srientific sumerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
O. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage incluade....
One copy, six months postake included
 ¢ratis for every ciut, or five subscribers at \&
same proportionate rate. PostaRe prepaid.
Remit ns postal order. Address
MUNN \& CO.. 361 Broadway, corner of Franklin street, New York.
The Scientific Amorican Supplement
is a distict paper from the SCIE NTIFLCAMERICAN. 'THE SUPPLEMENT,
is issued weekly. Every number contains 16 octavo pages uniformin
 with Scientivic Ambrican. Terms of subseription or SUPpLementr,
85.00 a year, postage paid, to subscribers. Bingle copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined liates.-The scientific american and supplement will be sent for one year postage free. on receipt or seven delars. Both papers to one address or different addresses as desired.
The satest way to remit is by draft, postal order. or regis The sufest way to remit is by draft, postal order. or repistered letter.
Address MUNN $\&$ CO., 661 Broad way. corner of Yrankliin street, New Yor Scientide American Export Edition.
The Siwnvifici American Export Edicion is a larke and splendid peri-
odical, issuad once a month. Each number contains about one hundred
 platere and pages of the four preceding weekly issues of the sci wrwtric
AMERLCAN, with its splendid engraving and valuable information : (2.) AMERICAN, with its splendid engravings and valuable information: (.2.)
Commercial, trade, and manufucturing announcements of leading houses. T'erms for Export Edition, 85.00 a year, sent prepaid to any part of the
world Single copies 50 cents. Manueacturers and others who desire world. Single eopies 50 cents. VF Manu aacturers and others who desire
to secure foreign trade may have larke. and handsomely displayed announcements published in this edition ata very moderate cost.
 lation in all commercial places throughout the world. ${ }^{\text {a }}$ ddress MUNN \&
CO., 381 Broad way, corner of Franklin street, New Tork

NEW YORK, SATURDAY, JUNE 14, 1884.

RFMOVA工.

The Scientific American Office is now
located at 361 Broadway, cor. Franklin St.

TABLE OF CONTEN'S's OF
THE SCIENTIFIC AMERICAN SUPPLEMENT
NO. A소고,
For the Weok ending June 14, 1884 .
Price 10 cents. For sale by all newsdealers

THE BROWN STONE QUARRIES OF CONNECTICUT. Probably the most extensive quarries of red free stone "brown stone" in the world are on the Connecticut River at Middletown and at Portland, on opposite sides of the river fifteen miles below Hartford, the capital of the State. The Portlaud quarries on the east side of the river have been most extensively worked, and the place gives a local name to the stone as " Portland stone."
A recent article in the Hartford Daily Times gives an array of facts concerning these celebrated quarries, some of which are quoted in this article. It appears from undoubted historical evidence that these quarries were worked in 1645,
239 years ago, as there is an ordinance alluding to them at that time. The deposit of brown sandstone at Portland covers an area of 200 acres, and is practically inexbaustible. It lies in horizontal strata, usually with each stratum in the upper levels varying a trifle from the other in fineness of the sand. Occasionally there is found an intermixture of tine pebbles. Generally speaking, the deposit is not unlike that of silt upon a beach. In one of the three quarries now worked, several acres have been quarried to a depth of 200 feet below the surface. As an experiment, some years ago, to decide for business reasons the probable depth of the sandstone, a diamond drill was started downward from the 200 fuot level. It was driven 312 feet, making 512 feet in all, and without reaching the bottom of the depositl A core that was taken out showed no material change in the character or quality of the rock.
"The sandstone" says Prof. Rice, of Middletown, " was deposited in a long, narrow estuary, extending from New
Haven nearly to the northern boundary of Massachusetts. No fossils have been found except trunks of trees and tracks. The latter are probably not tracks of birds, but of reptiles and amphibia." The latter opinion, it will be noted, is directly contrary to the popular belief in the "bird tracks," for which the Portland quarries are widely known. The sandstone lies in horizontal strata, usually, and every few feet there is a well defined horizontal crack. On lifting a flat section of stone, the tracks are found on the surface of the stone beneath, with corresponding projections of the upper stone fitting into them. Professor Dana, in that model text book, " The Geological Story briefl y'Told," coincides with Professor Rice that the tracks are those of reptiles and amphibia. The late Edward Hitcbcock, father of the present State Geologist of New Hampsbire, and a famous writer on geological topics, was the first to assign to these fossil tracks in the Connecticut Valley sandstones their true significance in geology. His views wers received with incredulity at first, but have since been adopted by the scientific worla:
The stone is removed by blasting and by drilling and splitting. The blast is generally of powder in a single bole -from 25 to 60 pounds of powder in a nine inch hole 15 or 20 fect deep. The object of this is to shatter the rock, so that it may be easily broken into rubble for foundations. When large and regular blocks are required, a chiseled cut is made one or two inches wide and of varying depth, iuto which wedges are driven with sledges, and the block slides off at the interception of a horizontal seam. Flood, the California millionaire, has given the Middlesex Quarry Company an order for the stone for the grand mansion he is to erect in San Francisco. It calls for 40,000 cubic teet of best quality, such as is used for monuments. This will make twentyfive schooner loads. It is shipped to Newark, N. J., there dressed, boxed, and sent to New York, to be shipped for a four months' voyage around Cape Horn. The freight is $\$ 7$ per ton, and Flood pays, therefore, $\$ 28,000$ extra over the cost of putting up a similar building in New York. It is estimated that the bill for stone, when set in the walls of his residence, will amount to $\$ 200,000$, but this is a smallamount for the mere shell of the house, whose total cost will be nearly $82,000,000$.

GAUGES FOR MECHANICAL WORE.

In a lecture delivered before the Franklin Institute a short time ago and recently published, Mr. George M. Bond spoke of the modern accuracy in the work of the machinist ${ }^{3}$ / as compared with former crudity. James Watt, in a letter to a friend, claimed that he had attained remarkable accuracy in boring a cylinder of a steam engine and fitting its piston so closely that "the thickness of a balf crown could not be introduced between them." Standard gauges are now made that show errors of one one-hundred-thousandth of an inch, and work is exacted to one filty-thousandth of an inch. Such accurate work is not, however, generally necessary, except in the construction of gauges; but these standard gauges are the means provided for keeping within proper,
useful, and practicable bounds in the production of thousands of pieces of the same size and shape in which oftentimes a certain amount of variation is allowed both plus and minus. A certain amount of looseness must be allowed, for instance, in the fit of journals and bearings, the amount to be determined according to the length and size of the journal; but this variation should be referred to some particular gauge as a standard.
Tbis allowance of difference is necessary in the fittings of bearings and journals, as, if made with the extreme accuracy of gauge work, the surfaces would cohere and speedily destroy each other. This is seen in the construction of end measure pieces as gauges; where two are pressed together by their ends they will cohere even in a vacuum. In the perfect fit of plug and ring gauges where the plug is
at the same temperature, it is necessary to keep the plug moving, or the easy sliding fit will change to a driving fit. In fact, there is no room for one to expand and not the otber. A plug gauge of three-quarters of an inch diameter but which is tbree-ten-thousandths of an inch smaller than the ring, is a loose fit which can be tested by feeling; and if the plug andring are clean and of the same temperature, the plug will drop through the ring.
In order to make standard gauges within the limit of accuracy necessary for interchangeability, to fulfill the requirements of modern shop practice, line measure is the best standard for practical reference. This measurement is by means of engraved lines on a ruled steel bar, the tests heing made by the microscope. For this purpose a hardened steel bar is used, the subdivisions being ruled or en graved by a diamond.

OOR NEW SUPPLEMENT CATALOGUE.

A new catalogue of valuable papers contained in the Scientific American Supplement is now ready, and will be supplied gratis to all readers who choose to send us their
This catalogue exemplifies the astonishing progress that is now being made in the various branches of science and the arts. Not quite ten years have elapsed since the publication of the Supplement was begun; yet within this brief period many important discoveries have appeared and many great works have been undertaken or completed. Among them the Telephone, the Electric Light, the Panama Canal, the Brooklyn Bridge, the St. Gothard Tunnel, are conspicuous. The Supplement records the complete history of these and many other useful achievements; it presents in compact orm the most recent papers by eminent writers in all the priucipal departments of general, technical, and theoretical science, embracing Biology, Geology, Mineralogy, Natural History, Geography, Astronomy, Archæology, Chemistry, Electricity, Mining, Mechanical Engineering, Technology, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. The array of authors is great; it includes almost every prominent name connected with science, sucb as Huxley, Tyndall, Crookes, Maxwell, Siemens, Reynolds, A. M. Mayer, Bessemer, Tissandier, Dumas, Gladstoue, Newberry, Remsen, Leeds, Mallet, Thompson, Hughes, Hopkins, 'Trowbridge, Ericsson, Copeland, Sellers, Eads. MacCord, Hammond, Loomis, and hundreds of others. Most of the papers contained in the Sopplement are illusrated, many of the drawings being to scale.
The new catalogue occupies 24 large quarto pages, same size as Scientific American. The extensive range of its subjects will be understood wiben we state that it includes over 5,000 titles. Stereotype plates of all the issues of the Surplement have been preserved, thus enabling us to supply, on call, any particular numbers that may be desired, at 10 cents per copy. No periodical in the world offers so large and varied a collection of scientitic, technical, and useful papers, all of them readily available to the public at a low price, as the Scientific American Supplement. As beore stated, the new catalogue will be sent, free of charge, to any desired address. Send for it to Munn \& Co., 361 Broadway, New Yorl, office of the Scientific American.

A SUGGESTED LATHE IMPROVEMENT.

The ordinary back-geared engine lathe of the macbine shop is not a special tool, it being used generally for turning, boring, and screw cutting, and frequently for drilling and chucking. Tbere are, bowever, special lathes, as boring latbes, pulley latbes, and others. It is proposed to add to the list of special tools for the machine sbop a screw cutting lathe oi a pattern somewhat different from the ordinary back-geared lathe. Iv constructing a special machine recently, ou which the principal rotating spindle had to be reversed in motion instantly and frequently, the superintendent introduced a supplemental spindle carrying two step cones with their small ends contiguous. These turned freely on the spindle, and were belted to run in opposite directions. Between them was a sliding friction clutch that by a very slight movemeut of a lever could be made to engage with either cone, as desired. The arrangement suggested the possibility of an improvement in screw cutting lathes by constructing the latbe head in a similar manner, and dispensing with the overhead clutch, which requires so long a lever that the time used up in shipping interferes with accuracy of work.
The details are not completed as yet, but the superintendent, who is a skillful mecbanic, is confident that much is to be gained in the way of positive and instautaneous reversing by having the clutch directly under the operator's band.

A REMARKABLE STRAIGHT EDGE.

Some notice was made in the Scientific American of March 29, 1884, of a trio of remarkable straight edges made by the Pratt \& Whitney Company, Hartford, Conn., wbich are each 12 feet long and wouderfully exact. These straight edges are castings of iron, forming a chord and a segment of a circle, the extreme radius in the center, from the chord or straight line to the higbest point of the curve, being 20 inches, the depth gradually tapering on a curve. The width on the face is about $21 / 2$ inches, making a face $21 / 2$ inches by 12 feet. Between the chord and the curve the casting is a honeycomb of diagonal braces. Recently some remarkable tests have been made with these straight edges, one of them being a test of flexure. The straight edge was placed on a true and test of flexure. The straight edge was placed on a true and
perfectly clean planer bed, with a slip of tissue paper under
eacb end. These slips raised the entire straight edge, so that another slip of tissue paper could be moved under its face from end to end. Then a man weigbing 220 pounds sat on tbe center witbout deflecting the straigbt edge a particle. But in order to avoid all opportunity for error on account of the possible inequality of the planer platen, two of the straight edges were placed face to face, oneon the other with the sbims of tissue paper between, and the superimposed weigbt of a heavy man, with the same result; the middle slip of tissue paper could be slid between the two faces at any point between the end shims. It is doubtful if better accuracy bas ever heen secured.

Milk Tester

The instruments used for testing milk are the thermometer, the cream gauge, the lactometer, the lactoscope, the pioscope, and the lacto-butrometer. Tbe value of milk testers bas, bowever, according to the Farmers' Gazette (Dublin), been but little appreciated by British dairy farmers in the past.

In all those countries with which British dairy farmers have to compete the farmer would be laughed at," adds the Gazette, "who would attempt the making of either cheese or butter without testing apparatus. A dairymaid would be surprised if you proposed to make butter or cbeese without a thermometer, and even a complete set of testingapparatus, to enable her to go to work scientifically and successfully." It is tberefore satisfactory to note "tbat dairy farmers and town dairymen in England are becoming alive to their position in competition witb the continent of Europe, the United States of America, and our colonies."
Tbe proportion of cream in any sample of milk can be determined by the cream gauge, whicb is simply a glass tube, about five inches long, graduated from zero downward. The milk to be examined is poured intotbis tube up to zero, and allowed to stand about twelve hours, at the end of which time the cream will bave raised to the top, andits percentage may be read off. 'This instrument, altbougb very useful to those who sell cream, is not reliable in detecting the adulteration of milk.
The lactoneter, or bydrometer for milk, indicates the specific gravity of milk; tbat is, the relative difference in weigbt between milk and water. The specific gravity of water is 1,000, and that of milk may be taken to average about 1,030.
The specific gravity of milk varies, bowever, not merely with the amount of water it contains, but with the amount of butter fat in its composition, andfortbis reason the lactometer used alone is of little or no practical value. As cream is ligbter than milk, and of nearly the same specific gravity as water, it follows that when milk is very ricb, or contains a large proportion of butter fat, its specific gravity is less tban the ordinary standard, and if tested by the lactometer alone might give the idea tbat it had been watered. A cream gauge should tberefore always be used in connection with the lactometer, in order to test the amount of cream or butter fat in milk.
The best instrument for testing the value of milk bitherto invented is the so-called lactoscope. This shows, with considerable accuracy, the percentage of fat; and fat, being the most valuable constituent of milk, forms a safe gauge as to tbe purity and value of the milk.
The action of tbis instrument depends upon the fact tbat the opacity of milk is chiefly caused by the globules of cream So that when water is added to milk until we can see through a certain proportion of it, we are able to do so because we separate the cream globules to tbat extent tbat light can pass througb between them witb a certain degree of clearness. Tben, if we measure the amount of water added, we bave q.ite an accurate gauge for comparing difadded, we bave quite an
ferent samples of milk.

Overcrowding the Principal Cause of Diphtheria.

Dr. T. J. Hutton bas, within the past tbree years, treated sixty-four cases of dipbtberia, occurring in Minnesota, and says in the Medical Record: These cases were all in comparatively new bouses, in a belt of country where white
men never lived before, so that the soil contained no sewage men never lived before, so that tbe soil contained no sewage
and had no accumulation of surface filth. Dipbtheria had never before been there, and could not bave been brougbt by visitors; it was of a malignant type, and some families lost five and six members eacb. A!l of the cases were in cluded in seventeen rural outbreaks, three of wbich were in summer and fourteen in winter, and every house attacked was small and greatly crowded. Many of the winter outbreaks bappened when the temperature was 30° to $40^{\circ} \mathrm{F}$. below zero, whicb would bave been death to all ordinary surface germs, and in one instance the thermometer registered 60° below, when the surface of the earth and all bodies of water were frozen solid. From the experience thus derived, of all the : details of which a careful record was kept, Dr. Hutton adopted a plan of treatment, which be summarizes as follows:

1. Diphtberia is caused by ocblesis, or crowd poison. 2. It is an emergency-' an event or combination of circumstances which calls for immediate action or remedy." 3. It, is at first a local disease, resembling the animal poisons -snake bite, mad dog bite. Properly treated in this stage,
it is one of the most curable of diseases. 4. It is contagious and infectious, and the poison may retain its vitality from tbree montbs to two years. 5. Tbis poison is not identical with that of measles, croup, or scarlet fever, nor is it intimately related to them. 6. Diphtheria may occur
may prove a dipbtberia factory. 7. Its period of incubation is from twelve bours to several days. 8. Directly, temperature none; indirectly, mucb. Crowding can occur in any temperature; practically it occurs most in cold weatber.
2. In the local stage there is but one indication-to destroy the false membrane already formed; prevent furtber formation and spread. For tbis only two remedies are required as ', a rule. 10. In the stage of systemic infection there are two indications-the foregoing, and to support the system. A
remedy or combination, internally, with food and stimulants meets this indication 11 , is the first requisite in treatment. 12. Being an asthenic disorder, and prone to beart failure, rest in the recumbent position and warmtb to the extremities assist in the cure. 13. The pbysician must not only prescribe, he must administer the local treatment, when present, and see to it that food and medicine are administered punctually in his absence. 14. The physician should visit severe cases three times a day; all cases at least once a day for the first nine days. 15. The physician sbould not despair, though called late. I have seen patients, apparently moribund, restored by fresh air and food alone. So have other observers.
The two remedies used in the local stage are lunar caustic and chlorate of potassa. Twenty grains of the former in one drachm of water is applied thorougbly every hour or two to the affected parts, and continued so long as tbere is formation of membrane, whetber two days or seven. A saturated solution of the chlorate is used as a gargle every fifteen minutes. One ounce and a balf of potassa is ordered to eigbt ounces of water. The latter administered internally, if the patient be too young to gargle. I use none but Squibb's. Common liquid food. This has been the sole treatment when called early.
Witb the second stage, or to forestall it, comes the second indication, to support the system, "the disease being perbaps of more lowering cbaracter tban any otber witb wbicb we are acquainted." As a rule, three remedies meet this indication: Cblorate of potash, tincture of iron, and quinine. For adults these formulæ are used:
Tincture ferri cbloride, 3 v . Quin. sulpb., gr. xvj. Sirup cort aur., Aq. M. P., āā q. s. ad ξ iv. A teaspoonful every two hours.
Potass. cbloral, 3 iv. Aq. dest., $弓$ iv. A teaspoonful every two hours.
These are administered alternate hours, nigbt and day, if Fivent be awake.
Five remes
Five remedies-lunar caustic, cblorate of potassa, tincure of iron, quinine, and carbolic acid-meet both indications fully as a rule. In all cases carbolic acid is used as a disinfectant, and in nasal cases it is used in the form of a vapor, or in glycerine, or in a one per cent aqueous solution. In the septic slage the dipbtberia patient can bardly be overfed or over-stimulated. Many die for want of food and stimulants to tide them over, the popular notion being that sick people do not require food, especially those wbo manifest febrile action. Two quarts of milk, each pint holding a fresheggin solution, one cupful of homemade beef essence, properly seasoned, a pint of pure port wine, or balf that quantity of pure brandy, form a fair skeleton of one day's rations for an adult. Food and stimulants are administered every hour.

How Paper Pails are Made.
At a paperware factory in Syracuse, N. Y., intended to urn out 500 paper pails a day, the process of making is thus described in a local paper:
Rags and paper waste aresteamedin vats for a few hours, and then thrown into beating trougbs partly filled with water. Tbe " beating" is done by a revolving cylinder witb fifty knives set at different angles. The knives reduce the
rags to a dirty purple pulp, and cbange the newspaper wrappers to a soft mass. About 400 pounds of material are put under each beater. When paper and rags are eacb reduced to pulp, the opening of a trap lets it run into the stuff cbest in the cellar. One part of rag pulp to tbree of paper is run into the chest. When pumped fiom the stuff cbest into the rough of the winding machine, the future pail lookslike thin water gruel. A hollow cylinder covered with brass wire splasbes around in the trougb, and the pulp clings fast to the wire. After the cylinder bas performed a balf revolution it comes in contact with anotber cylinder, covered with felt, that takes off the pulp. As the large cylinder goes down on the return trip, and just before dipping into the trougb gain, all little particles of pulp sticking to the wire are wasbed off by streams of water from a sieve. On the inside of the cylinder is a fan pump that discharges the waste iquid.
From the felt covered cylinder the pulp is paid on to the forming cylinder, so called. It is about the sbape of the paper cone caps worn by bakers and cooks, but made of bottom part of the pail toward the workman. The forming oll drops automatically when pulp of the required tbickness is wound around it. From bere the now promising pail is put in the pressing macbine, which looks something like a silk bat block, in six sections, with perforated brass wire
upper faces. The sections move from and upper faces. The sections move from and to a common center, and the frame is the exact size of the pail warted. The workman drops his damp skeleton of a pail into the frame, toucbes a lever, and the sections move to their cener and squeeze the moisture out of the pail. The pail is still a little damp, and spends a few hoursin the drying room
at a temperature of about 150 . The sections of the pressing
macbine mark the bands which are seen on the finisbed pail. After it is dry the pail isironed, or calendered, as it is caHed The pail is drawn, like a glove, over a steel forming roll, whicb is heated, and is ironed by anotber revolving calen der, with steam thrown on the pail to keep it moist as if it were a shirt bosom. The pail, or ratber its frame, is pared at each end, puncbed with four boles to fasten on the bandle, and corrugated, or channeled, for the putting on of the iron boops. A wooden p.a.ce large enough to spring the pail so that the bottom can be put in, is inserted and the paper bottom beld under a weigbt which drops and knocks the bottom where it belongs. The factory has a macbine of its own invention for the bending of the hoop into sbape.
After it has been cut to the proper length and widtb, the straigbt strip of iron is run over a semicircular edge of steel, on which it is beld, and drops on the floor a round boop witb a fold in the middle to catch the top and bottom edges of the pail. After a waterproof composition is put on, the pail is baked in a kiln for about forty-eight hours at a temperature between 200 and 300 degrees. It is dried after its perature between 200 and 300 degrees. It is dried after its coats of paint, witb a drying between, and a coat of varnisb which is baked on, before-with its wooden bandle and brass clamps-the pail is ready for the hand of the dairymaid, bostler, or cook.

Insect Pests.

A subscriber to the American Cultivator relates bow it ometimes happens that the destructive pest known as the canker worm makes its appearance on the apple tree all of a sudden, even where it has not been in the babit of visiting. Then, of course, it is too late to use any preventive, therefore a cure must be sougbl. I bave found, says the writer, under certain conditions that this worm can be destroyed by the use of Paris green. Put a beaping teaspoonful of Paris green into a pailful of water, apply the mixture with a force pump, tbrowing the water througb the tree thorougbly. Tbis sbould be done as soon as possible after the presence of the worm is ascertained. I found one applica tion to be sufficient. Soon after the application of the liquid, the worms can be seen to let go and string down from tbe tree.
Tbe present is the time for looking after the currant bushes, and if the currant worm makes its appearance, apply powdered hellebore. Place the powder in a common dredging box, and sprinkle the bushes when the dew is on. I bave usually found it necessary to go over them when in blossom, then again after the fruit is set and of considerable size. This remedy bas never failed with me, and does not injure the fruit.

The Corrosive Action of Coments upon Metals.
The late Mr. J. C. Trautwine, civil engineer, published a brief memorandum, giving the result of some experiments whicb be bad made to determine the corrosive action of hydraulic cements upon metal embedded in them. The cements used were Englisb, Portland, and Louisville; in addition to whicb be tried plaster of Paris pure, and also mixed witb equal measures of the cements. All were of the cousistency of common mortar; and all were kept in an upper room during ten years, unexposed to moisture other than that of the indoor atmospbere. The metals were partly embedded in the pastes, and partly projected from them. They consisted of cut ron nails, some of which were galvanized; smooth iron wire nails; brass in both sbeet and wire; zinc in sbeet; copper wire; and solid cylinders of lead $3 / 8$ incb diameter. The result at the end of the ten years was tbat all the metals in both the pure cements were absolutely uncbanged; and tbis was also the case witb the plaster of Paris, with the exception of the ungalvanized nails, which had become covered with a thin coating of rust, as were also those in the mixtures of plaster and cement, but to a less degree. Mr. Trautwine concludes from his experiments that if dampness be excluded, botb cement and lime mortar will protect from injury all the metals employed in ordinary constructions for an indefinite time.

Forbidden Coloring Materials in France.

Serious accidents have frequently resulted from the employment of wrapping paper colored witb poisonous materials for packing alimentary substances.. Tbe "Prefecture de Police," Paris, bave therefore issued the following regulations:
Manufacturers and dealers in all kinds of food are forbidden to use the undermentioned colors, and will be beld personally responsible for any accident whicb may occufrom sucb use of them.

MINERAL COLORS

Containing copper-"Cendres bleues," mountain blue. Containing lead-Massicot, minium, pale orange, oxycbloride of lead, Cassel yellow, Turner's yellow, Paris yellow, white lead, ceruse, silver white, Naples yellow, sulpbate of lead, cbrome yellow, Cologne yellow, cbromate of barium. Containing arsenic -Arsenite of copper, Scbeele's green, Schweinfurt green, vermilion.
organic colors.
"Aconit Naples;" fucbsine and its immediate derivative, such as Lyons blue, eosine; coloring materials containng nitrous compounds; such as naphthol yellow, Victoria yellow; tropeolines, xylidine red, etc.
Cbildren's toys must not be colored with poisonous pig- ments.

The Cod Liver Oll City-Hammerfest.
If we pass the wonderful Lofoden Islands, and continue tbe route toward the north, we arrive at Hammerfest, where we quit the birds for tbe fishes. As for the city itself, imagine a town watered by cod liver oil, and you will have some notion of the odor. The captain had warned tbe party beforehand, but their bandkerchiefs steeped in eau de Cologne were but. a slight defense. Tbis borrible smell is due bothto the important manufacture of the oil and to the thousands of fisb on burdles drying in the sun.
The two to three thousand inhabitants of Hammerfest, the most northern town in the world ($71^{\circ} \mathrm{N}$.), are all occupied in this trade. Suffice it to say that a single boat well equipped, well stocked with bait, and in a good place can take from 500 to 600 cod a day. The scientific estimate tbat the ovary of a female of ordinary size contains nine million eggs. Tbis is the mode of preparation:
First they remove the head and abdominal viscera; the ovary serves for bait; the liver yields the oil. Not long ago the heads were wasted; now they are dried and powdered and used as mazure for poor land.
The body, dried hard and rolled in sticks, is called stockfish, which isimported chiefly into Greece, Italy, France, and Spain.
The fresh livers are piled in barrels, slightly pressed, and the virgin oil runs out, unfortunately a kind rare in pharmacy, though its quality is beyond doubt superior. Then the livers are treated by a press similar to those used in Normandy for cider.
This is oil, second quality; color, reddish brown.
The waste livers are subjected to strong heat, and an oil is produced, third quality and black.
Whales afford an industrial occupation at Hammerfest.
The day before the arrival of Monsieur Labonne, the fishermen had caught a whale without trouble. The creature had stuck in a small creek which made a sort of natural trap, and it was unable to regain the open sea. The captain was asked what might be the value of the fish; and he replied 6,000 crowns (£336). They begin with selling rather dearly the 600 or 700 fins or whalebones; then they make great profit out of the immense quantity of fatty matters contained in the huge creature. This fat, improperly calledloil, is naturally liquid, and is used for dressing skins. Beside the oleine, margarine, and phoceine, there is a volatile principle of the odor of leather, which gives the latter its cbaracteristic smell.
Turning to quite a different train of ideas, there is a monument at Hammerfest erected to the memory of Struve, who measured an arc of meridian from Ismail on the Danube to the frozen ocean precisely at this spot.
Farther north all cultivation disappears, and tree vegetation ceases-nothing but an underwood of stunted birch and willow.
Fish, even the largest, is caught with extreme ease; the large red hooks are scarcely plunged into the water than up comes an inhabitant of the sea, not a miserable specimen, but weighing some pounds at least.

MACHINE FOR WORKING BUTTER.

Upon each side of the stationary portion of the working platform, which is fastened to the middle of a common frame, are hinged parts that have handles at the outer back corners to aid in raising them when it is desired to throw the butter on to the middle of the table. When the leaves are open, the top of the table is a plane surface with a slight incline forward to carry off the water from the butter; and to prevent the water running over the edges, small grooves are made near the edges of the leaves. The connecting arms are made of iron, one end being firmly bolted to the levers and the other end being provided with a roller which travels in a groove in the side of the frame. The levers carry the working roller. This construction of the lever admits of a

WASSON \& HITT'S MACHINE FOR WORKING BUTTER
free motion backward and forward, or upward, at the option of the operator. A sheet of white cambric or flannel is fastened over the entire table.
The machine is operated by placing the butter in tbe center of the table, and then working the roller backward and forward by means of the lever handle. When the butter has worked its way nearly to the outer edges, it is thrown back upon the center of the table, by first raising the lever out of the way and then lifting the side leaves.
This invention has been patented by Messrs. J. Wasson \& R. T. Hitt, of La Porte City, Iowa.

IMPROVED SAW ARBOR.

The engraving represents a cbeap and effective device for bolding circular saws for the purpose of jointing, setting, and filing them. The saw arbor or mandrel is journaled in bearings on a suitable frame, and at one end is made coneshaped as shown. A corresponding hollow cone and sbaft fit over the arbor and cone; the hollow shaft being of less length tban the inner one. When it is desired to clamp a saw upon the arbor, the hollow cone is removed, and the hole in the saw placed so as to rest upon the face of the cone wben the hollow cone is replaced and its end pressed against the face of the saw. The sleeve is then washered up

until the washers abut against the nut on the end of the shaft. Upon tightening the nut the saw is pressed against the cone and held firmly in place. Means for revolving the arbor, eitber by pulley or crank, are provided. The file is carried uponthe end of the upper of two cross bars, which are adjustably clamped upon the upper and under surfaces of the sidebars of the frame by a bolt and nut, as shown in the perspective view. With this device saws having eyes of diameter of the cone, can be held securely in place.
This invention has been patented by Mr. T. N. Hacket, of Emporium, Pa.

Electricity and Vital Power

If we wish to judge of the electrical condition of the atmosphere, we do not examine for that purpose a paving stone, the trunk of a tree, or the surface of a lake. They undoubtedly experience the effects of the cbanges for which we are looking, but tbey are not fitted to show tbem, and
we select instruments which are sensitive; tbat is, those wbose structure enables them to make manifest the changes as they occur. And we must apply precisely the same method of common sense if we would fairly learn how real and decided is the effect of atmospheric electricity on human health. We are well aware tbat the degree of individual susceptibility to the influence of external causes varies most remarkably, and this is true of morbific causes as fully as of ny others. The "seeds of disease," to adopt a popular term (whether we accept the germ theory or not), are floating about us in myriads without number, and are inhaled by us with every breath, and yet the diseases are manifested only here and there, wherever the "seed" finds a susceptible point for its growth. In the same manner, though the electrical influence may come alike upon all, yet is its effect made manifest to us in certain cases with great power, while in others we fail to detect it.
Inasmuch as the two forces have so much in common, it is reasonable to infer that any disturbance of the nerve force should be greatest and most easily seen and measured where the vital powers were in an enfeebled condition, and most strikingly of all where the nervous system itself was in an irritable hyperæsthetic state; and this is precisely what is noted in constant clinical observation. Every physician whose line of practice brings under hischarge many patients suffering from depression of nerve force, that which is of late recognized as neurasthenia, sees daily proof that they are more sensitive to electrical changes than any electrometer. The approach of a thunder shower is felt and mentioned by them ten twelve hours or more before its arrival. Sometime ten thousand needles," as they expressit. Not unfrequently it induces active and even violent disturbance of the bowels, which will not subside without assistance, even after the cause has passed away.
Very often, in those hysterically inclined, it brings on ysterical unconsciousness, lasting many hours. And where no physical demonstrations occur a heavy mental depression, what they of ten term ' a fit of the blues," gives evidence tha the electrical force is bearing down the nerve force sadly. And it must be noted that these effects are not to be con-
founded with those produced by fear of the thunder; to those we make no reference.
Still again, without any electrical display in the form of ightning and tbunder, there of ten come similar conditions of the atmospbere, continuing for, it may be, many days, and during the whole of tbat time every nervous patient is under a burden, thoughcommonly ignorant of the true cause, and disposed to attribute sucb bad feelings to this tbing or to tbat, as may be, and to try the patience not a little of riends, aud perbaps of the pbysician, unless be recognizes the truth.
We set forth this class of sufferers as the nerve-electrometers, only because they manifest the changes so conspicuously. But whenever the vital force is enfeebled by specific or organic disease it is entirely easy to see how powerfully the electrical conditions of the atmospbere may intervene to determine the probabilities of life or deatb. When the power of life is barely able to hold its own in the struggle, a very sliglt cause of depression may be sufficient to turn the scale, and death will be the result; and it is sure tbat we have in atmospheric electricity a force which is capable of producing that result.
We have thus far been discussing only one side of the question, but very fortunately there is an opposite influence. Those degrees of tension wbich are seeking relief by discharges more or less violent, we have seen to weigh heavily on the vital force, but the stages of greater equilibrium sbow, as we might expect, precisely antagonizing effects. Even those of us who are in perfect bealtb noticeit. We say that the air is "bracing," etc., and it is perfectly sure that tbe sensitive, hyperæsthetic patients, of whom we have been speaking, respond to the influence, and the physiciae on his rounds learns to expect it, and is not disappointed as be inds one after another of them, like an old-fashioned weatherglass, pointing to "set fair."
No sufficiently extended observations are as yet on record to enable us to judge how closely the condition of atmospheric electricity is associated witb the spread and continuance of epidemics of various diseases. That is yet to come.
W. O. A.
[Our correspondent makes some very strong assertions; but he fails to present any evidence for the support of his electrical theory. Our impression is the humidity, varying pressure of the atmosphere and fluctuations of temperature, would account for nervous disturbances better than the theory of atmospheric electricity.-EDs. S. A.]

Successful Men.

In every class of business the princes of the trade are the men whe began with notbing, and who took around on all tbe attainments of their age with tbe honest gratulation that they have been dependent for their success and prosperity upon their own integrity, fidelity, and skill. And the circumstances of the commencement of active business life should not be regarded as a reason for regret or a cause for sorrow, for there is no other process less painful or barassing which will so surely stir up the gift which may be iv a man, and bring out for circulation and use the veins of gold which may be embedded in his hidden mines. If he be faithful, honest, honorable, his early straitness of condition will be an everlasting blessing. It is a soil that will yield to appropriate cultivation the riclest and most lavish fruit. But it will involve care, thought, labor, purpose, and unshrinking honor to prevent its becoming not merely a perplexity in occupation, but a poison to the soul.-U.S. Economist

CAR TRACK CLEANER.

The device herewith shown is for clearing snow, mud, etc., from horse car tracks, and was recently patented by Messrs. J. G. Holden and J. E. Coe, of Danville, Ill. The crapers are made of wood and are shod at their lower edges with steel plates; they are attached in oblique positions to the cross bars, as shown in the cut, so that the forward ends are a less distance and the rear ends a greater distance apart

HOLDEN \& COE'S CAR TRACK CLEANER.
than the rails. To the rear are secured handles by which the cleaner may be placed upon and guided upon the track. The tongue which carries the ordinary whiffletrees for attaching the team to the cleaner is secured to the heavy cross bar and is braced by rods.
The cleaner is to be used after an ordinary snow plow has been passed over the track, and while being drawn along the track it will be so guided by a person at the handles that the shoes will run fairly upon the headsof the rails. The shoes are made thin and sharp, so that they will effectually remove all snow and ice.

