device for lubricating wheels and pulleys.
The lubricating hul herewith illustrated is designed for loose wheels and pulleys of different kinds, including car, wagon, or carriage wheels running loosely upon their axles, The hub portion of the pulley, shown in cross section in Fig. 2 and in longitudinal section in Fig. 3, is made with the usual oil receptacle or chamber extending around the interior of the hub and in open communication with the bore. Ordinarily the oil is introduced through a simple radial bole in the hub, so that when the wheel is rotated or left standing with the hole in a downward position much oil escapes. In the case of loose running wheels of cars use in mines it is seldom that the hole in each hub will be in such a position that oil can be poured in, and consequently the car has to be moved in order to bring the holes into pro per position.

The waste thus caused is, to a large extent, at least, avoided by inserting or casting in the hub a tube, in open communication with the exterior of the hub and arranged to project within the chamber to the full extent of its depth, so that its inner end is in line with the walls of the bore. By means of this tubular feeding projection within the chamber the oil, when once put in, is prevented from escaping by any way except that which serves to lubricate the axle. Made in accordance with this plan it does not matter in what position the wheel is allowed to stand, since the oil cannot find a passage to the inner opening of the tube. This is shown clearly in Fig. 2, in which the tube is directly beneath the axle.
This invention has been patented by Mr. William P Daniell, of Girardville, Penn.

High Buildings in Cities.

Old fashioned people, as well as some who cannot claim that designation, are not generally disposed to look with approval on the increasing number of high office buildings and residence flats in all our large cities. Perbaps most of the dangers from fire, in nine, ten, and eleven story structures, are removed by tbe exclusive use of brick, stone, and iron, not only for walls and staircases, but for ceilings and partitions. But, even if this be so, there is yet room for the conviction that many apartments are so filled with furniture and otber combustibles tbat it would require no strange occurrence of circumstances to convert one of these great structures into a vast smoke house, where suffocation might be as fatal to many as the flames have frequently been in other cases. Besides, there are many who doubt that all of these said-to-be fireproof structures would really be so if put to a severe test.
Of much greater importance, probably, than the above considerations are the hygienic questions involved in the build-
ing of so many of these great apartment houses. Dr. S. Oakley Vanderpoel, in a recent paper read before the Medical Society of New York, says that in them it would be impossible to properly isolate the sick in the case of a general epidemic; that either through necessary attendance, contaminated clothing, or currents of air, the epidemic poison would be carried to all occupants. The air sbafts from the bottom to the top, into which open windows from each floor, make facile means of distributing poisoned air, which any defect in plumbing or accident in the water or soil pipes might give rise to. It is also pointed out that such structures have a baneful effect in shutting out sunshine
from the streets and from surrounding bouses, so that private dwellings before cheerful and healthy become gloomy and unhealthy.
In striking contrast with these conditions in house build ing here, we note the subject of a paper recently read by Mr. John Honeyman, before the Sanitary Institute, Glas gow, Scotland. There, it seems, it is proposed, in a police bill draughted by the Corporation of Glasgow, that on land bounded by a new street forty feet wide, dwellings shall not be more than two stories high. In this case it is supposed the tenements will be in stories of ten feet bigh each, but the writer argues, with a detail which seems quite superflu ous to us here, in favor of allowing the buildings on a street of tbat width to be four stories high, each story of eight feet, claiming that sucb a building is not too higb where land is valuable, and that rooms eight feet high will ordinarily be as well ventilated as those ten feet high. This, in deed, seems like flying from one extreme to the other

Bellows for lnsect Powder and Liquids.
It is now well known that emulsions of kerosene are our best insect exterminators. Persian insect powder (the ground leaves of certain Pyrethrums), hellebore, sulpbur, ete., are also valuable. But their application has hitherto been laborious and uncertain. Two years ago we began to use several kinds of bellows known as the Woodaston bellows, for sale by most seedsmen. They are made in different sizes, costing from one dollar upward-one set for the use of powders, the other for liquids. The latter ar constructed on the plan of the little "evaporizers" sold by druggists, except that instead of pressing a little rubber bag to induce the spray, we use the handles of the bellows, the same as if "blowing the fire."
Previous to their use we had poured kerosene upon the perches, in the cracks and nests of our hen houses to rid them of vermin. Now we use the bellows, and the spray reaches every crevice and hole, while one-tenth the quantity serves and the operation is performed far more effectually in one-tenth the time. These bellows will project a fine spray for six feet, so that vines, small trees, or plauts infested with aphides, bark lice, or insects of any kind may readily be reached. The powder bellows serve just as wel for sulphur, hellebore, Paris green, and the like, as the spray bellows do for liquids, and we commend their use to all of our readers who are obliged to fight insect foes, whether in the hennery, kitchen, conservatory, garden, or field.-Rural Nero-Yorker.

A CANADIAN SNOW PLOW.

We in England know comparatively little of the inconveniences of winter, and although we hear occasionally of a rain being snowed up in the North, the occurrence is so rare that it is chronicled in the journals as an instance of unduly severe weather. Across the Atlantic, however, in the northern portion of the United States and in Canada, the winter is so long and severe-this week the thermometer marked 48 degrees below zero in Dakota-that the railway authorities bave to make great preparations for the safety of their traffic. Not only are bridges roofed over to prevent the accumulation of a mass of snow which might eventually break down the structure, but large steam plows are

MECHANICAL MOVEMENT

The device herewith illustrated consists of a pair of toothed wheels geared logether, and so arranged that continucus rotary motion is communicated to the wheels, one pawl acting on one of them when the lever moves in one direction and another pawl acting on the other wheel when the lever moves the other way, the wheels thus driving in he same direction, but turning in opposite directions. On a suitable frame, C, are geared two spur-toothed wheels, A B. Pawl levers, D, are set so as to act on the teeth of the wheels for driving them in opposite directions. The pawls are formed on the ends of short rods, \mathbf{E}_{1}, that are fitted to he sockets, \mathbf{F}, of the pawllevers for being worked by them, and they rise and fall in the sockets in order to pass over and drop into the teeth for working the wheels, the springs, G, orcing them down. The pawl levers, D, are connected to a working bar, H , wbich is to be reciprocated by power applied

KUBEC'S MECHANICAL MOVEMENT

to it in any approved way. A lever, L, may be pivoted to the frame, C, and have one arm, K, worked by hand, and the other by the feet. One or both of thepawl levers may have an arm, M, by which the power may be applied by hand, the lever, L, being dispensed with. The pawls are connected to trip levers, \mathbf{N}, by which they may be raised out of contact with the wheels, when it may be required, to permit the working lever to be shifted to a more favorable point for starting the machine. The trip levers are connected to a rod, O , worked by a hand lever, P , on the power lever, when it may be worked at the same time tbat the hands are employed on the power lever, the hand lever being connected to any one of the trip levers by a rod, U. The power may be transmitted from the wheels, A B, by a pinion, Q.
An important feature of the device is that power may be applied by long or short strokes which may be varied within a considerable range, according to the number of teeth the pawls may be made to take at each operation. The leverage of the transmitting gear may thereby be varied, according as the work is light or heavy. This invention has been patented by Mr. Frederick Kubec, of Riverside, Iowa.

Chureh Fires.

The Chronicle states that nearly eight hundred churches-an average of about eight per monthhave been destroyed by fire in the United States in the past nine years. According to the fire years. According to the fire tables of the aboved named journal, there were one hundred
and nineteen churcbes destroyed and nineteen churcbes destroyed
during the year 1882, at a loss of during the year 1882, at a loss of
$\$ 672,170$, and a loss to insurance companies of $\$ 312,280$. Among the principal causes ascribed for these fires are defective flues and heating apparatus and incendiarism. The incendiary is no respecter of buildings, and not only bears his flaming torch through the thoroughfares of our large cities, but also appears at intervals in our smaller cities and ob-
constructed, which, propelled by several locomotives, are capable of penetrating and clearing away huge quantities of snow from the line, through which no locomotive unaided could possibly force its way by itself. Many of the locomotives are fitted, in event of emergency, with small snow plows of sheet iron, sharp edged and backed with stout timbers. These, however, frequently prove insufficient, and passengers have to turn out of tbe carriages to assist in shoveling the snow off the line. The plow in our engraving, however, is a far more serviceable apparatus, and with good steam power behind it can clear away a great depth of snow off the track. - London Graphic.

A SNOW PLOW ON THE GRAND TRUNK RAILWAY, CANADA. sure country towns. Churches, and particularly those located in country towns, are too often built of the cheapest and weakest material, and present strong temptations to the inherent lovers of fires and easy prey to the fire fiend. Church societies owe it to themselves to pay more attention to the building of their edifices as well as to the prevention of fire.

The will of the late Sir William Siemens covered personal estate of the value of $£ 382,000$. The testator makes provision by his will for the carrying on, under the same management as during his lifetime, of his civil engineering business, including his patented inventions.

Electric Lighting by Primary Batteries.

We have no wish to discourage inventors of primary bat teries, but, on the contrary, we would urge them to renewed exertion, for there is a large and we believe remunerative field before them. But let them not spend their time in at tempting impossibilities, or in writing treatises to demonstrate facts which were published thirty years ago with much greater minuteness and accuracy. It is not the cost of the zinc which has hitherto prevented the use of batteries, but the expense of the liquids, which generally increases as that of the zinc diminishes, their acid nature and unpleasant fumes, and, above all, the unmechanical construction of the cells and the difficulties caused by corrosion, creeping, leakage, and the like. A battery which was free of these objections would have an extensive sale for electric lighting.
The reason that isolated installations increase so slowly is the prejudice people feel to introducing gas or steam engines, with their attendants, on to their premises, far more than on account of their cost, and if these could be replaced by a series of boxes which would only need skilled attendance once in three months (say), we should find a rapid increase in electric lighting, even if the cost were double or threefold that of gas in large towns. - Engineering.

" PERCENTOGRAPH."

The device shown in the accompanying engraving is for reducing common fractions to decimals, and is particularly designed to be used by railroad and other transportation companies for determining percentages and proportions in dividing rates, revenues, or expenses on the basis of mileage but the uses to which it may be put are extensive, as will be readily seen from the description.
A stationary triangle, A , has a percentage scale, B , arranged along its bypothenuse; a similar triangle, C , is fitted to slide in the fixed triangle, and is likewise furnished with a scale, D, on its hypothenuse, which represents a series of numbers the percentages of which are to be ascertained. The numbers in the scales, B and D, increase from the right upward to the left, the former extending from 0 to 100 and the latter from 0 to 1,000 , or from 0 to any number higher than 1,000 according to the value given to the graduations; thus, if each graduation is made to count 2 instead of 1 , the scale \mathbf{D} will indicate 2,000 as the highest number. In the engraving the scale D is marked off to indicate both 1,000 and 2,000 at the end, two sets of numbers being used, one double the other, to mark the graduations. When the scale D is moved against the scale B the graduations will exactly register with each other, and the percentage numbers will correspond with the numbers whose percentage of 1,000 or 2,000 they represent. The base of the movable triangle is provided with a slot, E , and a set screw by means of which it may be adjusted and held in any given position.
The vertical side of the stationary triangle is provided with a stretched cord, G, or equivalent device. which serves as a marker on the scale D. This cord is connected to set screws, H I, and is arranged at right angles to the base of the triangle. A second cord, K , is attached to a collar loosely mounted on the pin, I, and its other end is attached by a set screw, O, to a slide that moves on a segmental bar, \mathbf{Q}, the circle of which is drawn from the pin, I. This cord is used to mark the percentage on the scale, B, and also to wark the numbers on both scales.
If it be desired to ascertain the relative proportion of railroad lines, in interest aggregating say 1,400 miles, move the scale D until 1,400 intersects cord G on its upper edge, then tighten set screw. The cord K is then moved until it intersects the number of miles of road forming a part of the 1,400 miles, when the relative proportion will be indicated on the stationary scale, B . Thus, if cord K be moved until it intersects 490 miles, the scale B will indicate 35 per cent, and remaining distance, 910 miles, in proportion, forming the total 100 per cent. From this it is obvious that the percentage which any part of 1,400 bears to the whole will be indicated on the scale \mathbf{B} by moving the cord K to the number of miles required (of the 1,400).
In many instances there are roads which from heir position demand an arbitrary proportion, and will not prorate on mileage basis. The percentograph provides for this emergency. For instance, if line Springfield, Mass., to New York demand 20 per cent of any rate on business to Petersburg, Va., thus leaving 80 per cent for lines New York to Petersburg, Va., move the cord K untilit intersects 80 per cent on the scale B, then move scale D until 388 miles intersects cord K (distance N. Y. to Petersburg, Va.), then movecord K until it intersects 98 miles (N. Y. to Philadelphia), and scale B will show 20.2 per cent; and so on each road its proper proportion of the 80 per cent, as indicated.
Further information may be obtained from the patentee, Mr. S. J. Tucker, of Richmond, Va., or from Mr. M. S. Foote, of same place.

The relative efficiency of electricity, gas, and oil, for use in lighthouses, is being tested in England, where the Trinity Board has selected certain ranges about three miles inland from the South Foreland lighthouse as lines of observation, long which measurements are to be made. These experi ments are expected to last several montbs.

FIRE ESCAPE

A frame made of iron or steel bars is pivoted to eyebolts , projecting from the wall of the building such a distance below the window that when the frame is held against the wall its outer edge will be below the sill, as shown in Fig. 2. Strong wire netting is secured to the frame, whose outer end is curved upward. Cbains, D, are secured to the outer corners of the frame and to the wall or window frame, to hold the frame in a horizontal position when lowered. A brace rod, E , pivoted to the middle of the outer edge of the frame rests on a projection, F , of the wall. Secured to the frame is a chain or rope ladder, G, which is folded and beld within the frame when the latter is not in use. When the rame is swung down the ladder will unfold and the free end will pass down to the ground, or to a like fire escape at the

EYL'S FIRE ESCAPE.

next window below. Persons fleeing from the fire step o the balcony formed by the frame and uetting, and then de scend by means of the ladder. Fig. 1 is a perspective view showing the escape in position to be used, and Fig. 2 is a wall.
This invention has been patented by Mr. Emil C. Eyl, of Jefferson City, Montana.

Inventions of a Half Century.

The number of inventions that have been made during the past fifty years is unprecedented in the bistory of the world. Inventions of benefit to the human race have been made in all ages since man was created; but looking back for half a hundred years, how many more are crowded int the past fifty than into any other fifty since recorded bis tory! The perfection of the locomotive, and the now world-trave:sing steamship, the telegraph, the telephone, the audiphone, the sewing machine, the photograph, chromo

TUCKER'S "PERCENTOGRAPH."

vator for hotels and other many storied buildings, the cotton gin and the spinning jenny, the reaper and mower, the steam thrasher, the steam fire engine, the improved process for making steel, the application of cbloroform and ether to destroy sensibility in painful surgery cases, and so on througb a long catalogue. Nor are we yet done in the field of invention and discovery. The application of coal gas and petroleum to heating aud conking operations seems to be only trembling on the verge of general adoption; the introductiou of steam from a great central reservoir to genera use for beating and cooking has been in part a success; the navigation of the air by some device akin to our presen	navigation of the air by some device akin to our present	engines
balloon would also seem to be prefigured, aud the propul-	engines.	

sion of machinery by electricity is even now clearly indi cated by the march of experiment.

There are some problems we bave hitberto deemed im possible, but are the mysteries of even the most improbable of them more subtle to grasp than that of the ocean cable or that of the photograph or telephone? We talk by cable with an ocean rolling between; we speak in our voices to friends a hundred miles or more from where we articulat before the microphone. Under the blazing sun of July w produce ice by chemical means, rivaling the most solid and crystalline production of nature. Our surgeons graft the skin from one person's arm to the face of anotber, and it adheres and becomes an integral portion of the body. We make a mile of white printing paper and send it on a spoo that a perfecting printing press unwinds and print.s, and delivers to you, folded and counted, many thousand per hour. Of a verity this is the age of invention, nor has the world reached a stopping place yet."

Rotary and Reciprocating Steam Engines.

In a recent letter to the Tribune, Prof. R. H. Thurston, of the Stevens Institute of Technology, gives the following: It is assumed that the reciprocating engine is essentially defective; that the conversion of the reciprocating motion of the pistoninto the rotary motion of the crank and fly wheel involves, necessarily, some appreciable loss of powe and efficiency; that the variation of speed of the recipro cating parts, from a state of rest at the "dead points" to maximum velocity at half stroke, must necessarily cause loss of power, increased wear and tear, and dangerous impact at higb speed, and must thus restrict, to a very serious extent, the development of greater power by the adoption of higher velocities of piston. It is these notions which have been the usual stimulus to inventors who have, during the past century, been endeavoring to produce rotary en gines capable of competing successfully with the always standard reciprocating machine. The patent records teem with such devices, many of them ingenious, more of them crude and unmecbanical.
Rotary engipes have usually proved to be wasteful in their use of steam, subject to rapid depreciation in powe and efficiency, and to great loss of power by friction of working parts. Engineers are, therefore, likely to look with interest, and with a little surprise, upon a motor of his class which is not subject to these defects, even though it may not prove to be the superior of the best engines of more common type
But the assumed objections to the reciprocating form of steam engine are, to a considerable extent, imaginary. The conversion of a reciprocating motion into rotation does not necessarily involve loss of power, and need not, and in good engines does not, cause objectionable jar or injury of the working parts. The limit to the increase of speed of the modern "high-speed "engine is not set by the difficulties of the kind above described met with in its operation, but rather by the impossibility of carrying more than a certain amount of power through fast running machinery with ab solute certainty that lubrication may be secured, without nterruption for an instant, day after day, indefinitely. The inertia of parts, which bas been so generally assumed to be detrimental to the action of the machine, has an equilibrat ing effect with the irregularity of steam distribution due to the expansion of the steam; and this balance may be ad justed for speeds greatly exceeding even the highest attained by the most radical of the high-speed engine builders of the day. The rotary engine has not, thereiore, the ad vantage in this respect claimed for it in the past by many engineers as well as by non-professionals. It has, however, evident advantages which have been hitherto more than compensated by the apparent impossibility of securing that economical distribu tion of steam which is easily and satisfactorily ob lained in the standard forms of engine, and by the failure of nearly every form of rotary, in competi tion with the reciprocating engine, when compared with respect to freedom from internal friction and leakage of steam past the piston. It is always safe for the layman, when asked to put his capital into rotary engines, to assume that the machine possesse these defects to a fatal extent, unless the contrary has been proved to be the case by careful test made by engineers of known skill and integ rity.
The engineer is, therefore, pleasantly surprised when he finds one of this class of engines doing good work, and be will be still more pleasantly surprised when he finds the difficulties which have bitherto been met, in the endeavor to secure good steam dis tribution, high economy, and perfect regulation sucb as is seen in the best reciprocating engines, combined with the undeniable special advantages of the rotary engine.
'These latter impediments being overcome, the rotary will supersede the reciprocating engine, but I think not till then, except for very small powers. Our small reciprocating engines do not compare favorably with larger sizes, in respect eitber to economy, exactness of regu lation, or power per pound of weight of machine. They are usually capable of great improvement, but a small machine of this class will probably never do as good work as a large one. For the present, at least, the best rotary

