of the carriage is reversed, the saw hlade is automatically drawn back about one-quarter of an inch from the freshly cut surface of the log, and retained in that position until the forward motion of the carriage begins, when the saw is instantly restored to its exact former position. The advantages of this are obvious. The saw does not scratch the surface of the $\log$ on its back motion, while at the same time the speed of the quick return movement can be greatly increased.
Before this attachment was made, the return motion of the carriage was twice as fast as tbe maximum forward feed; with the deflector attached tbe back motion has been easily increased to three times the forward feed. This may not ap pear at first sight so important, but the firm suggest the fol lowing calculation relative to this point: In a year of 300 working days, without tbe deflector, 200 will be spent in cut ting and 100 in running back the carriage; while with the deflector in use 225 days will be spent in cutting and only 75 days in running carriage back, a clean gain of 25 days' anawing.
The carriage on which the $\log$ is carried, together with the head blocks and dogs for supporting and bolding it, as well as the set works and rails on which the carriage runs, all merit attention. Four different kinds of carriages are made for these mills in order to meet the varying wants of customers, but the style shown in the illustration is the most complete
The bead blocks are each made of double wrought iron I-beams, planed true and carrying strong knees to which the dogs are attached. These knees are made to recede 44, 48 , or 54 inches from the saw, as required. Motion is transmitted from the set works to the knees through a steel shaft, carrying cut steel pinions working in cnt steel racks. The ratchet wheels in the set works bave forged steel rims, the ratchet teeth being machine cut, thus insuring the great estaccuracy in every respect. This set works is graduated to set to sixteenths. After the log has been entirely sawed, the knees can be brought back by power while the carriage is running back, or a few turns of the hand wheel on the carriage will bring them back simultaneously
The dogs used for holding the log are the celebrated Knight's patent upper and lower dog. These dogs are so well known that it is only necessary to say that the upper and lower dogs can be adjusted separately or together, and that they will hold a log or flitch when nearly cut up, so that it is impossible for the board to spring away from the knees, thus permitting a log to be cut up true to the last board.
The trucks under the carriage are strong and heavy, to stand the strain of loading and turning heavy logs, and the rails on which the carriage runs are made of railroad iron plased true. The rail nearest the saw is planed to a $V$-shape, while tbe other one is flat.
These mills are made also to be driven by belt instead of direct engine, and can then be driven from any suitable source-rf power

Band saw mills as above described are suitable for cutting the finest lumber in the country-walnut, poplar, pine; saving a large amount of lumber whici would otherwise be cut into sawdust by the wide kerf of the wasteful circular mill. Their capacity is rapidly approaching that of circular mills. Messrs. London, Berry, \& Orton tell us that with good logs they can already average 20,000 feet of lumber per day, and expect soon to see the day when 30,000 feet will be cut on band mills. Those who are interested in the subject sbould write Messrs. London, Berry \& Orton, At lantic Works, 22d Street above Arch Street, Philadelphia, Pa . They make the entire plantfor band saw mills, including all described above, as well as log turners, edgers, cut off saws, and saw mill machinery generally

## The American Institute Fair.

The fifty-tbird industrial exhibition of the American Institute was opened in its great building on Third Avenue, New York, on Wednesday, September 24. There was an audience estimated at 5,000 to listen to the opening address of the President, Cyrus H. Loutrell, who was followed in a most interesting speech by Hon. Abram S. Hewitt. The latter declared that the wealth of the world had been mul tiplied a bundred fold within a bundred years, by the aid of intelligent invention and the work of skilled mechanics. Science, be said, and not legislation, was the great lever which produced happy men and women; science revolutionized society for the better.
The lists of exlibits and exbibitors at this year's fair out number those of any previous year. The central part of the building, which is an eighth of a mile in circumference bas a concrete floor. Conterno's Ninth Regiment band is to give a concert each afternoon and evening. The machinery will be in motion from 10 to 12 o'clock in the morning, 2 to 5 o'clock in the afternoon, and 7 to 10 in the evening. One of the most interesting exhibits is an incubator in which clickens will be hatched; the eggs bave been placed in at such intervals that chickens are expected to be batched bourly, when they will be placed under an artiticial mother, so that on the last day of the fair, it is counted, there will be chickens hatched by artificial means on the premises from one hour to two months old.

The prediction of M. Ch. Montigny, of Brussels, that the past summer would be a very dry one-a prediction founded on his observations of the change in the character of stellar scintillation-has been fulfilled to the letter.

# Sosicutifir smmerical. 

HSTABLISHED 1815.

## MUNN \& CO., Editors and Proprietors published weekly at

## No. 361 BROADWAY, NEW YORK.

## o. D. MUNN.

A. е. ВеACH

## TERIMS FOR THE SCIENTIFIC AMERICAN.

## ne cony. one year postage included..... ne copy, six months postage included

8320
160
Clubs.-One extra copy of t're Scientifio Am erican will be supplied ratis for every ciul of five subscribers at 83.20 each; additional copies at Remit by postal order. Postage prepaid.
Remit by postal order. Address

## The Scientific American Supplement

is a distinct paper from the Scientific american. THE SUPPLEMENT with Scientipic American. Terms of subscription for Supplement 85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the conntrs.
Combined IR
Combined lintes. - The Scientific american and Supplemen
went for one year postage tree. on receipt of seven dollars. Bot will be sent for one year postage tree. on receips of
papers to one address or dififerent aduresses as desired.
papers to one address or difierent adadesses as desired.
The safest way to remit is by draft, postal order, or rekistered letter.
Address MUNN \& CO., 361 Broadway, corner of Franklin street. New York.

## Scientife American Export Edition.

The Scimentific american Export Edition is a larke and splendid pert odical, issued once a month Each number contains about one hundred
large quarto pages, profusely illustrated. embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scucsirpic AMERICAN, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses,
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single conpies 50 cents. har Manu facturers and onthers mart of the
to secure foreign trade may have large. and handsomely displayed an. to secure foreign trade may have large. and handsomely display
nouncements published in this edition at a very moderate cost. The Scimintific An wincan Export Edition has a large guarunteed circu lation in all commercial places throughout the world. Address MUNN \& co., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, OCTOBER 4, 1884


TABLE OF CON'TEN'IS OF

## the scientific american supplement NO. 457,

## For the Week ending October 4, 1884.

Price $\mathbf{1 0}$ cents. For sale by all newsdealers.
I. Chemistry and metajllurgy.-Phosphoric Acid from Slags.-By Dr. C. Screibler ...................
Benzine from Coal Gas.-By Geo. E. DAvis. Determination of Manganese in Iron.-Gravimetric, Pol.......... and ocher methods..
engineering and mechanics.-Rallway and Road Bride Cologne.-WIth engraving of approach, besides several figures of
details. .. ................................... . .........................
The Forth Bridke.-By B. BAEER.-Dimensions.-The plant.Manufacture of the superstructure, etc.- With full page of enAravings..................................... ..... Reuard and Krebs'
Aerial Navlgation.


Steel Railroad Tlies. -1 engraving..
The Wolf Safety Lamp.

## A Water Line Apparatus. - 1 ggure

III, ELECTRICITY, ETC.-Telephoning Extraordinary
Synchronous-Multiplex Telegrupby in A ctual Practi............... 728

 . ARCHITECTURE.- Cottages near Fliston.-With engraving..... V. Na TURAL HIBTORY.-The Tonkin Gibbon. -6 figures.... Electric Fishes.-Electric Apparatus.-Descriptive anatomy and
. surgert, mbdicine, etc.-Fusel Oil in Candies
Mode of Localizing Bullets.
VII. MISCELLLA NEOUS.-British Assoctation for the Advancement
of Science at Montreal.- Address of SIR F. BrAMWELL on the
of Science at Montreal.-Address of Sir F. BrAMWELL on the
qualifcations and work of modern civil engineers.............. 729 Postal Box. -2 fgures.
( BIOGRAPHY.-C. F. BRUSE.-Electrical engineer.-With por-

THE GREAT TELEPHONE SUIT.
After four years. of preliminary work, the great telephone suit between the American Bell and the People's Telephone Co. has reached a bearing. In the interest of the inven tions themselves, iu the magnitude of the amount involved and in the number of witnesses and size of record, the suit bas no parallel. 'The four years' work and the accumulation of the vast amount of testimony is amply justified from the standpoint of the first two considerations.

The history of the litigation may be briefly stated. It is a suit brought by the American Bell Telephone Company upon letters patent issued to Alexander Grabam Bell, dated March 7, 1876, and Jauuary 30, 1877, against the Peodated March 7, 1876, and Jauuary 30, 1877, against the Peo-
ple's Telephone Company, of this city. The possession of ple's Telephone Company, of this city. The possession of
these patents bas given the Bell Company the control of the these patents bas given the Bell Company the control of the
telephone market. They sue the People's Company as intelephone market. They sue the People's Company as in
fringers. In their defense the People's Company allege pri ority of invention on the part of Daniel Drawbaugh, and the issue of infringement is waived, the defendants practically admitting that they do infringe upon the Bell patents. The defendants claim that the invention of these patents was made at a period long prior to their date of issue, by Daniel Drawbaugh, of Pennsylvania. Hence they say that the pa Drawbaugh, of Pennsylvania. Hence they say that the pa-
tent should not have been issued to Bell, as he was not the first inventor. In this way the Bell Company is put on the defensive to protect its own patents, and the nominal defendant is really the aggressor.

Daniel Drawbaugh was a native of Pennsylvania. He was born at Eberly's Mills, in Cumberland Co., where he always resided. He was a mechanical genius of the universal type, turning his hand to a variety of work in demand in such a country region as the one be inhabited. He repaired guns and clocks, made furniture and machinery, and painted the wagons, and the portraits of their owners, for the surround ing region. In this way be made his living, devoting his leisure time to electrical experiments. He was never well off, and bad much of his small stock of money swept away by the war.
In the year 1860, it is claimed be first conceived the idea of conveying human speech by electricity. He describe almost pathetically one of his early troubles. He needed a co-operator, some one to talk back and to listen at the experimental telephones. This assistant be found in bis daughter, a girl only six or seven years old, who has since died. Her voice, the Drawbaugh people say, was the first human intonation beard througb a telephone. In ber, Drawbaugh says, be found an obedient and docile assistant, and a com panion in his work that would not laugb at lis dreams.
Various sketches and primitive apparatus have been pro duced by the deferse, showing what are claimed to have been the early inventions of Drawbaugb; among them are a telephone transmitter made out of a tea-cup, desigued to work in connection witb an equally primitive receiver, in whose construction a tin mustard-can plays a prominent part. As shown these are not "lover's telephones" by any part. As sbown these are not "laver's telephones" by any
means, but are genuine electrical ones. The early date of means, but are genuive electrical ones. The early date of
1866 is assigned to this tea-cup and mustard-can combination. 1866 is assigned to this tea-cup and mustard-can combination year 1867 or 1868 we are presented with a more highly developed production, a transmitter made out of a jelly tumbler. All the apparatus thus far described was designed for use with a battery. In 1870 it is claimed Drawbaugh found out that a battery was not needed, and substituted therefor a permanent magnet. A borsesboe magnet was used in con tact with the cores of two parallel bobbins. Then for two years the inventor is said to bave devoted his energies to re ducing the size of the instrument. In 1873 or 1874 he is said to bave produced a very compact and efficient transmitter, which is still in excellent working order. It is in the shape of a flat cylinder, and is about five inches in diameter. During the time of the trial it bas frequently been used on telepbone lines with good success. A still more compact instrument is sbown, whicb is said to have been made in January, 1875. In tbis a spiral magnet is employed, and the instrument is only three inches in diameter by an inch and a half thick. A pair of these in perfect working order are still in existence. Finally a very perfect and compact carbon transmitter, attributed to the early part of 1876 , is i shown, along with a larger one dated in August of the same 1 year. The latter has recently been tried, and found to trans mit sound uttered twenty-three feet from its opening.
One very impressive feature of these claims is the state ment thal such perfection as above described was reacbed at so early a date by Drawbangh. For the first Bell tele phones, exbibited less than ten years ago, were quite indislinct, and bard to use. The early perfecting of the inven tion, under the disadvantages due to isolation and poverty, if proved, will render Daniel Drawbaugh's name forever if proved, will
most illustrious
The People's Company, alleging these facts in their de fense, aver that Bell's patents areinvalid and void from wan of priority of invention, and aver that Drawbaugb was the prior inventor, and entitled to the broadest possible patent for the telephone and the telephonic art.
The Bell Company of course disputes all the proofs, and is figbting for the life of its own patents. This brief resumé of the Drawbaugh claims gives some clue to the line of re buttal adopted by the complainants. Witnesses have been produced by them who testified that Drawbaugh could no bave bad the telephones in working order and in successful operation at the period mentioned withont their knowledge. The examination was conducted in various places, princi pally in Pennsylvania. Drawbaugh gave his testimony, in
answer to ex-Judge Lysander Hill's interrogatories, in a in the Connecticut River valley up to fifty miles from its Venus rises on the 1st about a quarter after 2 o'clock in llttle attic room in Harrisburg. Mr. Chauncey Smith, of mouth, in the vicinity of Middletown and Hartford. Tbis Boston, conducted his cross-examination, extendiog through clay appears to be the substance of which blue slate is upward of one thousand questions and answers. The direct formed, but is usually obtained in a semi-liquid form, and examination of the alleged prior inventor occupied some three weeks, while five were devoted to this cross-examina tion.

The testimony was mostly taken before one examiner, Mr. Frederick M. Ott, of Pennsylvania. He received some bundred pages of manuscript of testimony taken in Boston, and since then has written out the enormous number of eight thousand pages of testimony. This represents over e reams of law-cap paper, and certainly beats the record.

Now, after these four years of work, the case bas come to be heard on its merits in the Circuit Court of this district, before bis Honor Judge Wallace. An immense amount of matter is presented for bis consideration. The testimony and record as printed fill a number of large octavo volumes. They contain much besides the examiner's record, as they include various matters stipulated into the case. Probably over ten thousand pages are filled by the two sides.
The interest of the suit is, as before stated, largely due to the subject matter. The telephone is so marvelous a conception, that expatiation on the greatness of the original invention is superfluous. If all of Mr. Drawbaugh's claims be proved, a veritable chapter of romance will be added to the already romantic annals of invention.
The magnitude of the moneyed interest is also impressive. One bundred millions of dollars is given as the amount in controversy. This is no fanciful amount; the Bell Company really control and monopolize the telepbone supply. If their patents are broken down, they will lose the monopoly, a will bave to enter the field against fierce competition.
The public is apt to consider itself benefited by the breaking down of any monopoly. They do not realize that the quasi monopoly of patents is instituted for their profit, and insures them most advantageous results. Hence public sentiment will probably be found to lavor the Drawbaugh claims, in the bope of breaking down the Bell monoply, and getting cheaper telephones. But this view, if taken, will be apt to prove a wrong one. The extensive development of the art is due to this protection, now menaced, and it is quite probable, if the Bell patents are declared in
However, this is no place to argue the rights or wrongs of the case; the testimony is now before a United States Court, and a decision may be looked for at no very distant day.
The argument began on Monday, Scpt. 22, 1884. It will last probably two or three werks. The case for the complainants was opened by Mr. J. J. Storrow. At the present writing the defendant's side is being argued by ex-Judge Lysander Hill. The case was opened in the regular court room of the equity term of the Circuit Court, but the crowds that attended made a removal to a larger court room necessary. The noticeable feature of the attendance is the large assemblage of lawyers, as participants or spectators, within the bar. It is seldom, even on motion day's, that the space is so crowded.
A note of the personnel of the trial is in place. The Bell Telephone Company is represented by the following array of counsel: Hon. Roscoe Conkling, Ed. N. Dickerson, Cbauncey Smith, J. J. Storrow, and C. T. Howson. They produced as experts the following gentlemen: Prof. Cbarles R. Cross, of the Massachusetts Institute of Technology, F. L. Pope, Artbur W. Wright, and W. W. Jarnes. On the other side appear as counsel Hon. Geo. F. Edmunds, Hon. Lssander Hill, N. W. Jacobs, T. S. E. Dixon, and Melville Cburch. Tbe expert was Mr. Park Benjamin. Botb Prof. Bell and Mr. Drawbaugh bave been present at times during the argument.
The total number of witnesses was over five bundred, of which nearly three bundred and fifty testified for the defense.

## GRINDING MATERIALS.

The finest of emery cuts and leaves minute scores in the metal, particularly if the metal be soft; it is impossible to produce a good, polisbable surface on silver with flour of emery; burnishing would be necessary to make a surface, and even then it would present a striated appearance under reflected light. Otber grinding substances are required for some fine surfacing work. Moulding sand, that bas been used in the foundry for some time, makes an excellent material for surfacing ligbl brass-brass that contains a large proportion of zinc. Some excellent results are gained by the levigation of the sand-rubbing it under a muller on stune (marble) slab, as paints are ground for the artist. By this means the foundry sand may be reduced to an impalpable powder, which, however, retains mucb of its abrading
quality. quality.
There is a manufacturer of fine tools in an Eastern city who uses coal askes to give the last surface, before polishing, to bis hardened steel tools. He takes the ashes of Lehigh coal, pours them into a tub of water, stirs them up violently, and, when the water is turbid with the fine ashes beld in suspension, he draws it off into a shallow tank and allows it to settle. The sediment is his polishing powder. If a bigber degree of fineness is required, the operation of stirring, and washing, and settling is repeated. The material thus obtained makes an excellent surfacing material. In the manufacture of silverware (solid silver) the surfacing before burnishing is done by a blue clay, tenbnically called "grit." It is found in several localities, particularly
is dried for use. It is not surface clay, being found below the alluvium and sometimes below gravel, its depth or thick ness of bed having been discovered, by boring for artesian wells, to be in some places more than sixty feet. Its iden tity with slate substance appears to be suggested by its be bavior under heat, it assuming a stratified, porous form. It does not scratch pure silver, nor copper, nor mar coin gold, but it will not give a polish. It grinds without leaving a sbining surface; this is produced by burnisbing, by rubbing with whiting, cbalk, or even with the bare band.

## ASPECTS OF THE PLANETS FOR OCTOBER.

 JUPITERis morning star, and by far the most brilliant of the sbining throng that adorns the eastern sky, outmeasuring and outsbining bis fair tival Venus. The paths of the two plauets lie near each other during the whole month, and their proximity affords the opportunity for some of the most cbarming exbibitions that these celestial wanderers are capable of producing.

Jupiter now rises about a quarter of an hour later than Venus. As be is apparently moving westward, and she i moving eastward, it is plain that with each successive rising the space between them will lessen until they meet. This event occurs on the 6th, at 11 o'clock in the morning, when Jupiter is $1^{\circ} 15^{\prime}$ north of Venus. The planets are invisible at their nearest point of approach, but they will be near enough to each other on the morning of the 6th to make a lovely picture on the celestial canvas. They will rise together soon after 2 o'clock, and continue side by side on their shining course till the glowing dawn conceals them in the ethe real depths.
On the morning of the 7th they will present a new phase. Their relative position will be cbanged, Jupiter being wes of Venus. The distance between them will go on increasing as eacb planet pursues its appointed course in a seemingly opposite direction. For Jupiter is approaching the earth in bis progress toward opposition, growing all the while larger and brigbter, and Venus is approaching the sun while receding from the earth, growing all the while smaller and less brilliant as she draws nearer to superior conjunction. Astronomers will bave to lay aside Venus for the present as a subject for telescopic observation. Her white spots will sbine no longer, for the rapidly waning crescent-l
sbe form she now takes on-will effectually bide ber delicate mark ings from terrestrial observers
There is, bowever, a compensation for those who take pleasure in the study of the queen of the sciences. When one planet retires from the field, anotber comes into prominence. Jupiter is now in favorable condition for the tele scopist to wrest mighty secrets from his giant grasp. Has the great red spot vanished entirely beneath the all-eucompassing clouds that swell bis limits to sucb buge dimensions or will another rift open a new palb of exploration to bis glowing neucleus; or what new discoveries will be noted in the process of world-making tbat is there taking place? We are sure to learn all the tidings that the best instruments in the bands of practiced observers can reveal
When we speak of the conjunctions of two beavenly bodies we mean that they are in the same right ascension or longi tude, but not in the same declination or latitude. They will then rise together, but one may be north or soutb of the otber. Thus, in the present conjunction of Jupiter and Venus, the planets are in the same right ascension, and will rise at the same time; but Jupiter is $1^{\circ} 15^{\prime}$ north of Venus. If rigbt ascension and declination are the same, in the case of planets, stars, and the moon, an occultation takes place instead of a conjunction. In the case of the sun and moon, the hiding of one luminary by the other is called an eclipse. These varied aspects are all illustrated on the October sky. For within the limits of the month, specially favorable for star gazing, there will be the conjunction of the two brigbtest planets of the solar family, the occultation of a bright star by the moon, a total eclipse of the moon, and a partial eclipse of the sun.
The right ascension of Jupiter on the 1 st is 9 b .58 m . bis declination is $13^{\circ} 13^{\prime}$ north; and his diameter is $31^{\prime \prime}$.
Jupiter rises on the 1 st about half past 2 o'clock in the morning; on the 31st be rises a few minutes betore 1 o'clock.
is morning star, and thougb ber brilliant face is becoming dim for a time, she still retains her power to plese. Her path lies so near that of Jupiter that the history of the one during the month includes that of 1 be other. We bave already described the meeting of the $t \boldsymbol{w} \boldsymbol{0}$ most brilliant gems of the planetary brotherhood on the $6 \boldsymbol{t} \mathrm{~b}$. The principal nitude star Alpha Leonis, or Regulus, is a near neigbbor of hoth Venus and Jupiter, during the first part of the month, the yellow star contrasting finely in tint with the deep gold of Jupiter and the softer bue of Venus.
Venus is iu conjunction with Regulus on the 7th, at 7 'clock in the evening, being then 55 south of the star. At this time the bright trio will be almost in line, Jupiter being fartbest north, with Regulus nearly between bim and Venus.
The right ascension of Venus on the 1st is 9 h .44 m .

Venus rises on the 1 st about a quarter after $2{ }^{\circ}$ '
he morning; on the 31 st sbe rises about 3 o'clock.
mercury
is morning star during the month. He reaches bis greates western elongation on the 5th, at 3 o'clock in the morning, being then $17^{\circ} 58^{\prime}$ west of the sun. It is the last time during the year when be is favorably situated for being seen with the naked eye as morning star, and only sbarp-sigbted observers will succeed in picking bim up. He must be looked for $8^{\circ}$ north of the sunrise point, and $20^{\circ}$ southeast of Jupiter and Venus. The best time for observation is an bour before sunrise.
On the 9tb, at 3 o'clock in the morning, Mercury is in conjunction with Uranus, the latest comer among the morning stars, seeming to pass $1^{\circ} 10^{\prime}$ north of bis distant neighbor.
The right ascension of Mercury on the 1st is 11 b .33 m . his declination is $3^{\circ} \check{5} 6^{\prime}$ nortb; and bis diameter is $7 \cdot 4^{\prime \prime}$.
Mercury rises on the 1st about half past 40 'clock in the morning; on the 31st be rises not far from balf past 6 o'clock. saturn
is morning star, and as be rises now at balf past 9 o'clock in the evening, will soon bein convenient position for easy ob servation. His bigh nortbern declination and increasing brightness make bim a promivent object, and one easily recognized. He bas wandered away from the neigbborbood of bis last year's companions, Aldebaran and the Pleiades, but bas now established bimself midway between two bright twinklers, Capella on the north and Betelguese on the soutb. He is preparing his forces for a brilliant career in the coming winter.
The right ascension of Saturn on the 1st is 5 l .55 m .; bis declination is $21^{\circ} 51^{\prime}$ north; and bis diameter is $178^{\prime \prime}$.
Saturn rises on the 1st at balf past 9 o'clock in the evening; on the 31 st be rises at balf past 7 o'slock.

## neptidne

is morning star, and is in good position for telescopic observation. He may be found in the coustellation Taurus, about $7^{\circ}$ south of the Pleiades, and remains nearly stationary during the month. A good instrument directed toward that part of the sky will quickly reveal the presence of the far away planet in the form of a small round disk.
The right ascension of Neptune on the 1st is 3 b .24 m . his declination is $16^{\circ} 47^{\prime}$ north; and bis diameter is $2 \cdot 6^{\prime \prime}$
Neptune rises on the 1st soon after balf past 7 o'clock in vening; on the 31st be rises soon after balf past 5 o'clock. uranus
is morning star. He encounters Mercury, who is oscillating eastward toward the sun, and they are in conjunction on the 9 th, the only contribution made by Uranus to the incidents of the month.

The rightascension of Uranus is 11 b .58 m .; bis declination is $0^{\circ} 56^{\prime}$ soutl; and bis diameter is $3 \cdot 4^{\prime \prime}$.
Uranus rises on the 1st about 5 o'clock in the morning; on the 31st be rises about half past 3 o'clock.

## MARS

is evening star, and enjoys the distinction of being the sole planet on the sun's eastern side, bis six companion planets being congregated on the sun's western side as morning stars. He may be found in the constellation Libra early in the evening, where be sbines as a faint reddisb star.
The right ascension of Mars on the 1 st is 14 b .40 m. ; bi leclination is $16^{\circ}$ south; and bis diameter is $4 \cdot 6^{\prime \prime}$
Mars sets on the 1st at 7 o'clock in the evening; on the 31s he sets at balf past 5 o'clock.

## THE MOON.

The October moon fulls on the 4th at 5 o'clock in the eve ning, standard time. The moon is in conjunction with Neptnue on the 7th, and with Saturn on the 9th. She makes ber nearest approach to Jupiter on the 14th and to Venus on the 15 tb , when the brilliant plancts and the waning crescent will form on successive mornings pictures which one never tires of bebolding. On the 16 tb the moon is near Uranus, on the 17 th near Mercury, and our fair satellite completes the circuit by paying ber respects to Mars three days after her cbange.
occultation of beta capricorni.
On the 26th, the day before ber first quarter, the moon occults the third magnitude star Beta Capricorni. If the weather prove favorable, the interesting phenomenon will be easily visible. The immersion of the star will take place at 19 minutes after 9 o'clock in the evening, Wasbingtun mean time. The occultation will last 58 minutes, and the immersion will take place at 17 minutes after 10 o'clock. The observer will see the star suddenly disappear bebind the moon's dark edge. It will remain bidden from view nearly an bour, when it will suddenly reappear on the moon's bright edge, and star and moon will rapidly recede. The moon is frequently occulting small stars, but she does not often capture so large a prize as Beta Capricorni.

## total eclipse of the moon

There will be an eclipse of the monn on the 4th, visible as total eclipse in Europe, Asia, Africa, and the Atlantic Ocean. Dwellers in this vicinity will enjoy the latter part of the show, for the moon will rise eclipsed, and the eclipse will end about 6 o'clock.

## eCLIPSE OF THE BUN

There will be a partial eclipse of the sun on the 18 th , in visible in the United States, but visible in Western Europe and Asia. Our loss in being on the wrong side of the earth when the event takes place in not very great, ns only 0639 of the sun's diameter is eclipsed.

