carry the disturbing magnet to two positions that are sym metrical with respect to the magnetic meridian and to the center of rotation of the compass needle, and in the same borizontal plane. In order to fulfill these conditions in a simple manner, Mr. Ragona uses the following precautions He assures himself, by means of a smali telescope and leveling rod, that the two copper rods divided into centimeters (one of them to the right and the other to the left of the compass) are well in a line with eacbother. The bar to the right that carries the scale is provided with an adjusting screw, which permits of establishing an exact coincidence. He assures himself of the borizontality of the rods by mean of a level-the slight motions necessary for this purpose being executed by an adjusting screw; be makes sure of the perfect equidistance of the marks corresponding to the right and left, by means of a carriage which serves as a gaug and which be carries successively to each side; and, finally, be assures himself of the perfect perpendicularity of the line of the two copper rods relatively to the magnetic meridian, by means of a small apparatus which consists of two circular plates, each containing a very small aperture. The axis of the compass needle should be in the direction of these apertures. In order to obtain such a coincidence, there is a special adjusting screw that permits of giving each instru ment a proper rotary motion around its axis.
In the ceutral part of the apparatus, and bebind the com-pass-support, there is a square column designed for bolding the tent when the apparatus is set up in the field. The sam column is designed to support the posterior part of the apparatus (which is also covered in the field by a special tent), in which the meteorological instruments are exposed. The portable observatory, as regards these latter, includes only those of which the observation is useful and possible, taking into consideration the duration of the exbibition and the conformation of the apparatus. We find therein the Fortin barometer, the dry and wet thermometer, with the ventilation apparatus moved by clockwork, such as is employed in Italy. This apparatus is much more practical than that which sets in motion the thermometer itself. To these instruments it is important to add the maximum thermometer, the minimum lbermometer, and the weather cock.
This movable observatory when taken apart occupies but little space. On the road it is inclosed in a cart of peculiar form that one man can easily push before bim, and to which, for long excursions, a borse is barnessed. In mounting the apparatus in the field the theodolite is placed to the south of the compass in sucle a way that the theodolite, the compass, and the square column are in the line of the magnetic meri dian, and the two apparatus for inclinations and variations in a line perpendicular to the latter.-La Lumiere Electrique.

The Heating Power of Gas.

M. Lefebvre, engineer to the Paris Gas Company, bas recently been lecturing at Rouen upon beating by coal gas. Aurong otber things, the lecturer explained to his audience the cbaracteristics and performances of atmospheric as com pared with lighting burners. Theoretically, with the gas under examination, 16 liters would raise a liter of water from freezing to boiling point. With a common steatite fisb tail burner the mean of 26 experiments conducted by M. Lefebvre showed a practical consumption of 31.844 liters of gas to perform the same work. An atmospheric burner, composed of a vertical copper tube provided with a copper mushroom top, pierced with lateral boles, gave $39 \cdot 60$ liters as the mean of 13 experiments. By diminishing the air supply, the consumption of gas in the same burner was re duced to $35 \cdot 32$ liters. By means of a gasholder in which were made successively mixtures of $10,15,20,25$, and 30 per cent of air with the same gas, the calorific effect of the various mixtures of air and gas was shown as follows:

Percentage of air..........	$0 \cdot 0$	10	15	20	25	90	
Gas consumption....	...	$31 \cdot 84$	$37 \cdot 40$	$39 \cdot 20$	$40 \cdot 40$	$45 \cdot 60$	$48 \cdot 00$

Going on from this point, M. Lefebrre showed the effect o adding bydrogen to gas. Having first determined the calorific power of a given burner with the normal gas to be $32 \cdot 05$, the lecturer successively added bydrogen in progress ive increments of 10 per cent up to 60 per cent. The addition of the first 10 per cent of hydrogen lowered the efficiency of the burner-i.e., increased the consumption of gas to perform the same work-from 32.05 to $34 \cdot 40$, and the figures corresponding to the bigber increments of hydrogen are $36 \cdot 80,37 \cdot 56,40 \cdot 24,42 \cdot 40$, and $44 \cdot 52$. Thus it was shown that the more bydrogen is contained in a coal gas, the poorer is its heating effert. On the other band, progressive additions of bicarbureted bydrogen $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)$ resulted in a notable reduction of the bulk of gas consumed by the burner. Tie object of these tests was to expose the illusions as to the supply of " beating gas of low illuminating but bigh fuel value" fostered by partisans of water gas schemes.

Mersey Tunnel Works

Accident at the in connection with the Mersey Tunnel Works. A consider able portion of the roadway in Hamilton Street, under which the tunnel is bored, collapsed without the slightest warning just after a tramcar and a cab bad passed over the place. A gang of men were employed below, but fortunately none suffered any injury. It is stated that an extensive bed o quicklime which lies near the tunnel works bas been the cause of the collapse. In consequence of the accident, tram way and other vebicular traffic tbrougd the principal street in the town is euspended.

Sriontific ©

ESTABLISHED 1845
MUNN \& CO., Editors and Proprietors. published weekly at

No. 361 BROADWAY, NEW YORK

O. D. MUNN.
A. E. BEACH.

TELIIS FOR THE SCIENTIEIC AMERICAN.

ne copp, one year postage included...
ne copy, six months postage included
Chibs.-One extra copy of The Scientific Amerioan will be supplied me proportionate rate. Postaze prepaid.
Remit hy postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin street, New Yor

The Scientific American Supplement

is a distinct paper from the Scientificamerican. The suphlemen' is issued weekly. Every number contains 16 octavo paaces, uniform in size $\$ 5.00$ a year, postage paid, to subscribers Single copies, 10 cents. Sold b all news dealers throughout the countrs
Combined liates. - The Scientric american and Sopplemen will be sent for one year postage tree. on receipt of se The safest way to remit is by draft, postal order, or registered letter ddressMUNN $\&$ CO., 361 Broadway, corner of Franklin street, New York

Sclentife american Export Edition.
The Scivncific American Export Edition is a larke and splendid per odical, issued once a month. Each number contains about one hundre
large quarto pages, profusely illustrated, embracing : (1.) Most of the platee and pages of the four preceding weekir issues of the SCINNTIF: AMERIOAN, with its splendid engravings and valuable information: (2.
Commercial, trade, and manufacturing announcements of leading house Terms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. . Maru facturers and others who desire
to secure foreign trade may have large. and handsomely displayed anto secure foreign trade may have larke. and handsomely dis
nouncements published in this edition at a very moderate cost.
 lation in all commercial places throuzhout the world.
CO., 361 Broadway, corner of Franklin street, New Tork

NEW YORK, SATURDAY, SEPTEMBER 6, 1884.

REMOVAL.

The Scientifio American Office is now located at 361 Broadway, cor. Franklin St.

TABLE OF CON'TENTS OF
THE SCIENTIFIC AMERICAN SOPPLEMENT NO. 453,

Price 10 cents. For sale by all newsdealers.

TECBNOLOGY.-Filter for Sugar.-Manufacture of sugar with
 PH PSICS. ELECTRICITV. ETCC.-Growth of Electric Science.
First electrical discovery. Discovries of Gulvani and Voita.
Amperestheorr.- Modern discoveries

RUFUS PORTER, FOUNDER OF THE SCIENTIFIC AMERICAN
Rufus Porter, the original founder of the Scientific American, died recently at New Haven, Conn., in the 93d year of bis age. Up to within three days of his decease hi bealth was good, be was in the full possession of his facul ties, and enjoyed considerable bodily vigor. He succumbed to a severe attack of diarrbœa. He was born at West Box ford, Mass., on the 1st of May, 1792. He was a remarkable natural genius. He showed a taste for mechanics while in the cradle; was in school learning Noab Webster's spelling book at the age of four; spent six months at Fryburg Academy when twelve years old; beyond this be had no educa tional advantages. By this time be bad become quite an adept in the making of all sorts of mechanism, such as wate wheels, windmills, lathes, etc. He was also something of musician; be played the fife and the violin, and wrote poetry In 1807 bis family concluded it would be best for him not to fiddle any longer with life, but to settle down to something solid and useful, in short, become a shoemaker, like bi elder brother. So, in 1807 be walked from Portland to Wes Boxford, 106 miles, and undertook the bonest calling of the cobbler. But it was soon seen that be was not cut out for that species of industry; be gave it up, went back to Port land, played fife for military companies and the violin for dancing parties until 1810, when at the age of 18 be was apprenticed to a bouse painter, including sign painting, and be soon became proficient in the business. The breaking out of the war with Great Britain in 1812 gave him constan occupation in painting gun boats; also as fifer to the Port and Light Infautry.
In 1813 be painted sleighs at Denmark, Me.; beat the drum for the soldiers, taught others to do the same, and wrote a book on the art of drumming. This probably wa bis first book publication. In 1814 he was enrolled ir the militia for the defense of the country, and was for several montbs in actual service; after this be taught school at Baldwin, married at Portland, taught at Waterford, made wille grist mills at Portland, paiuted in Boston, the same on through New York and New Jersey to Baltimore and Alexandria Va. A peculiarity which lie developed about thi time, and which continued through life, was a frequen change of place and occupation. Although be might be doing well at the business which for the time engaged bi attention, be would sell out aud abandon it the moment a new idea came into bis mind. He could not bold fast to one thing or to one place for any considerable length of time. His brain was an overflowing fountain of new ideas and active projects. One of bis most profitable businesses at this time was portrait painting. At Alexandria, in 1820, be made a camera obscura-a dark box fitted with a len and mirror and containing a place for a sbeet of paper

With the lens placed in front of the sitter the image was focused on the paper, and be was enabled very rapidly to sketch the outlines of bis subject with correctness, and to produce a satisfactory portrait in fifteen minutes, for which bis customers readily paid a dollar. He adorned his camera box with bright colors, bought a light baudcart for loco motion, planted a flag on bis vehicle, and with this attractive establishment started on foot for Harrisonburg Hot Springs. He was welcomed in every town and village, his little show attracted attention, and bis portraits were greatly in demand. He did very well in a pecuniary sense; but be was possessed with the desire of finding a substance that was capable of yielding perpetual heat. He was certain he could do wonders if be could make this discovery. It would be for him the lamp of Aladdin. Arrived at the Hot Springs be bored the earth with an auger baving a five foot slank, in search of his hot substance, but found nothing more than a bydrate of lime; and much to bis regret was obliged to resume portrait painting and trudge behind his gay camera and cart. Nortbward be wends bis way, paiuting portraits from village to village, and at odd bours inventing mechanisms of various kinds.
r231 He invented a revolving almanac, and suddenly stopped painting to make and introduce it, which be did with con siderable profit and success; but at the moment when attention was needed for this new enterprise, a sudden and violent ambition seized him to make a twin boat to be propel led by horse power, and to run on the Connecticut River. Thi project brougbt bim, in 1823, to Hartford, Conn. But noth ing came of it; and he took up his old profession again of portrait paintiug, traveling once more from town to village with camera, cart, flag, and now accompanied by "Joe," lad, a relative. In the course of his wanderings he spent some time in New York painting portraits as usual One morning be was out strolling with Joe, when he saw sone people who were about to start in the stage for Pbila delphia. An impulse instantly seized him to go alcng. So he joined the party, directing Joe to get the camera and send it hy next stage. But the box failed to come, and he wa obliged 10 foot it hack to New York, earning bis meal by cutting people's portraits out of paper with scissors. In 1824 be adopted the profession of landscape painter That is to say, be painted landscapes on the walls of dwell ing bouses, public buildings, balls, etc., as a substitute fo ornamental papers. His work was greatly admired, and proved profitable. He went from town to town on this business, carrying bis apparatus on a liand cart. In the midst of bis prosperity another boat fever came over bim He dropped everything and built a borse flat boat, 35 fee long, with cabin. He worked the boat on the Conuecticu

River for a few weeks, sold it for a song, and returned to portrait painting.
In 1825, at Billerica, Mass., he invented a successful cord making machine. He also wrote a book entitled "Curious Arts," which bad a good sale; but his lack of husiness babits and inability to continue long at one thing or in one place caused the loss of these enterprises and his return to portrait and landscape paiuting. From this time on to 1840 he figures very often as an inventor, producing among other things a wonderful clock, a steam carriage, a portable horse power, a corn sheller, churn, washing machine, signal tele graph, fire alarm, and numbers of other inventions. For shares in some of these be received small sums. The making and selling of bis inventions alternated with bis painting, in the manner we bave before described.
In 1840, in New York, he was offered an interest in a newspaper called the New York Mechanic, and at once de cided to become an editor. He made it ostensibly a scientific newspaper, the first of its kind in the country. In the following year be clanged the title to the American Mechanic. The paper prospered; the office was removed to Boston; but now his attention was as usual suddenly diverted to something else, and in a few months' time the publication was stopped. He next learned the then new art of electroplating, and did profitable work. About this time, 1844, the religious mania of the Millerite people struck him, and be was among the most ardent believers who bourly expected the second advent of the Messiah. He now invented a revolving rifle, which be subsequently sold for one bundred dollars to Col. Colt; he also invented a box machine, but somehow lost it.
Iu 1845 he was again in New York, doing electroplating. Here be wrote a prospectus for a new paper, which be entilled the Scientific American, and began its issue weekly, with a cash capital of one bundred dollars, and contemplated indebtedness for a few hundreds more. The first number of the Scientific American bears date August 28, 1845.
The typography of the new paper was poor, but was the best the author could afford. The prospectus stated in very clear terms the intended scope and nature of the work; and the Scientific Ambrican of to-day is conducted substantially upon the plan originally marked out by its founder. He did not, however, continue long in charge of the publication. After running it for six months, the desire and necessity for a change came over him, and he decided to stop the issue and return to New England. At this juncture, just before the last number or two were to be published, he gladly arranged with the present proprietors, then very young men, to continue the publication, and on receipt of a very satisfactory compensation he transferred to them all his interests, consisting of the title, a subscription list of about two bundred names, some old types, and cuts. The first balf century of Mr. Porter's life practically closed with the foundation of the Scientific American.
During the remaiuing balf century, nearly, of his life, he was chiefly occupied with bis inventions, and moved from place to place, but did not so of en recur to his old profession of portrait painting. He was now very prolific with inventions. The moment a new thing occurred to him, be made a drawing and description and sold the whole or a share for a small sum; and then worked out some other idea, to be sold in the same manner. The mere catalogue of his inventions would be tedious. Among them were a flying ship, an air blower, punching press, trip bammer, pocket lamp, pocket claiar, fog whistle, wire cutter, engine lathe, clothes drier, grain weigher, camera obscura, spring pistol, engine cut off, balanced valve, revolvidal boat, rotary plow, reaction wind wheel, portable bouse, paint mill, water lifter, odometer, thermo engive, rotary engine, and scores of other inventions. During this period of his life he also did some business as a writer of patent specifications for inventors. This brief sketch will perbaps give some idea of the wouderful fertility of bis genius. He possessed in a high degree the gift of contentment. He cared little for place or outward surroundings. So long as be was at liberty to do whatever bappened to come into his bead, he was perfectly happy. Few men comparatively bave lived so long as Rufus Porter; fewer still have studied out and produced so vast a variety of useful inventions. But the most celebrated of all his works was that done on the memorable day in 1845, when with a flash of bis peculiar genius he wrote out the prospectus and commenced the establishment of the Scientific American. This title, we think, was one of the most felicitous ever given to a periodical ; and so long as it endures the memory of Rufus Porter, its originator, will be beld in grateful remembrance.

mechanics in edocation.

Seeing and feeling are two senses whicb are more important in aiding to a knowledge of our surroundings than any others, and yet their education is generally neglected until the possessor begins to learn something of mechanics. By mechanics in this connection is intended any attempt to contrive, put together, manufacture, or change by manipulation, so that a woman who contrives and fashions a dress out of the unformed and plain material may be a mechanic. The use of mechanical tonls cannot be begun ton early in life, whether the pupil is to be a practical mechanic or to follow some other calling-there are few vocations that do not demand for success some practical knowledge of mechanics. "The whittling Yankees" possibly owe much of their undisputed position as inveutors and good mechanics
to the habit of using a pocket knife. A very prominent inveutor and superior mechanic recently remarked that the bent of his taste as a mecbanic was undoubtedly given by his schoolmaster, who was a carpenter and joiner, and who worked at his trade in summer and taught the district schoo in winter. If a boydid not possess a foot rule, be made one for him from a shingle, or constructed an inch scale. The foot rule and a pocket knife be considered necessary to a schoolboy's outfit, and he encouraged bis pupils to estimate dimensions by the eye and then verify them by measure ment. Wind wheels and water mills were parts of the pedagogue's training, and the click-clack of one or the other could be beard all about the sclool house and on the borders of the brook in an adjoining field. Vanes cut from pine boards, toy ships, bird houses, bows and arrows, pudding sticks, and most of the toys used by boys forty years ago were made by the schoolmaster's boys under his direction.
T'o-day, besides the prolific inventor named, there are one su-To-day, besides the prolific inventor named, there are one suberintendent of a railroad company, one bridge builder, one superintendent of a large manufactory, and two architect to be counted from memory who probably received the bent for mechanics from the carpenter schoolmaster.
All these lead lives of usefulness-they are producers, adding to the wealth and comfort of the country and the people; and nothing in their observation education make them less valuable as members of society. One of our mos distinguished pulpit orators was a blacksmith, and many men who are noted for their eminence in literature, divinity, law medicine, and as educators bave bad a mechanical train ing.

the probelmatic planet neith.

It is not impossible that a new planet bas been discovered, a very small member of the solar system, revolving outside of the orbit of Venus, and near her domain. M. Houzeau, the Director of the new observatory at Brussels, an astronomer and writer of renown, contributes to the columns of Ciel et Terre an article on the subject that will awaken widespread interest, not only from the ingenious theory

A drawing of Venus, with the tright point on her disk as seen by M . Stuyvaert on the 8d of February, 1884
presents, but also will be entitled to careful consideration as coming from the pen of a distinguished man of science.
There was formerly a general belief that our fair neigbbor was, like the eartb, accompanied by a satellite, and one of the first objects looked for, after the invention of the telescope, was the moon of Venus.
Seven times at least since that important event, a small object bas been seen near Venus, presenting a similar phase, and bearing evidence of being a satellite of the bright planet. The first observation was made in 1740 , and the last in 1764. During the 120 years that have passed since, though diligent search bas been unremitting, no vestige of the mythical monn bas been found.
It is easy to say that the observers were deceived, and that the visionary moon was a "ghost" due to the imperfection of the instruments then in use. But the observations were made, two of them, certainly, by the renowned Cassini, and the others hy practiced astronomers who would be as little likely to be deceived in the reality of what they saw as Galileo was when he detected the moons of Jupiter or the phases of Venus.
More than a century bas now elapsed without a passing glimpse of the supposed satellite, and the probability of its existence grows fainter as the years roll on, though the bope of eventually picking up the celestial will o' the wisp has never been entirely abandoned by zealous astronomers. There the case rests. Astronomers whose opinions are most worthy of weight discredit the earlier observations, while other members of the fraternity still trust that at some time not far distant a ting point of light may be seen following in the wake of the most brilliant star that adorns the
M. Houzeau has revived the theme by the presentation of a curious and somewhat startling theory upon the following basis: A planet revolves around the sun, outside of Venus and near to her. It is very small in dimensions, and is possibly an escaped satellite. Neith is the name given to the little planet, in honor of the mysterious goddess Sais, whose veil no mortal bas raised.
These assumptions are the result of a critical examination
ellite. The shortest interval between any two appearances 2.90 years. Taking this as the duration of the period beween the nearest approach of the two bodies, the Belgian stronomer finds the longer intervals to be almost exact nultiples of this number, and the consequent duration of the periods to correspond very nearly, the average being 2. 96 years.

Therefore two bodies, the one relatively large, the other small, are found side by side at fixed intervals. As they are not seen between these intervals, the smaller cannot be a satellite, but the orbits are near each other in their whole extent, for conjunctions lave been ob served in different parts of the orbit of Venus, beyond, and on this side, on the east, and on the west of the sun. Hence Venus and Neith move in concentric orbits, uear each other, and are in apparent conjunction in 2.96 years, or about 1, 080 days.
As Venus revolves around the sun in 225 days, she makes 4 revolutions $+290^{\circ}$ in 1,080 days. If we assume that in this time Neith makes 3 revolutions $+290^{\circ}$, Neith will then revolve around the sun 283 days; her mean distance from the sun, that of the earth being 1 , will be 0.84 , and her greatest elongation will be 57°.
This result leads to a still more remarkable coincidence, or 5 revolutions of Venus-1,125 days-nearly equal 4 revo lutions of Neith $-1,132$ days. The time approximates, at least, to the interval from conjunction to conjunction, or 1,080 days, the figures barmonizing within the limits of the error of the numbers used, and the results of the perturbations that the smaller planet must receive from the larger.
There is one more point in this curious combination. M Houzeau found that 40 or 41 periods of 2.96 years bad elapsed since 1764, the last recorded appearance of the two bodies, and that a conjunction was due about February, 1884. After these calculations were made an event occurred of which be knew nothing at the time, though it must bave been as welcome as it was unexpected.
On the 3d of February, at 6 o'clock in the evening, M. Stuyvaert, of the Brussels Observatory, observed on the disk of Venus, near the illumined border, an extremely brilliant point, that recalled the aspect of the satellites of Jupiter as they transit the planet. The interest of this observation is increased by another made a few days later, on the 12th of the same month, at 8 o'clock in the evening. M. Niesten then saw, a litlle south of Venus, a small star that seemed to be composed of a nucleus and a very faint nebulosity. He looked in vain for the star on the succeeding evenings. Has Neith, the problematic planet, deigned to reappear after an absence of more tban a century?
M. Houzeau gives in these calculations the results of his observations. He calls them "conjectural reflections," interwoven with singular coincidences that appear when taken together to pass beyond the bounds of mere chance. He makes no effort to explain the reason for the long-continued disappearance of the supposed satellite. Neither does be seem to discern that his figures make Neith almost as near to the earth as she is to Veuus, and greatly complicate the perturbations to which the little wanderer is subjected. He simply throws out bis theory as a study, and earnestly solicits observers to multiply researcles, and explore day by day the disk of Venus and her surroundings.
If the moon were removed farther from the earth, and placed at a given moment in opposition, she would no longer revolve around our globe, but would, like the earth, revolve around the sun. This condition of affairs may bave prevailed on Venus, and Neith may be an escaped satellite removed beyond her power of attraction, and benceforth, like her primary, revolving around the sun.
The illustration is from Ceil et Terre
Patents Industrially Classified.
A table prepared by Commissioner Butterworth shows that of the nearly 300,000 patents issued by the Government, the various lines of machinery and industries bave received the following number:

Applications of elecricity \ldots 5,872	
Arteeian wells.............. 500	Metal working machines
Beds................. 2,150	Methods of tanning hides.... 1,219
Boots and shoes....... 5,060	Mills and thrashing.
Bread and cracker machinery. 440	Nut. and bolt
1,580	Plows.
Corset patterns.............. 969	Pumps.
Dairy utensils............... 2,429	Railways 8,50
Fenceß........................ 2,888	Railway cars 3,50
Fire engines....... 567	Seeders and planters.......... 3,56
Fire escapes......... 884	Steam engines........ 5,111
Harvestere.................. 6,606	Stoves a nd furnac
Lamps and gas flxtures...... 5.254	Vegetable cattere
Laundry utensils............. 4,993	Water distributers.......... . 3,71
Machines for knitting......... 75	Wearing apparel ${ }_{\text {d }}$

These aggregate 104,217 , or a little over one-third of the entire number of patents issued.

Hydraulte Pumping.

At the Dablbusch colliery, Gelsenkirchen, Germany, a Korting ejector is used for lifting 125 liters of water a minute from a new level started 30 meters below the deepest force pump. The peculiarity of the arrangement is, that water under pressure is used instead of steam. The apparatus is mounted iu the slaft, and is conrected with the dis. charge pipe of the lowest force pump by a 39 millimeter pipe. The ejector bas a 124 millimeter discharge pipe leading to the pump tank 30 meters above it. When using from 60 to 90 liters of water under a pressure of $\mathbf{1 4}$ atmospheres, 60 to 90 liters of water under a pressure
the apparatus will lift 370 liters of water.

