Frimutific Amprican.

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 published weekly at
NO. 361 BROADWAY, NEW YORK.

o. D. MUNN.
 A. e. beach.

DELINS FOR THE NCIENTIELC AMERICAN.

One copy, one year postage included...

Clibs.-One extra copy of The Scientipic Am erican will be supplied gratis for every club or tive subscribers at $\$ 3.21$ each ; additional coples at Kame proportionate rate. Postage prepaid.
Kemit vy postal order. Address

MUNN \& CO . 361 Broadwa

The scientific American is a distinct paper from the Scievtipic american. The supplemient with Scientiric American. Tlerms of subscription for Suphiement 850 a year, pue aimerican. Terms of subscription tor Supplement, all news dealers throughout the country.
Combined liates. - The Berrent will be sent for one sear postage tree. on receipt ot se
papers to one address or diffevent addresses as desired.
The safest way to remit is by draft, postal urders, or reekistered letter.
Sctentifte American Export Edition.
The Scientipic ambrican Export Edition is alarge and splendid peri-
odical, issued ouce a month. Each number contains about one hundred odical, issued ouce a month. Each number ccntains about one hundred
large quarto pages, profusely illustrated. embracing:
(1.) Most plates and pages of the four preceding weekly issues or the Scivivtric AMEncAC, with its splendid engravings and valuable in the Sormation : Commercial, trade. and manu facturing announcements of leading houses.
Terms for Hxport Edition, $\$ 5.00$ a year, sent prepaid to any part of the World. "ingle copies 50 cents. Manu facturers and others who desire no secure foreign trade may have large. and handsomely dis.
nouncenents published in this edition at a very moderate cost. The scikntipic Amiuncan Export Edition has a large quariuteed circulation in all commercial places througbout the world, Address IIUNN \&
CO , 361 Broad way, corner of Franklin street, New York

NEW YORK, SATURDAY, JULY 5, 1884.

REMOVAL.

The Scientieic American Office is now located at 361 Broadway, cor. Franklin St.

TABLE OF CONTENTS OF THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 444,

For the Week ending July 5, 1884.

Price 10 cents. For sale by all newsdealers
ChEMISTRY.-Detection of Small Quantities of water Added to

 iII. "ECHNOLOGF -Preparation of Lantern Slides.-Formula foran

${ }^{\text {esten }}$ The Man üfacture of Violins in Germany

 Anengrying
A Design for Cabinet and cuair.-An engraving
VI. Horticulture, botany, etc.-Formation of starch in

a mechanical dictionary needed.

There seems to be need for a dictionary of shop terms as well as of accepted scientific mechanical terms as applied to practice. Even in our most popular technical periodicals the terms used by a contributor from one portion of the coulty are sometimes unmeaning to readers in an-
other portion. ther portion.
Lack of definiteness is one of the faults of our mechanical nomenclature. In a recent publication of a mecbanical paper, the question whether "spline," "key," and feather" are synonymous was presented. Perhaps this will be as good as any other instance of our lax system or lack of system. In the shop talk where the writer was raised, a "spline would mean a ixed projected portion
retained in a shaft and not specially connected with the pulley or other hub. Its synonym would be a "feather." A "key" would be a wedge shaped fastener, with or without a head, fitting corresponding channels in the shaft and the hub, inteuded to secure the latter at some exact point. And yet "spline" and "key" are used indiscriminately by good mechanics. So long as these appellations are understood to have a definite meaning they have their value but this value may be confined to the shop, to the section of manufacturing establishments, or to the manufactories where persons mainly of one nationality are employed; out side they may be confusing.
In shop use why should a cylindrical rod of metal the a one time a "bar," again a "shaft," a "spindle," an "grbor"? Or if so used, why not have a shop thesaurus or lexicon that would give the derivation of the words and he reasons for their use? A "bar" shows its origin; it means to hinder, and is applicable to iron only in bars which spinning flax spindle older than our civilization, which upposes a tapering shaft rotating on its own axis. "Shaft" comes from our Saxon schaft, an arrow, implying straight ness. "Arbor" comes from the Latin, a trec, or a piece to which something may be temporarily affixed.
A " mandrill" is a hand (munus, L.) drill. Is the clearer of bored holes a " reamer" or a "rimmer"? Is the top of a machinist's hammer a "poene, "pane," or "pene"? Why a "broatch"? Why "drift pin" and "tamp pin"? The suggested glossary ought to contain the information that the ordinary screw jawed wrench is not a monkey wrench because of any peculiar tricks it plays in use, but simp! because Thomas Munkey, an English mechanic, invented it Many other suggestions might be made to the ambitious mechanic who will undertake wo sımplify our mechanical no menclature by the compilation of a dictionary and glossary of mechanical and shop terms.

THE UNION OF IRON AND STEEL

Old time smiths regarded the union of iron and steel by welding as a feat on which to base a reputation, albeitin the earlier times-fifty y ears ago-the steel was shear or bliste steel, much nearer the component iron in welding characteristics than the present fine catlery or crucible cast stecl. But improvements have been so great in the methods of working that a composite article of steel and iron is not only common, but clieap. In some instances the article is comcombination that when completed is essentially one. The ordinary scythe is an instance. It is composed of Swedish iron, low steel, and fine cutlery steel. The iron is a strap of a length sufficient, when doubled on itself by the midnle, to make a length of about five incies, the strap being one and a half luches wide. Side by side, inside this doubled up strap, are laid a slip of low steel of the same length as 88 the doubled strap, one inch wide and one-quarter inch thick,
88 and one of similar length and thickness, but only half an
inch wide, of the finest cast steel. A flux being introduced and the parts heated together, a trip 79 hammer welds ihem and lengthens the original four and a half or five inches to twenty-four incbes. Passing through rolls elongates it to a length of four feet of the same thickness on back and etge. "Plating" under heavy trip hammers edges the scythe, and spreads its width to about four inches.
The blade is so long and thin at this stage that it will bend downward when held by one end, the sides being in a verli cal position. But when the back, which contains the low steel, is corrugated by means of a V-hammer and dies, the result is a very stiff blade, resistant to wet grass or the silicious stalks of ripened maize. During the entire processes, the iron, even on the thin edge, is coherent, and is as strongly united, as a mere filn, to the steel as when it was one-quar: ter of an inch thick on each side; and
to lay the steel edge bare, vnly by grinding. If a finished , scythe is carefully examined, the only steel visible is a line ${ }^{3}$ perhaps one-eighth of an inch wide along the sharp edge, 3 yet the cross section would show a core of low steel and crucible steel, and an envelope of tough, soft iron, all so united by welding as to be barely distinguisbed by color. In implements which are subjected to heavy blows, especially from a leverage, as the ax, entire dependence for the flux and the heat of the weld. Except for special purposes, the strap poll for axes with the wedge-shaped bit is a style of the past, and ax heads or polls are now made from solid blocks of tough iron, the helve bole being punched cleanly througb. The lower portion is opened to receive the bit, which is a block "offset" on each side in a die, so that each side presents two shoulders to bear against the receiving iron
crude form, and must be hammered to shape. In this case as in that of the scythe, the union of the fine cast steel and the enveloping iron is so close that it appears to be a chemical one on the surfaces rather than one of a mechanical naure; the two dissimilar materials work agreeably together. The shanks of garden hoes and the handle sheatbs of shovels are other instances of this union that are remarkable, mainly because that at the initiatory processes the materials are thinner than those just mentioned. Yet they withstand the subsequent reheatings and hammerings as though they were purely homogeneous.

NATURAL GAS AS AN INDUSTRIAL FACTOR.

Tbroughout the region included in the " gas belt," which reaches from the oil regions of Pennsylvania to Mounds. ville, West Virginia, there is just now a good deal of speci lation as to the possibilities of the large use of natural gas for fuel. Pittsburg, with its extensive industries, is ad. vantageously situated to realize the full benefit which may be derived therefrom should the use of this gas be proved practicable, and it is already in use in some large estallishments. The largest of these is the Edyar Thomson Sterl Works, now using the gas to the value of about 400 tons of coal formerly burnt daily. The Penn Fuel Company, furnishing natural gas, is said to have contracts amounting to $\$ 300,000$ annually in a single ward of Pittsburg, and there are several other companies owning wells and supplying gas for use as fuel, while others are organizing, and several large yielding wells have recently been opened.
Although it has been known for a long time that gas could thus be had for the boring through all the section where the matter is now receiving so much attention. and it has been emplnyed to a limited extent for some years, it is only within about twelve months past that practical efforts have been made for its utilization in a large way for iudus. trial purposes.
There are some drawbacks to its employment, among which are its great unsteadiness of pressure, and the ever present doubt as to how permanent may be the flow from any given well. It would seem that the first difficulty might be easily remedied by a proper system of valves and holders, and, as the existence of the gas in the carth has been known or an even longer period than we have known of the petro leum, there is probably as good reason for counting upon it continued flow as there is for expecting a steady supply of petroleum. The section of country promising favorably for the boring of gas wells is a comparatively large one, and the successful employment of this natural fuel can hardly fail to have an important bearing upon the future of many of our industries, especially in all branches of the iron manu facture and its related departments.

HOW GLOBES ARE BUILT

This heading has no astronomical meaning; it refers to mechanical manipulation. Our library and school educainnal globes have perhaps been a puzzle to many an inquisitive mind-they being so light, so easily turned on their axis, and so smooth as to appear more like natural exact productions than mechanical constructions.
The material of a globe is a thick, pulpy paper like sof traw board, and this is formed into two hemispheres from disks. A flat disk is cut in gores, or radical pieces, from cen ter to circumference, half of the gores being removed and the others brought tugether, forming a hemispherical cup. These disks are gored under a cutting press, the dies of which are so exact that the gores come together at their edges to make a perfect hemisphere. The formation is also done by a press with hemispherical mould and die, the edges of the gores being covered with glue. Two of these hemispheres are then united by glue and mounted on a wire, the ends of which are the two axes of the finished globe. All this work is done while the paper is in a moist state. After drying, the rough paper globe is rasped down to a surface by coarse sand paper, followed by finer paper, and then receives a coating of paint or enamel that will take clean smooth finish.
The instructive portion is a map of the world printed in welve sections, each of lozenge shape, the points extending rom pole to pole, exactly as though the peel of an orange was cut through from stem to bud in twelve equal divi sions. These maps are obtained in Scotland generally, although there are two or three establishments otherwheres which produce them. The paper of these maps is very thin but tenacious, and is held to the globe by glue. The opera-tor-generally a woman-begins at one pole, pasting with the left hand and laying the sheet with the right, working along one edge to the north or other pole, coaxing the edge of the paper over the curvature of the globe with an ivory spatula, and working down the entire paper to an absolutely mooth surface.
As there are no laps to these lozenge sections the edges must absolutely meet, else there would be a mixed up mess, especially among the islands of some of the great archipela goes and in the arbitrary political borders of the nations. This is probably the most exact work in globe making, and yet it appears to be easy because the operator is so expert in oaxing down fullnesses and in expanding scanty portions, ll the time keeping absolute relation and perfect joining with the other sections and to their edges. Tbe metallic work-the equators, meridians, and stands-are finished by machinery. A coat of transparent varnish over the paper surface completes the work, and thus a globe is built.

