Connecticut Valley Fossils.

At Portland, Conn., on the Connecticut River, three large blocks of freestone have been lately taken out of the quarries, 300 feet below the surface, for the Putnam high school, which are said to be the most singularly marked of any yet found there. On the upper surface of two of the blocks are visible, plainly indented, some of them being a balf inch deep and sharply cut, the footprints of birds of a past age; some are large and some small. The third block has the fossilized remains of a creature that in sbape resembles a turtle. It is about 1 foot and 6 inches wide, octagonal in shape, and oval like the back of a turtle, it is firmly attached to the rock, and there are no traces of legs.

THE CHIMPANZEE AND KOOLOKAMBA.

The subjects of our illustration were purchased by the Zoological Society of London on Oct. 24; but, unfortunate$1 y$, the chimpanzee, after living a few days, has succumbed, as many of this species have before, to the fatigue and close confinement of a long and tedious journey.
He was the largest specimen the Society ever had the chance of procuring, and is, consequently, a great ioss. He stood, if upright, about 4 ft .7 in ; and, although slight in comparison with some of his brethren, was of a very powerful frame. It is but seldom that these monkeys are kept alive in Europe for any lengthened time; they almost invariably succumb to cold and lung disease, owing, of course, to the succumb to cold and lung disease, owing, of
changes in our climate. The other animal, the little kooiokamba, is of a rarer species, and is happity thriving well. He appears to be of a hardier constitution. The koolokamba, which gets its name from saying "Koola! Koolo!" over and over again in a strong voice, dwells in the forests of equatorial Africa, and is often seen in company with the chimpanzee. This is the first specimen that has appeared in England, and is an object of great interest to zoologists on account of a certain resembiance, in some points, to the ' nschigombouvie," the chimpanzee, and the gorilla; but is uniike them all in its general appearance, which is rather frog-like. It has an immense belly, and is a vegetable feeder, like all the troglodytes. its skuil is globular, it has long ears, and seems to have great intelligence, or ratber cunning. Its gail is like that of the gorilla in walking on all fours, resting on the backs of the fingers. We may congratu?ate the Society upon the acquisition of so vaiuable a specimen of this rare little creature.-Illustrated London News.

The Alaska Volcano and Tidal Wave.
The Kodiac, eleven days from Kodiac, arrived Dec. 27, and. Capt. Cullie, together with C. T. Sands, talked with a Bulletin reporter at the onice of the Alaska Commercial Company. Mr. Sands says that the tidal wave came about Jirty minutes after the eruption, and from shore it appeared like an approaching wall of water. Had the first wave come \& high tide, Mri. Sands thinks the little settlement at English Bay would have been obliterated and the inhabitants drowned. The interval between the waves runs about nive minutes. The receding waters of the first wave carried the fishing boats from the river to the sea, and the next wave stranded the boats high on the beach. Mr. Sands and others noticed along in the month of August that the mountain in Chernaboura was emitting amoke, but there seemed to be no other premonition of the great explosion which occurred at eight oclock in the moruing of October 6 . The shower of ashes followed soon after ihe rumbling was heard, but the earth did not quake or tremble perceptibly. It was remarked by Mr. Sands as sometbing unusual that the fishes disappeared from English Bay on the nigbt of the 5th. On the morning of the 6th not a fish could be caught or a sign of one seen. The atmospbere was warm, evidently heated by the shower of ashes, whichobscured the sun and rendered the place as dark as night for two hours. Looking at nigbt to the west from English Bay to Chernaboura, a distance of forty-nine miles, the spectacle was grand and awe-inspiring beyond description. Columns of lurid smoke and flame seemed to shoot from the earth to the heavens. No one bas approached nearer than ten miles to the island since the eruption. At that distance the low ground of the island seemed to be a vast crater from which smoke and fire were issuing.-San Francisco Bulletin

Disappearance of Lake Tulare.

Tulare Lake once had an area of 1,736 miles, and depth sufficient for steamboat tbat navigated it, but its area has been reduced to 136 miles and its greatest depth is only 22 feet. Its contraction is attributed to the absorption of water for irrigating purposes from the two streams that feed it. Some San Franciscans who have just returned from a visit to the lake predict its utter absorption, as every farmer who setties near it digs a new canal for irrigation. There are about forty artesian wells within a radius of corty miles around the lake.

THE CHIMPANZEE AND KOOLOKAMBA

similar manner. On the other hand, one species of spide having very large mandibles strives vigorously, and nips many of the ants venturing to approach him. One particular kind of spider, with long legs, very common in dwelling houses during the autumn months, when touched with the finger commences to sway itself to and fro, continuing the motion for one or two minutes. The late Mr. Darwin supposes that the spider resorts to this practice in order to render bimselif invisible, but it may be remarked that the trick fails entirely so far as the human eye is concerned. The webs of spiders vary very much as to form and arrangement. Some are of a perfectly polygonal sbape, and are supported by a number of threads radiating from the center. In some cases there are only a few radial threads, the interstices between them being filled up with short straight lines, which form quadrangular spaces, and present a general appearance resembling that or a Greek bordering. In other webs the threads are arranged in an irregular manner, so that the en tire structure of the web reminds one of the intrieate maze of the rigging of a full-rigged ship, while one species of spider does not suspend its web at all, but attaches it flatly upon a wall or door. In this latter case the threads are evi dently covered with an extremely viscid substance, which retains any insects accidentally alighting thereon. The "vibrating " spiders, if placed on the bottom of a tumble reversed and standing in a plate filled with water, throw out a web, which, adhering to some adjacent object, forms a sort of aerial suspension bridge by means of which the spider
escapes from captivity. The spiders found under the bark of the eucalyptus, if thrown into water, eject threads of web, and these, being wafted ashore, enable the spider to speedily haul itself to dry land. A spider inclosed on a sheet of paper within a circle of wet ink, to all appearance ejected a thread perpendicularly upward until it attached itself to the ceiling. The spider then climbed up the thread and escaped. Some fifty or a bundred common house flies were once noticed to swarm round and follow, for more than a hundred yards, a gossamer spider floating through the air, supported by the quasi balloon which this species is known to construct. This habit of the gossamer is well known to naturalists, but the behavior on the part of the flies has never been previously observed.

Wonderful Insect Eyes.

Physicians call attention to the increasing instances of defective or imperfect sight occurring in civilized countries, and attribute it to various conditions of modern life-the overwork of the eyes in childhood, the study of books in small print, the habit of reading by imperfect light, and many other causes. It appears certain that in the matter of eyesight the savage has usually the advantage of the civilized man. The gift of sight is one very unequally distributed among the animal world. Some creatures enjoy it in excess, like the eagle; others are totally deprived of it, like the earthworm. In many other instances the sense of sight, if not actually lacking, is extremely imperfect, as in the case of the mole. Insects are in many cases far more richly endowed with eyes than even birds or beasts. The little creature called a whirlwig (Gyrinus natator), which skims about on the surface of standing water, is furnished with a double set of optics, the upper portion of the eyes (fitted for seeing in the air) being placed in the upper portion of the head, and the lower portion of the eyes (fitted for seeing in the water) in the lower portion of the head, a thin division separating the two. Spiders possess six eyes-some species eight; centipedes twenty, while the eyes of many insects (bees, butterflies, dragon-flies) are composed of a number of facets, each eye being, in fact, a cluster of eyes. Dr. Hook counted 14,000 of these facets in the eye of a dragon-fly, and Leeuwenhoek found as many as 12,544 in another specimen of the same species. The latter naturalist adapted one of the eyes of a dragon-fly so as to be able to see objects through it by means of a microscope, and found that he could view the steeple of a church 299 feet high and 750 feet from the place where he stood; he could also distinguish if the door of a house, at the same distance, was open or shut. Fleas' eyes diminish as well as multiply objects, as Puget discovered by performing a similar experiment to that of Leeuwenhoek. "A soldier viewed through it represented an army of pygmies; . . . the flame of a candle seemed the illumination of a thousand lamps." Blind or imperfectly sighted human beings may think with envy of the beautiful provision of visual organs bestowed by Nature on some of her children; and yet many creatures live happily with but a small share of the blessings of sight. In some of the insects who possess the largest share of visual organs, some other sense-taste, hearing, or touchis deficient. Huber believes their sense of both hearing and taste to be imperfect. On the other hand, the blind earthworm will retreat rapidly into its hole if the light of a candle is thrown upon it, its sense of hearing or smell warning it of the approach of the danger it cannot see. A bat's senses of touch, hearing, and danger it cannot see. A bat's senses of touch, hearing, and Spallanzani tested this by the cruel experiment of destroying the sight of several bats, and then setting them free. In their flight through the room they avoided even the smallest thread placed to obstruct their way. Latreille, the French naturalist, states that there is a species of ants which are entireiy blind, but pursue the same mode of life as their sighted brethren.-London Globe.

The Wonderful Sunsets.

Concerning the wonderful phenomenon of our sun risings and settings of late, and the suggestion that it may be caused by volcanic dust from earthy or lunar volcanoes, I have his remark to make: If it were caused by such dust or mist it must sensibly affect the rays from the moon and sun, whereas no such effect is perceivable. Heavy and dense as that mist appears the moon rises from and sets below it with not the slightest diminution of its power to shine. The same may be said of Mars and Jupiter. Jupiter rises now in or near the Crab. I do not see that it affects the rays of any star. If it does not, then we may conclude that the cause exists far beyond the most distant star. Those wbo have the opportunity of ascertaining if these speculations are correct should report. Certainly it would seem that the cause of the phenomenon lies far beyond the orbit of our sun.
Oregon, Mo.

Sorghum sugar Experiments.

Prof. Collier, late chemist of the Department of Agricul ture, and a firm believer in the practicability of producing sugar from sorghum in sufficient quantities and of a quality to supply a great part of the demand for sugar in this country, appears to bave awakened the interest of the Agri cultural Department in a subject about which it was supposed to have become somewhat inefficient. According to a Washington correspondent of the New York Times, Prof. Wiley, of the department, in a forthcoming report, wil make public some interesting information about the experiments with surghum during the last year, and takes a more hopeful view of the subject than Commissioner Loring formerly beld. He pronounces erroneous the prevalent im pression that every farmer may become his own sugar maker. Sorgbum, unlike sugar beet, contains various non-crystallizable sugars, the separation of which demands much skill and scientific knowledge. Sorghum sugar will have to be made in large factories. The existing factories bave shown that it can be made, but how profitably or un profitably cannot be stated by Prof. Wiley, who suggests that farmers near factories may, in effect, make their own sugar by raising the cane and trading it at factories for sugar.

Cane giving 60 pounds of sugar per ton ought to bring the farmer 35 pounds, the rest of the sugar and molasses going to the manufacturer to pay expenses and yield profit. The profitableness of making sugar from sorghum depends largely on utilizing all waste products. The scums and sediments make manure bardly inferior to guano. Bagasse, or crushed cane, can be turned into manure by being thrown into hog pens, as at Rio Grande, N. J., or it will make a fair quality of printing paper. It is not economical to burn it. If the manufacture of sorghum sugar is proved to be profitable, it will result in supplying to a large extent ou demand for sugar; but as sorghum makes a great deal more molasses in proportion to sugar than sugar cane does, the Professor concludes that when there is enough sugar there will be a great deal more molasses than can be disposed of.
Prof. Wiley bas made experimentally some fair sample of rum and alcobol from sorghum molasses. Under favor able circumstances one gallon of molasses, weighing 11 pounds, would give 2.75 pounds absolute alcohol, 3.03 pounds of 90 per cent alcobol. and 5.5 whisky or rum Thus, each gallon of molasses would give nearly balf a gallon of commercial alcohol and two-thirds of a gallon o whisky or rum.
As it has been abundantly proved, he says, that sugar can be made from sorghum, the Government should nake no furtber experiments in this direction. Prof. Wiley bas tried the diffusion process, and finds it yields 20 per cent move sugar, but at a somewhat bigher cost than grinding. The Government, he thinks. should purchase machinery for large experiments in the diffusion process, and sbould raise its cane somewhere else than near Washington, as land ther is expensive and not adapted to the purpose. The Govern ment should also make arrangements with agricultural col leges or other agencies in various States for experimenting with sorghum culture to determine what parts of the cuuntry are most favorable to the culture of sugar-producing plants. Prof. Wiley suggests in each State the trial of two acres divided into ten plots-five for sorgbum, four for beets, and one for corn-to test for purposes of comparison the general fertility of the soil and the character of the season. The Government ought to carry on for a series of years the pro cess of selection of sorghum seed, in order to secure an improvement in the quality of the cane. It may be stated that the past season proved a disadvantageous one for sorghum sugar making, not only at the Agricultural Department, but generally. The conviction is growing among some of those who have made experiments that sorghum cannot be relied on to make sugar in the extremely Northern States, but that in spite of occasional successes in Minnesota there is a sorgbum belt, as there is a corn belt, north of which the crop cannot be relied on

Railway Bridge inspection.

Bridges, like car wheels, do not break down without showing signs of weakness long in advance. Careful inspection of wheels at frequentintervals has enabled railways in this country to practically elimiuate " broken wheels" from among the causes of accidents, at least those of a serious nature. A bridge failure is admittedly of a much more dangerous character thau one resulting from a broken wheel. It would be expected, therefore, that bridges would be much more carefully looked after than wheels; yet, on some roads, even in the vicinity of New York, faulty and dangerous structures of this class bave been allowed to stand on main lines for the last five years. Nominally, these bridges bave been inspected, and probably the flaws have been reported, but so long as no attention is paid to the defects the inspection is a farce. A dangerous wheel on the same road, if allowed to run under a passenger car, would cause the instant dismissal of whoever allowed the car to proceed, knowing that it was defective.
If the true, or inside, listory of many bridge accidents could be written, it would be found that numerous warn ings had been given and disregarded. The condition of the structures had not been hidden from the officers, and bad been continued long after they had passed the poin where danger wasimminent at each passage of a train.
One of the bridges alluded to as having been a long tim defective showed its first sign of weakness by the cracking
of a cast iron member. This crack has been slowly enlarging. Another member, through a mistake in placing the braces, is relieved from its proper load under certain conditions, and has been slowly rotating about its horizontal axis. At any moment, however, it is liable to experience a heavier bock or'stress than usual and turn over completely, or break from the application of a strain in a manner not contemplated by the designer. These facts have been known to the officers of the road for a long time. Attention bas been called to this particular bridge not only by their own inpectors, but by outside engineers.
[t is bardly necessary to add that engineers do not generally believe that bridges, roof trusses, buildings, or boilers fail from weakness or decay that could not bave been discovered by proper examination. Mysterious causes are no longer admitted by engineers of repute to have a place in engineering science. However, the inevitable conclusion is that failures of all kinds of engineering structures may be anticipated and prevented by taking proper precautions. The National Car Builder.

NUT LOCK.

The bolt is of the ordinary form and of any size of thread. The nut, Fig. 3. is threaded throughout its aperture to fit the bolt, and is formed at one side with a conical extension terminating in a cylindrical portion that is threaded. The extension is formed with longitudinal incisions, of which there are, preferably, four. The wasber, Fig. 2, corresponds in width with the extension of the nut, and bas its aperture tapered to fit the conical surface, and also bas a straight portion that fits the threaded cylinder. These threads correspond in the number to an inch with those on the bolt, and the conical surface is slightly swelled, as shown in Fig. 3. To use the device, the washer is first placed on the bolt gainst the body to be clamped, when the nut is screwed on the bolt, its extended portions entering the washer until the hreads on the end take the tbreads on the washer; the conical surfaces coming together, the nut is clamped on the

FULWILER'S NUT LOCK

hreads of the bolt. The nut is held fast by the clamping action, and the washer cannot become loose for the reaso that it must, to do so, move back against the pressure of be body. Tinis construction gives a long threaded surface o the nut, so that the pressure cannot strip the thread. The mooth conical surfaces commence to clamp as soon as in contact and increase in pressure as the washer moves up the ne.
This invention has been patented by Mr. J. A. Fulwile of Lexington, Illinois

Better Prospects.

It is evident to one who gets about among the manufac turers that there is a more hopeful feeling regarding business than there was at the beginning of December. Machine tools of the standard sorts are ordered to a much larger amount than at that time, and some establishments are keep ing their men busy in getting a stock of these tools ah ead which, of some makes, are rarely a drug in the market. The demand for special tools has somewhat fallen off, as might bave been expected when the newly started manufac ories of the last building season were completed but the is a call for small machine tools fully as imperative as a year ago, one manufacturer of small machiue tools and appliances reporting that he has all that his means will enable bim to undertake, and another. who commands the production of two styles of patented planer and lathe tools, stating that wo men on the road are doing well for themselves and for him in their sale.

Tobacco and the Pule

Dr. Troitski has made a number of observations upon the effects produced on the temperature and pulse by smoking. He found that in every case, varying according to the condition of the individual, there was an acceleration of the pulse rate and a slight elevation of temperature. If the verage temperature of non-smokers were represented by 1,000 , that of moderate smokers would be 1,008 ; and while he beart in the former case was making 1,000 pulsations in the latter it would beat 1,180 times. It is in the latter effect that be thinks the danger of tobacco smoking is man-ifested.-Journal de Medecine. de Bruselles.

How to Make Burnt Cork.

The popular impression about the application of burnt ork by minstrel performers is that it is rubbed on the face and hands of the performer from a cork whose end is charred in a convenieut gas jet. This is incorrect. To supply the burnt cork used hy minstrel performers of this city occupies the entire time and earzest attention of one interesting character. A little man, whuse place of business is on the curbstone on the north side of Pine Strcet, ex plained to a reporter the process of making it.

I first gather my corks. I get them from the big bottling bouses, who buy lots of bottles, many of them with cork that wouldn't keep tbe air out of wine or beer.
"When I get ready to burn, I put the corks into those three washboilers you see there with hol s punched in their sides and bottom, sprinkle alcohol over them, and set them afire. Then I fill one of those muslin sacks with the charred cork, and knead the sack in this barrel of water. Tha forces the powdered charcoal through the sack into the water.
" When I bave worked all my charred cork through this sack into the water, I drain the water through a close can vas sack you see on that frame there, and what remains in the canvas sack is ready for the artists. I put it up in one pound tins, and they use it out of them. When a per former is ready to 'black up,' as they call it, he takes a little of this black paste in bis bands and washes his face neck, and bands in it, and be is blacked as you see bim on tbe stage:"-San Francisco Call.

A Remarkable Phenomenon seen in Porto Rico. A correspondent in Humacas, Porto Rico, describes beautiful comet observed by himself and a few friends in Humacas on the 21st of November, 1883, between nine and ten o'clock in the evening. He writes that "its head in clined to the west and its tail extended majestically due east, and at an altitude of about 35° to 40°." It was observed on "three successive nights, but on the fourth night it dis appeared."
The writer asks for information, and asserts bis belie that he has seen again the great comet of 1882 . His con clusion is an utter impossibility. The great comet of 1882 is now far beyond the reach of mortal vision. Moreover it was visible in the morning instead of the evening. The latest observations of this comet were made by Dr. Schmid at Athens, on the 27th of April; by Mr. Atkinson, of New Zealand, on the 6th of May; hy Mr. Maxwell Hall, at Kempsbot, Jamaica, on the 6th of May; by Prof. Ricco, at Palermo, on the 12 th of May, when it was extremely faint. The very last observation was made by Mr. Thome, assistant at the Cordoba Observatory, in South America, where it, was seen until the 1st of June. and described as "an excessively faint whiteness."
It was announced that this comet would be in a position during September and October where it would probably be visible in a powerful telescope in the early morning, when the moon was out of the way. We have ueard no report of its visibility, and therefore conclude that it is winging its flight through the star depths to return no more until the passage of several hundred years will complete its circuit, and bring it safely back to our domain.
Neither can the comet seen at Porto Rico be the PonsBrooks comet, now plainly visible in the northwest as a small nebulosity with a very small tail when seen by the naked eye; and as a nebulous mass with a bright nucleus and a well defined tail, when seen in a telescope.
We cannot therefore throw any light upon the celestial phenomenon seen in Porto Rico by our correspondent and his friends. A comet such as be describes would have been seen elsewhere, and its presence would have been telegraph ed all over the civilized world. We should like a drawing o the strange visitor and its position among the surounding stars. We should like also to know whether the observations were made with the naked eye or with the aid of the telescope
Perhaps the Java earthquake bad some connection witl the beautiful phenomenon. The superb sunrises and sunsets occurring nearly at the same time are traced to this source by scientific men of the bighest authority. Cosmic dust takes on wonderful forms, under the right condition for development

A Young Electrician's Theory.

An Ohio boy, who wishes to make electricity bis life study, sends us his theory of its generation. He believes it is made by the earth being hot in the interior acting on the cold at the poles, which are supposed to be of platinum that thus electricity is given off, not only to make the auroras so frequent in high latitudes, but to charge the whole stratum of air around the globe, the atmosphere in this way acting as a storage battery
In regard to matters where the wisest have thus far ob tained so little satisfaction, our young correspondent expresses himself in a way which indicates a thoughtful observance of what is going on in this most interesting field.

The Oxide Bronze Company, of Philadelphia, send us ertifate of result of testing, for tensile strength, of a sam ple of their oxide bronze. The sample tried was of the are of 0.5574 sq . in. in cross section, and broke at $20,350 \mathrm{lb}$., equal to $36,502 \mathrm{lb}$. per sq. in. This k onze is a new com position for which many advantages are claimed.

