs about their feet, for if this happens you will have your light skiff almost or entirely upset by the ladies jumping up and standing upon the seats, and you will get your fingers pinched, perhaps until the blood comes, as you recklessly endeavor to catch the crabs as they wildly scamper about the bottom of the boat. I have learned this from experience.

The edible crab of our coast can always be known by two long lateral spines of the carapax. The claws are blue above and whitish beneath, and the carapax above is of a dull olive or bluish color. It is called the "blue crab" by the fishermen of the New Englund coast.
C. Few Seiss.

SADDLE MEN.

In Nepaul, India, there is a class of natives who serve as "saddle men," and take the place of saddle borses. Strapped around the waist and fitting into the curve of the back is a padded ledge. It is supported vertically by shoulder straps.
The rider rests on the ledge, in the position shown in than one 8 in . above the ground; that agauge 22 ft . above the the engraving, which is from the Graphic, and repre- ground collected $101 / 2$ per cent less waterthan one 8 in . above sents the Duke of Portland, and the Earl De Grey, going the ground, and that a gauge $31 / 4$ ft above the ground on a bunting excursion. Ladies of rank in this part collected 6.7 per cent less water than one 3 in . above the of India are carried on "saddle women," in the same ground. style.

THE EDIBLE CRAB.
Rain and Snow
A paper giving results of experiments with rain gauges ifferently located, and of experiments as to the ratio of depth of snow to the depth of same when melted, by Edmund B. Weston, was lately read before the Amer. Soc. of Civil Engineers. It was found that in a number of experiments extending over considerable periods of time a gauge ments extending over considerable periods of time a gauge
14 ft .8 in . above the ground collected 9 per cent less water

SADDLE MEN.

actly. One \log may give five bags, or it may give ten. It ells, well, that is, pretty tolerable. I reckon I clear about $\$ 8$ or $\$ 9$ a day out of it-perbaps more. I never figured it up. What's it good for? Good many things. It's used to tiffen paper, but if you put in too much the paper gets brittle. Paper stock is much dearer than poplar flour, and that's why they put it in. If you mix the flour with linseed gum and 'biled' oil, you may get a kind of oil cloth. Some folks mix it with meal to give to pigs and other animals. I guess it's good, but I never give it to my bogs, and even those fellows give it to some other fellow's critters, and not their own. Yes, I beard that some bad contractors mixed it with meal for army and Indian supplies, but I don't take much stock in the story, because they could buy sour meal as cheap as poplar flour. It wouldn't pay to mill pine, cedur, or bemlock; they are worth too much as timber. But any wood that isn't used that way can be milled into flour. I use poplar almost altogether, but when I run short of logs I grind up buttonball, birch, elm, or willow."
The farmers dislike the new industry, as it promises to play bavoc with the for ests, which are both an attraction to the border and a protection to agriculture. The tanneries years ago used up all the oak and bemlock; the lumbermen have stripped the country practically of pine, cedar, and walnut; the cbair factories are consuming the bickory and maple; now the wood flour mill promises to grind up what remaining trees there may be.

Opening of Great Grain Regions.

Russia bas resolved to develop ber sys tem of railway communication on an enormous scale, and for this purpose bas just contracted a loan of $\$ 75,000,000$, to be ex pended during the next few years. India bas already built lines of railway penetrating the furthest provinces. Australia bas also made long strides in the same direction. Next in order is the Argentine Confederation, in South America, which is building four additional trunk lines of railroad at a cost of $\$ 28,000,000$, to connect Buenos Ayres, her principal seaport, with the vast granaries opening up in the pampas of the interior. In every case the ultimate purpose is to overcome all impediments in reaching the central grain markets of Europe. And, in spite of all this, says the British Irade Journal, American grain speculators continue their efforts to artificially maintain the price of wheat, as though there were a great deficiency in the supply of the world, and the nations would eventually have to come to them begging the privilege of being allowed to purchase some of their surlege of
plus.

The Cont of Making Stoves. of Stove Manufacturers, Mr. Jobn T. Perry, of Albany, who probably knows as much about stove manufacture as any one, made the following statement of the estimated c per ton of making stoves in the United States in 1884:

Founciry Cost.

Iran Founciry Cost.	
Iron................	\$20.00
Mounting material (nickel panels, rails, etc., not included)	8.00
Fuel for all purposes.	2.75
Moulding sand and clay.......................... 40
Facing....	. 25
Patterns, flasks, and lumber material	. 75
Shipping material	. 10
Freight and expressage.	1.25
Machinery and tools.	1.75
Repairs.	. 40
Gas and oil...	. 20
Stationery and books.	. 10
Rent.	1.00
Iusurance	. 40
Taxes.	. 25
Miscellaneons and pilferings.....	. 40
Castings broken and discarded that. have been paid for....	1.00
Total.	839.00
Moulding Labor.	
Mounting.	8.00
Parteru making.	1.45
Pattern fitting and repairs	1.50
Pattern moulding.	. 25
Carpenters..	1.25
Cupola men, breaking iron, etc.	. 75
Cleaning and filing	2.00
Engineer...	. 30
Shipping	1.05
General labor.	1.00
Watchman.	20
Foreman, monlding, and mounting	
Clerk.	. 50
Trucking.	. 75
Miscellaneons and pilferings.	. 50
To:n1	\$45.00
Selling Expenses.	
Allowances, various kinds.	\$1.25
Attorney's fees 25
Advertising, circulars, etc	1.75
Bad debts	2.00
Clerks..	1.60
Freight on stoves delivered.	1.00
G as and oil..	. 10
Insurance..	. 20
Interest	0
Discount for cash.	2.50
Miscellaneous and pilferings	. 50
Postage stamps and telegrams...	1.00
Rent	1.00
Statiouery 15
Traveler's wages.	2.75
Traveler's expenses and general traveling.	. 25
Taxes.	20
President and Secretary	1.50
	\$23.00
Grand intal	\$107.00

In.connection with the above, Mr. Perry said: "Gentle men, everything in this world is imperfect, and so is thi statement. Many of the items, I know, and you well know, are too low; lor example. $\$ 5.20$ per ton, or $\$ 15,600$ for the year, for patterns and flisks, on a product of 3,000 tons, sbould be put down at twice that sum. Some items may be too higb, and in many cases should be excluded altogetbe from the list, yet I believe the average cost on the basi named, taking one year with another, will reach $\$ 107$, and generally more than that sum."

Propertien of Quicksilver.

One of the most curious properties of quicksilver is it capability of dissolving or of forming amalgams with metals. A sbeet of gold foil, dropped into quicksilver drups into water. It bas the power of separating or of readily dissolving those refractory metals which are not acted upon hy our most powertul acids. The gold not acted upon by our most powerful acids. The gold
and silver miners pour it into their machines bolding and silver miners pour it into their macbines bolding
the gold bearing quartz; and, although no buman eye the gold bearing quartz; and, although no buman eye
can detect a trace of the precious substance, so fine are the particles, yet the liquid metal will bunt them out and incorporates it into its mass. By subsequent dis tillation it yields it into the bands of the miners, in a state of virgin purity. Several years ago, while lecturing before a class of ladies ou chewistry, we bad occasion to purify some quicksilver by forcing it through cbamnis leatber. The scrap remained on the table after the lecture, and an old lady, thiuking it would be very nice to wrap ber gold spectacles in, accordingly appropriated it to that purpose. The next morning she came to us in great alarm, stating that the gold bad mysteriously disappeared, and nothing was left in the parcel but the glasses. Sure enough, the metal remaining in the pores of the leather had amalgamated with the gold, and entirely destroyed the spectacles. It was a mystery which we never could explain to ber satisfaction. - Fireside Science.

Puscher, in the Chemiker Zeitung, states that the follow ing cement resists kerosene, and is useful for cementing th brass collars to glass lamps. One part of caustic soda, thre parts of resin, and five parts of water are boiled together the resin soap thus produced is mixed and well kneaded with balf its weight of plaster of Paris. It bardens in about three-quarters of an hour. If zinc white or dry white lead is used, it bardens more slowly

THE OCARINA.

For a few years past the fairs of Paris and its environs bave been offering to amateurs of music a cbarming little instrument called the ocarina. Its name and those of the manufacturers affixed to it (Girola, Donizetti, etc.) tell us plainly enougb that it is of Italian origin. The mountaineer who is said to bave devised it, not only for bis diversion but also a means of defense (since it may serve togive a blow with), scarcely thought that his rough invention would be patented, have the run of public places, enter parlors, and even figure in the midst of philbarmonic societies.

It is, then, not only a new playtbing, but a genuine musical instrument that we desire to extol in enumerating the advantages that will everywhere cause it to be prelerred to the wooden flageolet or the tin flute.

Fig. 1.-MODE OF USING THE OCARINA,
At its debut the ocarina was merely a little glazed baked clay, baving the form of a black radisb externally, but bol low internally, provided at the side with a mouth piece and having nine or ten little apertures along it in place of keys (Fig. 2, No. I.). Its sonorous power ranged from $u t$ natural to $f a$ of the octave, passing through all the notes of the cbromatic scale. It remained as primitive as this of the cbromatic scale. It remained as primitive as this
for a long time, and more thanone amateur was enabled to for a long time, and more than one amateur was enabled to
draw from it lullabies and other music of the kind; but the programme that could then be got from its circumscribed range bad its limit there.
A certain band of minstrels once passed througb our northern towns, and their presence there bas not been for gotteu. This little troop bad put aside the barp, the mandolin, and the violin, in order to give delightful serenade with well tuned ocarinas. It was original and delightful But althougb in barmony, their scores, since they varied only from the melody to the third of the same octave, did not bave the same interest as if they bad been rendered from a grave to a sharp tone; and this gave rise to the idea of manufacturing the instrument in different sizes. So there soon appeared the soprano ocarina, which was smaller than an ordinary carrot and clearer than a small flute, and the double bass ocarina, larger than a pumpkin and graver than the alto. The principle remaiued the same. But the

Fig. 2.-THE OCARINA in PERspective and bection.
ocarina still bad one drawback, and that was that it could not accord with the piano or the flute, from which it sometimes differed by one note. To obviate this, the instrumen was provided with a piston, which, when drawn out or pusbed in, raised or lowered the sounds by one note (Fig. , No. II.).
Finally, as a last improvement, a series of keys was add ed, symmetrical with the row of boles on the left side, thus giving a second complete scale.
Tbe idea embodied in this simple instrument bas caused us to make an experiment that bas proved quite successful. We took a pilgrim's gourd, aud first made some minut pertures in it, arranged sometbing like those of th
an old one from a clarinet that was provided with a reed. In order to obtain notes-perfect gamuts-we enlarged each of the apertures with a knife until it gave the tone, and we now bave a sordine that in no wise cedes to the bautboy for solos which are not very complicated. The sounds thus obtained are preferable to those given by the ocarina, since they emanate from wood, and not from clay. The instru ment thus modified is shown in Fig. 2, Nu. III.-La Nature.

Need of Improvements in Marine Signals.

Commander Gorringe bas written a letter in regard to ships' lights, called forth by the Tallaponsa disaster, which contains valuable suggestions. He stows that not only are the red and green side lights now carried by vessels frequently mistaken one for anotber, even by men who are not color blind, but that the position in which they are placed is such that in certain circumstances it is possible for a vessel to alter ber course sixty degrees witbout giving any a vessel to alter her course sixty degrees without giving any
indication of the alteration by the appearance of ber lights. indication of the alteration by the appearance of her lights.
In other words, the present system of lights is miscrably defective, as is sbown by the fact that it bas failed in bundreds of instances to prevent collisions att sea. In the place of the red and green side ligbts it is proposed that every vessel sball carry four range lights. Two of thes should be placed forward, and two aft. Of the forward lights one should be a white light and the other a red ligbt the latter to be placed somewhat bigber than the other and some distance aft of it. The after ligbts should be arranged in a similar manner, except that the red ligbt sbould be lower than the white light. This arrangemen would render it possible to ascertain from the appearance of a vessel's ligbts the course steered by ber, and the direc tion and amount of the sligbtest deviation from that course It would also enable a steamer to avoid runuing directly into the stern of a slower vessel where both are steering th same course, and no one on board the slower vessel has the forethought or opportunity to a display a "flare." One ob jection to this plan is the fact that most persons who are to any extent color blind are unable to see the red ray Were a blue light to be substituted for the red ligbt, and were range lights to take the place of side lights, wotbing except the grossest stupidity could bring about a collision between two vessels on a clearnight.

Ear Diseases

Dr. K. Buskner in a very elaborate paper in Archiv fur Ohrenheilkunde gives the results of bis clinical observations and those of twenty other aural surgeons. From these be inds that on an average out of every three individuals in middle life one does not bear so well in one ear as in the other, while from an examination of five thousand nine bun dred and five school cbildren twenty-tbree per cent pre ented objective pathological symptoms of ear disease, and thirty-two per cent a diminution of bearing power. Tb following general conclusions are drawn from this immens mass of detail:

1. The most frequent causes of diseases of the ears would seem to be attacks of cold, affections of the nasal and pharyn geal cavities, and acute infectious diseases.
2. Tbe liability to disease, of the ear increases from birth to the fortieth year, and decreases from thence to old age. 3. Men are more subject to affections of the ear than women, as three to two.
3. The external ear is affected in twenty-five per cent, the middle ear in sixty-seven per cent, and the inner ear in eight er cent of the total number of diseases of the ear.
4. The left ear is more frequently affected than the rigbt, as five to four.
5. The acute affections of the middle ear oncur less fre quently in the summer and autumn than in spring and winter.
6. Of the total number of cases of ear disease in the outpatient cliniques about fifty-tbree per cent are cured, about thirly per cent are improved, seven per cent. are unimproved and tbree-tenths of one per cen terminate fatally.

Safe Lubricating Oils.

The standard of a perfectly safe lubricating oil, free from spontaneous combustion, which was established by the experiments of the Bosion Manufacturers' Mutua Fire Insurance Company, is as follows: A mineral or "paraffine" oil, so called, bearing:
1st. A fire test of 300° or more.
2d. An evaporation of 5 per cent or less in twelve hours, at a constant beat of 140°.
3d. The greatest degree of fluidity consistent with keeping the oil upon the bearing.
There are now few or no vils offered to the members of the mutual companies by oil manufacturers of repute which do not meet this standard; but there are some of the members who prefer an admixture of fine animal oil to give more body to the lubricant.
To this end higb-grade neatsfoot oil is sometimes mixed with mineral oil, and so long as the oils remain thorougbly mixed as mucb as 25 per cent of neatsfoot oil may be safely used. But five recent cases of spontaneous combustion (fortunately all extinguisbed without loss) bave called atten tion to a tendency in these oils to separate, so that the neats foot oil bas apparently been applied nearly free from mine ral oil, and in sucb cases fire bas ensued. Great care should therefore be taken that mixed oila are kept in safe condition by frequent agitatiou or stirring.

