River for a few weeks, sold it for a song, and returned to portrait painting.
In 1825, at Billerica, Mass., he invented a successful cord making machine. He also wrote a book entitled "Curious Arts," which had a good sale; but his lack of husiness babits and inability to continue long at one thing or in one place caused the loss of these enterprises and his return to portrait and landscape paiuting. From this time on to 1840 he figures very often as an inventor, producing among other things a wonderful clock, a steam carriage, a portable horse power, a corn sheller, churn, washing machine, signal tele graph, fire alarm, and numbers of other inventions. For shares in some of these be received small sums. The making and selling of his inventions alternated with his paint ing, in the manner we bave before described.
In 1840, in New York, he was offered an interest in newspaper called the New York Mechanic, and at once decided to become an editor. He made it ostensibly a scientific newsplaper, the first of its kind in the country. In the following year be clanged the title to the American Mechanic. The paper prospered; the office was removed to Boston; but now his attention was as usual suddenly diverted to something else, and in a few months' time the publication was stopped. He next learned the then new art of electroplating, and did profitable work. About this time, 1844, the religious mania of the Millerite people struck him, and be was among the most ardent believers who bourly expected the second advent of the Messiah. He now invented a revolving rifle, which be subsequently sold for one bundred dollars to Col. Colt; he also invented a box machine, but somehow lost it.

Iu 1845 be was again in New York, doing electroplating. Here be wrote a prospectus for a new paper, which be entitled the Scientific American, and began its issue weekly, with a cash capital of one hundred dollars, and contemplated indebtedness for a few hundreds more. The first number of the Scientific American bears date August 28, 1845.
The typography of the new paper was poor, but was the best the author could afford. The prospectus stated in very clear terms the intended scope and nature of the work; and the Scientific American of to-day is conducted substantially upon the plan originally marked out by its founder. He did not, however, continue long in charge of the publication. After running it for six months, the desire and necessity for a change came over him, and he decided to stop the issue and return to New England. At this juncture, just before the last number or two were to be published, he gladly arranged with the present proprietors, then very young men, to continue the publication, and on receipt of a very satisfactory compensation be transferred to them all his interests, consisting of the title, a subscription list of about two buudred names, some old types, and cuts. The first balf century of Mr. Porter's life practically closed with the foundation of the Scientific American.
During the remaining balf century, nearly, of his life, he was chiefly occupied with his inventions, and moved from place to place, but did not so oflen recur to his old profession of portrait painting. He was now very prolific with inventions. The moment a new thing occurred to bim, be made a drawing and description and sold the whole or a share for a small sum; and then worked out some other idea, to be sold in the same manner. The mere catalogue of bis inventions would be tedious. Among them were a flying ship, an air blower, punching press, trip bammer, pocket lamp, pocket chair, fog whistle, wire cutter, engine lathe, clothes drier, grain weigher, camera obscura, spring pistol, engine cut off, balanced valve, revolvidal boat, rotary plow, reaction wind wheel, portable house, paint mill, water lifter, odometer, thermo engive, rotary engine, and scores of other inventions. During this period of his life he also did some business as a writer of patent specifications for inventors. This brief sketch will perbaps give some idea of the wouderful fertility of bis genius. He possessed in a high degree the gift of contentment. He cared little for place or outward surroundings. So long as be was at liberty to do whatever bappened to come into his head, he was perfectly happy. Few men comparatively have lived so long as Rufus Porter; fewer still have studied out and produced so vast a variety of useful inventions. But the most celebrated of all his works was that done on the memorable day in 1845, when with a flash of bis peculiar genius he wrote out the prospectus and commenced the establishment of the Scientific American. This title, we think, was one of the most felicitous ever given to a periodical; and so long as it endures the memory of Rufus Porter, its originator, will be beld in grateful remembrance.

MECHANICS IN EDUCATION.

Seeing and feeling are two senses which are more important in aiding to a knowledge of our surroundings than any others, and yet their education is generally neglected until the possessor begins to learn something of mechanics. By mechanics in this connection is intended any attempt to contrive, put together, manufacture, or change by manipulation, so that a woman who contrives and fashions a dress out of the unformed and plain material may be a mechanic. The use of mechanical tonls cannot be begun ton early in life, whether the pupil is to be a practical mechanic or to follow some other calling-there are few vocations that do not demand for success some practical knowledge of mechanics. "The whittling Yankees" possibly owe much of their undisputed position as inventors and good mecbanics
to the habit of using a pocket knife. A very prominent inveutor and superior mechanic recently remarked that the bent of his taste as a mechanic was undoubtedly given by his schoolmaster, who was a carpenter and joiner, and who worked at his trade in summer and taught the district schoo in winter. If a boydid not possess a foot rule, be made one for him from a shlngle, or constructed an inch scale. The oot rule and a pocket kuife be considered necessary to a schoolboy's outfit, and he encouraged his pupils to estimat dimensions by the eye and then verify them by measure ment. Wind wheels and water mills were parts of the pedagogue's training, and the click-ciack of one or the other could be heard all about the school house and on the borders of the brook in an adjoining field. Vanes cut from pine boards, toy ships, bird bouses, bows and arrows, pudding sticks, and most of the toys used by boys forty years ago were made by the schoolmaster's boys under bis direction. T'o-day, besides the prolific inventor named, there are one superintendent of a railroad company, one bridge builder, one superintendent of a large manufactory, and two architects to be counted from memory who probably received their bent for mechanics from the carpenter schoolmaster.
All these lead lives of usefulness-they are producers, adding to the wealth and comfort of the country and the people; and nothing in their observation education make them less valuable as members of society. One of our most distinguished pulpit orators was a blacksmith, and many men who are noted for their eminence in literature, divinity, law, medicine, and as educators bave bad a mechanical train ing.

THE PROBELMATIC PLANET NEITH.

It is not impossible that a new planet bas been discovered a very small member of the solar system, revolving outsid of the orbit of Venus, and near ber domain. M. Houzeau, the Director of the new observatory at Brussels, an astrono mer and writer of renown, contributes to the columns of Ciel et Terre an article on the subject that will awaken widespread interest, not only from the ingenious theory

A drawing of Venus, with the hright point on her disk as seen by M Stuyvaert on the 8d of February, 1884.
presents, but also will be entitled to careful consideration as coming from the pen of a distinguished man of science.
There was formerly a general belief that our fair neighbo was, like the earth, accompanied by a satellite, and one of the first objects looked for, after the invention of the telescope, was the moon of Venus
Seven times at least since that important event, a small ohject bas been seen near Venus, presenting a similar phase, and bearing evidence of being a satellite of the bright planet and beariug evidence of being a satellite of the bright planet.
The first observation was made in 1740 , and the last in 1764. During the 120 years that have passed since, though diligent search bas been unremitting, no vestige of the mythical monn has been found.
It is easy to say that the observers were deceived, and that the visionary moon was a "ghost" due to the imperfection of the instruments then in use. But the observations were made, two of them, certainly, by the renowned Cassini, and the others hy practiced astronomers who would be as little likely to be deceived in the reality of what they saw as Galileo was when be detected the moons of Jupiter or the phases of Venus.
More than a century bas now elapsed without a passing glimpse of the supposed satellite, and the probability of its existence grows fainter as the years roll on, though the bope of eventually picking up the celestial will o' the wisp has never been entirely abandoned by zealous astronomers. There the case rests. Astronomers whose opinions are most worthy of weight discredit the earlier observations, while other members of the fraternity still trust that at some time not far distant a tiny point of light may be seen following in the wake of the most brilliant star that adorns the
M. Houzeau has revived the theme by the presentation of a curious and somewhat startling theory upon the following basis: A planet revolves around the sun, outside of Venus and near to ber. It is very small in dimensions, and is possibly an escaped satellite. Neith is the name given to the little planet, in bonor of the mysterious goddess Sais, whose veil no mortal bas raised.
These assumptions are the result of a critical examination
ellite. The shortest interval between any two appearances is 2.90 years. Taking this as the duration of the period beween the nearest approach of the two bodies, the Belgian astronomer finds the longer intervals to be almost exac multiples of this number, and the consequent duration of the periods to correspond very nearly, the average being 2.96 years.

Therefore two bodies, the one relatively large, the othe mall, are found side by side at fixed intervals. As they are not seen between these intervals, the smaller cannot be a satellite, but the orbits are near each other in their whole extent, for conjunctions have been ob served in different parts of the orbit of Venus, beyond, and on this side, on the east, and on the west of the sun. Hence Venus and Neith move in concentric orbits, near each other, and are in apparent conjunction in 2.96 years, or about 1,080 days.
As Venus revolves around the sun in 225 days, she makes 4 revolutions $+290^{\circ}$ in 1,080 days. If we assume that in this time Neith makes 3 revolutions $+290^{\circ}$, Neith will then revolve around the sun 283 days; her mean distance from the sun, that of the earth being 1 , will be 0.84 , and her reatest elongation will be 57°
This result leads to a still more remarkable coincidence, or 5 revolutions of Venus- 1,125 days-nearly equal 4 revo lutions of Neith-1,132 days. The time approximates, a least, to the intervalfrom conjunction to conjunction, or 1,080 days, the figures barmonizing within the limits of the errors of the numbers used, and the results of the perturbations that the smaller planet must receive from the larger.
There is one more point in this curious combination. M Houzeau found that 40 or 41 periods of 2.96 years bad elapsed since 1764, the last recorded appearance of the two bodies, and that a conjunction was due about February, 1884. After these calculations were made an event occurred of which he knew nothing at the time, though it must bave been as welcome as it was unexpected.
On the 3d of February, at 6 o'clock in the evening, M. Stuyvaert, of the Brussels Observatory, observed on the disk of Venus, near the illumined border, an extremely brillian point, that recalled the aspect of the satellites of Jupiter as they transit the planet. The interest of this observation is increused by auother made a few days later, on the 12 th of the same month, at 8 o'clock in the evening. M. Niesten then saw, a little south of Venus, a small star that seemed to be composed of a nucleus and a very faint nebulosity. He looked in vain for the star on the succeeding evenings. Has Neith, the problematic planet, deigned to reappear after an absence of more than a century?
M. Houzeau gives in these calculations the results of his observations. He calls them "conjectural reflections," interwoven with singular coincidences that appear when taken together to pass beyond the bounds of mere chance. He makes no effort to explain the reason for the long-continued disappearance of the supposed satellite. Neither does he seem to discern that his figures make Neith almost as near to the earth as she is to Veuus, and greatly complicate the perturbations to which the little wanderer is subjected. He simply throws out his theory as a study, and earnestly solicits observers to multiply researches, and explore day by day the disk of Venus and her surroundings.
If the moon were removed farther from the earth, and placed at a given moment in opposition, she would no longer revolve around our globe, but would, like the earth, revolve around the sun. This condition of affairs may bave prevailed on Venus, and Neith may be an escaped satellite removed beyond ber power of attraction, and benceforth, like ber primary, revolving around the sun.
The illustration is from Ceil et Terr
Patents Industrially Classified.
A table prepared by Commissioner Butterworth shows that of the nearly 300,000 patents issued by the Government, the various lines of machinery and industries bave received the following number:

Applications of elecuricity5,872	
Arteeian wells.............. 500	Metal working machines
Beds................. 2,150	Methods of tanning hides.... 1,219
Boots and shoes....... 5,060	Mills and thrashing.
Bread and cracker machinery. 440	Nut. and bolt
1,580	Plows.
Corset patterns.............. 969	Pumps.
Dairy utensils............... 2,429	Railways 8,
Fenceß......................... 2,888	Railway cars 3,50
Fire engines....... 567	Seeders and planters.......... 3,5
Fire escapes......... 884	Steam engines........ 5,111
Harvestere.................. 6,606	Stoves a nd furnac
Lamps and gas flxtures...... 5.254	Vegetable cntters
Laundry utensils............. 4,993	Water distributers.......... . 3,719
Machines for knitting......... 75	Wearing apparel

These aggregate 104,217 , or a little over one-third of the entire number of patents issued.

Hydraulic Pumping.

At the Dablbusch colliery, Gelsenkirchen, Germany, a Korting ejector is used for lifting 125 liters of water a minute from a new level started 30 meters below the deepest force pump. The peculiarity of the arrangement is, that water under pressure is used instead of steam. The apparatus is mounted iu the shaft, and is connected with the dis. charge pipe of the lowest force pump by a 39 millimeter pipe. The ejector bas a 124 millimeter discharge pipe leading to the pump tank 30 meters above it. When using from 60 to 90 liters of water under a pressure of 14 atmospheres, 60 to 90 liters of water under a pressure
the apparatus will lift 370 liters of water.

