THE NORTHEAST COAST OF NEW GUINEA.

Tbe expected occupation of the great island of New Guinea, the near neighbor of Λ ustralia, by the British, lends interest to the following, which we find in the Toon and Country Journal:
Travelers, such as Wallace, D'Alhertis, and Moresby, the missionaries stationed for many years in the southeast part of New Guinea, and recent explorers from Europe as well as from Australia, bave given descriptions of the more ac cessible portions of that island, but for some reason or other the opportunities wbich offered themselves for making the opportunities wowich offered themselves for mand on the spot of the scenery and of the natives seem
drawing to bave been but seldom taken advantage of, judging by the few sketches whicb have been published. Yet a sketch, even if it cannot claim the perfection of detail wbich distinguishes a photograph, will convey at a glance a better idea of the appearance of a country, its inhabitants, their dwellings, notions of dress, boats, and implements of war than the most ample description from tbe pen. Talok Lindju, or Humboldt Bay, is situated nearly midway between the eastern and western extremities of the island, distant from each other about 1,600 English miles. The broadest part of New Guinea, more than 400 miles wide, abuts on Torres Straits in the south, and terminates on the shores of Humboldt Bay in the north. Hence, from its geographical position, its facilities of approach, good shelter, and more than
e could make out Mount Bougainville, both mountains overed with dense vegetation up to their summits. By placing these gigantic pillars on each side of Humboldt Bay, nature seems to bave indicated tbe latter as the great gateway of New Guinea. Night had come on by the time we passed the entrance between the heads, here about a mile and a balf apart, and anchored in 20 fathoms. New Guinea was discovered as early as the year 1537 by the Sparish n'avi gator Grijalva. He describes the natives as men " with woolly hair; they eat human flesh, are great rascals, and given to such wickedness that the devils walk with them by vay of companions."
In the year 1545 Tuigo Ostez de Hatez sailed along the greater portion of the north coast, landing at several places, and discovering a lot of new islands. It was during this expedition that the Spaniards gave to this great island the ame of New Guinea, from the likeness of the natives to those of Guinea in Africa. In 1616 the Dutchman Schouten discovered Vulcan Island and the group of islands which still bear his name, situated on thenortheastcoast. He also isited the mainland, and according to his own account, 'the natives had short and woolly hair; they wore rings in heir nostrils and ears, feathers on the head, boars' tusks in their noses, and a large ornament on the chest. They chewed betel, and were subject to several diseases and deformities they had plenty of cocoanuis, and asked one yard of clotb

A Remarkable Surgical Operation.
Thomas Colt has recently been discharged from Bellevue Hospital, this city, with a restored nose. He was deprived of his nose a number of years ago by a cancerous affection echnically called lupus, which destroyed the nasal bone as well as the fleshy covering, and even the lower eyelids. His reatment was undertaken over ten years ago by Dr. Thomas Sabine, the Professor of Anatomy of the College of Pbysicians and Surgeons, and has been successfully pursued up to the present time. Dr. Sabine first addressed bimself to the task of arresting the disease, and when that was accom plished be restored the lost eyelids by grafting thereon healthy skin taken from the cheeks and forebead of the patient. The more difficult operation of restoring the nose followed. This was done by making use of the third finger of the left band, from which the nail was first removed by itric acid. Then the end of the finger was fixed against the forebead between the eyes, the epidermis at the points of contact having been previously removed to bring about dhesion. At the same time the finger up to the second joint was split open on the under side, the flesb stripped off, and the flaps thereby produced were connected with he flesh of the cheek on either side. The hand was fixed in the proper position by plaster of Paris, and held so until the adhesion was complete. Then tive finger was amputated at the second joint, and the free edges of the part adher

THE NORTHEAST COAST OF NEW GUINEA, NEAR HUMBOLDT BAY.
sufficient space and depth for an anchnrage, this bay will yet no doubt play an important part in the future colonization of New Guinea, which covers an area of over 300,000 square miles, equal to the total combined areas of the British Islands and France.
We may, perbaps, give a more vivid impression of the large extent of New Guinea by stating that a mail steamer, at its average rate of progress, will take from five to six days to steam from end to end of the island, that is to say, about tbe distance from Albany to Cape Otway, while its greatest breadth between Torres Straits and Humboldt Bay is nearly equal to the distance between Melbourne and Sydney, measured as the crow flies.
We present to our readers one of the sketches obtained in Humboldt Bay by a member of the Cballenger expedition on the occasion of a visit, a few years back, to the north eastern coast of New Guinea, from whom the following account was obtained:
It was sbortly after noon on a cloudy day of February tbat we first sighted the bold, rugged headlands which form the entrance to Humboldt Bay-Point Boupland to the east and Point Caille to the west. Owing to the great elevation of this part of the coast, the land appeared to be only five miles off, wbile in fact our distance was still twenty-five miles. On nearer approach, and as the weather cleared up, the lofty range and serrated peaks of Mount Cyclops, over 6,000 feet high, emerged from the clouds stretching westward as far as Point Dimonka, while eastward or to our left
for four of these fruits; they owned pigs, but would not part with any." This description, although more than 250 years old, tallies word for word with the present condition of the natives.
In 1643 Tasman appeared on these coasts; Dampier visited the island in 1700, and his name remains attached to several localities. In 1705 the Dutch ship Geelvink explored the large bay in the northwest still called after it. In the year 1768 Bougainville điscovered the land near Humboldt Bay, and in 1770 the celebrated navigator Cook surveyed part of the southern coast. After this date New Guinea was more frequently visited. In 1827 the subject of our illustration was discovered by Dumont d'Urville in command of the Astrolabe. He named Mount Bougainville, Humboldt Bay, and its two headlands, Point Caille and Point Boupland; but the loss of his anchors prevented him from completing his survey. Since his time the Dutch surveying ship tbe Etna in 1858, and H.M.S. Cballenger in February, 1875, were the only vessels of note that anchored in Humboldt Bay. This will account for the little knowledge which the natives we met seemed to have of the ways and doings of white men, and the almost total absence of any traces, sucb as iron tools, of any previous interviews with tbe civilized world. An exploring party from Australia has for some time past been at work in New Guinea.
M. Andries (Ciel et Terre) contends that bail is formed during ascending whirlwinds.
ing to the face were arranged so as to form the wings of the nostrils. During all this time the nasal orifice was the nostrils. During all this time the nasal orifice was
kent open by a hard rubber tube. The treatment necessarily occupied much time, and involved a number of painful operations, but was completely successful, and it is al most impossible now to distinguish the nose thus fashioned by surgical skill from one cast in Nature's own mould.

Tired Eyes.

People speak about their eyes being fatigued, meaning that the retina, or seeing portion of the brain, is fatigued but such is not the case, as the retina hardly ever gets tired. The fatigue is in the inner and outer muscles altached to the eyeball and the muscle of accommodation, which sur rounds the lens of the eye. When a near object is to be looked at, this muscle relaxes and allows the lens to thicken, increasing its refractive power. The inner and outer muscle to which I referred are used in covering the eye on the object to be looked at, the inner one being especially used when a near object is to be looked at. It is in the three muscles mentioned that the fatigue is felt, and relief is secured temporarily by closing the eyes or gazing at far distant objects. The usual indication of strain is a redness of the rim of the eyelid, betokening a congested state of the inner surface, accompanied with some pain. Rest is not the proper remedy for a fatigued eye, but the use of glasses of sufficient power to render unnecessary so much effort to accommodate the eye to vision.

Engines of the Elevated Railroads.
Although there are 220 boilers used by the elevated railroad companies of New York, which, through a peculiarity of law, are never officially inspected, there has never been a boiler explosion during the years the elevated railroad sys. tem bas heen in operation. During the same period tbere lave been many disastrous explosions in and about the city of boilers which bad been inspected and pronounced safe.
The reason why there bave been no boiler explosions and few accidents to the machinery is that a rigorous system of inspection and repairs is kept up. The work is chiefiy done in the big repair shop of the company, which covers two city blocks. It is one of the largest machine shops in the city, and employs 350 men. The master mechanic is T. W. Peeples, and the shop foreman J. D. Campbell. The shop is organized on the principle of an intelligent division of labor, thus securing for each portion of the work a body of well trained mechanics and a constant supply of duplicate parts of all machinery used. There are, for instance, three men constantly making and repairing connecting rods. If a connecting rod of an engine breaks, it. is not necessary to wait to mend the broken rod or to make a new one. There is always one ready to be fitted in the place of the broken rod.
These shops are largēly used for car and engine sheds. There is room for about 60 engines at a time. Every cnit in charge, but there are two skilled mechanics employed to carefully inspect the engines upon the completion of every day's work. These inspectors are beld to strict account, and it is rarely that any defect escapes them. They are constantly looking over the engines from one end to the other. Nothing is permitted to go unrepaired, the theory being that it is cheaper to pay for repairs than for accidents.
Anything in the nature of a defect in an engine is immediately noted in a book, and the foreman's altention is at once directed to it. He determines what shall be done. In knotty cases there is a consultation of the authorities, like that of a lot of doctors over a patient. The rule is to take no risks. Therc are always minor repairs to be made
to engines in use. The strain of frequent starting and stopping keeps loosening screws and bolts that must be tight ened. In this way, often by the work of a few minutes, serious detentions and accidents on the road are prevented.
Once a month each locomotive engine in use goes to the shop for a thorough overbauling, particularly of the boilers. At this time special inspection is made of the ashpan, the spark arresters, and the arrangements to prevent wate or coal from dropping into the street. The whetls are ex amined carefully, and if they are worn rough by the brakes are taken off, and new surfaces are turned on them in big lathes. 'There are two men constantly attending these big lathes, and new surfaces on the wheels are made over and over again as long as the metal will warrant. All the car wheels are lined with paper and rimmed with steel. Great care is taken to keep the brakes in thorough repair, as upon trains.

After an engine has been in use two years it is taken into the shop and stripped for thorough overbauling, each part being attended to by experts in that particular line, who are held responsible for the efficiency of their work The system is so perfect that any unskillful work is at once traced to the persons responsible for it. There aremen who do nothing but put the different parts of the engine together after they have been made by others, and they are bound tosee that the work given to them to use is properly done. They are not permitted to shift the responsibility upon their predecessors, but are held accountable as if they bad done all the work themselves.
There are several patterns of engines in use on the road, and certain men in the shop are al ways kept at work on certain patterns. In this way each man becomes very expert in his special branch, and the various parts of the engines are constructed with great nicety. Each boiler, before it
leaves the shop, is suljected to a hydrostatic pressure of 220 pounds to the square inch. All the boilers are made with extra plugs or manholes, so that they can be inspected much more easily and thoroughly than the boilers ordinarily in use on surface railroads. The iron used is the very best in the extra precaution.
A very considerable expense of the big shop is the cost of water, of which immense quantities are used to fill the boilers, wash the cars, etc. The company bas been engaged for months in sinking a big artesian well on the premi
which, it is hoped, will supply all the water needed.

Out of $2: 30$ engines belonging to the company there are generally about 15 in the shops in various stages of repair. One engine was built entirely in the shop, chiefly as an experiment. She is considered the best on the line, althougb made between times when repairs were not pressing.
Besides the constant inspection and repairs, the steam gauges are regularly tested and corrected once a month The slightest variation is at once detected. It is only by such rigid and untiring watching of each screw and bolt and rivet that accidents are prevented. The tendency ou all railroads is to "put a life" upon an engine-tiat is, to
lay it up when its record shows that it has performed a fair average mileage. A record is kept of the mileage of each engine.

At the water stations there are hugh tanks, which are
kept constantly filled by steam pumps. All this machinery is kept in order by the hands of the repair shop. All the tinware used on the road is made in the repair shop. The
repairing of the cars requires a large force, and the supplies include a great variety of things. The breakage of glass chimneys to the lamps is a considerable item. The supply sbop contains everything that can be imagined of the thousand and one odds and ends required to keep the cars and stations in repair.
In the principal offices of the shops there are curious re cords kept of the cars and engines belonging to the company. Each car or engine is represented by a button, which s dropped into one or another of a series of sections of holes in a neat board hanging on the wall. The sections are re spectively labeled "good," "bad," "fair," "r reserve," "repairing," so that at one glauce at the board the fore
man can tell the precise condition of the rolling stock and know where to concentrate his forces.
Not the least onerous part of the work of the master mechanic is the disposal of the swarm of iuventors who are constantly applying to be heard. About one in a thousand has a good thing, and he finds a market at once. The rail road in the air has need for many appurtenances that are
not used on other roads, and some of them are of entirely new construction. The gate on the car platforms is an instance. It grew out of the necessity for keeping passengers from jumping on the train when it is in motion. The twists in the road made it necessary to build a gate with free motion in every direction, extending for outer curves and contracting for inner curves. A train of four cars bas sisteen iron gates. When the gates at the stations are taken into account, it will be seen that the capital invested in gates is considerable.
Almost every one has observed the decrease in the amount of noise made by the elevated trains. Part of this is due to the wearing of the tracks and moving parts of the engines, so that they move more noiselessly; but much time and money have been spent in the repair shop with noise subduing devices. Cbief among these are the plans for suppress ing the disagreeable "swish, swish," "chuck, chuck," with which the locomotive starts. The result is that many of the locomotives are fitted with a contrivance that arrest the noise, and distributes it into a sort of breathing that can not be heard 100 feet away.-Nero York Sun.

How to Determine the Distance of an Object on the Sea.

It is amusing to note how ignorant many ordinary seame and nearly all sea travelers are of such matters as the distance of the sea harizon, the way in which a ship's place at sea is determined, and other such matters-which all seamen might be expected to understand, and mostpersons of decent education might be expected to have learned something
about at school. Ask a sailor how far off a ship may be, which is bull down, and he will give you an opinion based entirely on his knowledge of the ship's probable size, and on the distinctness with which he sees her. This opinion is often pretty near the truth; but it may be preposterously wrong if his idea of the ship's real size is very incorrect, and is sometimes quite wrong even when he knows her size somewhat accurately.
Any notion that the distance may be very precisely inferred from the relative position of the hull and the horizon line seems not to enter the average sailor's head. During my last journey across the Atlantic we had several curious illustrations of this. For instance, on one occasion a steamer
was passing at such a distance as to be nearly hull down. was passing at such a distance as to be nearly hull down.
From her character it was known that the portion of her hull concealed was about 12 feet in height, while it was equally well known that the eye of an observer standing on the saloon passenger's deck on the City of Rome was about 30 feet above the water level. A sailor, asked (by way of experiment) how far off the steamer was, answered, "Six or seven miles." "But she is nearly bull down," some one
said to him. "I didn't say she warn't, as I knows on," was the quaint but stupid reply. Now, it might be supposed to be a generally known fact, that even as seen from the deck of one of the ordinary Atlantic steamers, the horizon is fully six miles away, the height of the eye being about 18 or 20 feet, and that for the concealed portion of the other ship's hull a distance of four or five miles more must be allowed so that the man's mistake was a gross one. And several other cases of a similar kind occurred during my seven days' journey from Queenstown to New York.

The rules for determining the distances of objects at sea when the height of the observer's eye and the height of the concealed part of the remote object above the sea level arc both known, are exceedingly simple, and should be well known to all. Geometrically, the dip of the sea surface is eight inches for a mile, four times this for two miles, nine times this for three miles, and so forth; the amount bcing obtained by squaring the number of miles and taking so many times eight inches. But, in reality, we are concerned only with the optical depression, which is somewhat less, because the line of sight to the horizon is slightly curved
(the concavity of the curve being turned downward). Instead of eight inches for a mile, the optical depression is about six inches at sea, where the real horizon can be observed. But, substituting six inches for eight, the rule is as above given.
Six inches being half a foot, we obtain the number of six noch lengths in the height of an observer's eye by doubling
number of six inch lengths gives the number of miles in the distance of the sea horizon. Thus, suppose the eye of the observer 18 feet above the sea level; then we double 18, getting 36 , the square root of which is 6 ; hence the borizon lies at a distance of six miles as seen from an elevation of 18 feet. For a height of 30 feet, which is about that of the eye of an observer on the best deck of the City of Rome, we double 30. getting 60, the square root of which is 77 7: hence, as seen from that deck the horizon lies at a distance of $7{ }_{7}{ }^{7} 0$ miles. If the depth of the part of a distant ship's hull below the horizon is known, the distance of that slip beyond the horizon is obtained in the same way. Thus, suppose the depth of the part concealed to be 12 fcet, then we take the square root of twice 12 , or 24 , giving 4.9 , showing that that ship's distance beyond the horizon is 4_{10}^{9} miles. Hence, if a ship is seen so far bull down, from the hull of the Cily of Rome, we infer that its distance is 4_{10}^{9} miles beyond the distance of the horizon, which we have seen to be $7 \frac{7}{10}$ miles -giving for that ship's distance $12 \frac{3}{5}$ miles. And with like ease may all such cases be dealt with. $-R$. A. Proctor, in Newocastle Weekly Chronicle.

Metric vs. Anglo-Saxon Weights and Measures.
The International Institute for Preserving Auglo-Saxen Weights and Measures has addressed a memorial to Presi dent Arthur, asking him to appoint representatives favoring this side of the question to the Intervational Convention to meet in Washington the 1st of October. The ostensible object of this meeting is to decide upon a standard or prime meridian, from which the world is to estimate longitude, time, etc., but it will assemble rather in the character of an adjourned meeting of the International Geographical Convention held at Rome last year. The meridian of Greenwich was then recommended for general adoption, but it was also resolved that, in return for this adoption of an An -glo-Saxon meridian by the Latin races, the Anglo-Saxon world, and particularly the United States, should adopt the French metric system. This, it is claimed by the Institute, is entirely uncalled for by the people, who have shown no discontent with their ancient system of weightsand measures, but is mainly desired by a few thousand scientitic gentlemen in this country, not engaged in practical affairs, al though standing high in the several professions. The commerce of the world, however, its industry and its wealth, is predominantly Anglo-Saxon, and the business thereof is transacted proportionately in pints, pounds, and inches. If it took France forty years under an arbitrary government to cause the general use of the metric system, and overcome the confusion incident thereto, how much longer would it take, and how much greater the task, to transform all modern reckoning into this standard? The Sellers establishment adopted the metric system in their extensive machine works, and then abandoned it for the old system, after it had cost them an extensive plant. The American Society of Mechanical Engineers bas also pronounced against this system by an overwhelming majority.
It is pointed out by the Institute that the metric system is based on erroneous calculations, the standards being essentially as arbitrary as those of the old system; and it is urged that a decimal arrangement can be easily effected with our Anglo-Saxon system, if that is desirable, without causing any serious disarrangement of present metbods of reckoning. It is also claimed that the representatives already appointed by the President to the Convention are favorers of the metric system, President Barnard, a pronounced advocate thereof, being chairman of the delegation. From this fact, as also because it is supposed twenty of the thirty nations sending delegates will be favorers of the metric system, President Arthur is asked to appoint additional delegates who are pronounced advocates of the preservation of our aucient system f Anglo-Saxon weights and measures.

Production of Hydrogen Gas.

The Revue Industrielle describes an apparatus designed by M. Egasse for the generation, in large quantities, of hydro gen for industrial uses. For this purpose zinc scraps are placed in a copper cylinder closed by a hemispherical cover Tubes connect the cylinders with the reservoirs of acid, and also with the gas washing appliance. Every cylinder is ca pable of producing 10 cubic meters of gas hourly, and what is called a "battery" of ten cylinders is mounted in a wagon for easy transport by two horses. The gas is produced in the classic manner, by the reaction of zinc and hydrochloric cid; and the acid is blown into the cylinders by compressed ir , a special pedal blower being used for the purpose. The production of bydrogen by this method is very costly, for very cubic meter of gas requires 9 kilos. of acid and 3 kilos. of zinc, costing together 1.08 frs . Thus the price of hydrogen is from four to six times nigher than that of coal gas; while even for ballooning purposes, for which it is specially suitable, its ascension value is scarcely double. The residual product of the manufacture of bydrogen by zinc and acid is crude chloride of zinc, which after concen tration is marketable as a disinfectant or, in a purified form, as a mordant indyeing. For this purpose, however, it re quires so much preparation as to raise it into the rank of a primary manufacture, and the value of the finished product has very little bearing upon the first cost of its recovery as a residual of hydrogen gas production. It is not claimed by M. Egasse that the principle of manufacture here described ient.

