srientific sumeriram.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year postaake included....One copy, six months postage included 8320
160
Clubs.-One extra copy of The screntrifi American will be supplied kratis for every ciut, of five subscribers at
same proportionate rate. Postare prepaid.
Remit ty postal order Address
MUNN \& CO.. 361 Broadway, corner of Franklin street, New York.
The Scientific American Supplement
is a distinct paper from the SCIE NITFLC AMERICAN. 'THE SUPPLEMEN'T
is issuad weekly. Every number contains 16 octavo pages, uniformin is issued weekly. Every number contains 16 octavo pages, uniform in size
with Scienviric American. Terms of subscription for Supplement, with SClentivic american. Terms of subscription for Supplement,
85.00 a year, postage paid, to subscribers. Bingle copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined Llates. - The scientific american and supplement will be sent for one year postage free. on receipt of seven dollars. Both papers to one address or different addresses as desired.
The safest way to remit is by draft, postal order, or reg The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 361 Broadway, corner of Franklin street, New Yor

Scientife American Export Edition.
The Sciwntific American Export edition is a large and sptendid peri-
Odical, issued once a month. Each number ccntains about one hundred targe quarto pages, profusels illustrated. embracing : about ine hundred
(1.) Most of the plates and pages of the four preceding eeekly issues of the Scicerviryc
Ambercan, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. MZ Manu facturers and others who desire
to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost. The SciENTPICA AMBLICAN Export Edition has a large guaranteed circo-
Ittion in all commercial places throughout the world. Adress MUNN \& lation in all commercial places throughout the world. Address MUNN \&
CO., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, JUNE 14, 1884.

RFMOVA工.

The Scientheic American Office is now located at 361 Broadway, cor. Franklin St.

table of contents of
the scientific american supplement
 For the Weak onding June 14, 1884. Price 10 cents. For sale by all newsdealers

THE BROWN STONE QUARRIES OF CONNECTICOT.

 Probably the most extensive quarries of red free stone "browu stone" in the world are on the Connecticut River a Middletown and at Portland, on opposite sides of the river fifteen miles below Hartford, the capital of the State. The Portland quarries on the east side of the river have been most extensively worked, aud the place gives a local name to the stone as " Portland stone."A recent article in the Hartford Daily Times gives an array of facts concerning these celebrated quarries, some of which are quoted in this article. It appears from undoubted his torical evidence that these quarries were worked iu 1645 , 239 years ago, as there is an ordinance alluding to them at that time. The deposit of brown sandstone at Portland covers an area of 200 acres, and is practically inexbaustible. It lies in horizontal strata, usually with each stratum in the upper levels varying a trifle from the other in fineness of the sand. Occasionally there is found an intermixture of tine pebbles. Generally speaking, the deposit is not unlike that of silt upon a beach. In one of the three quarries now worked, several acres have been quarried to a depth of 200 feet below the surface. As an experiment, some years ago, to decide for business reasons the probable depth of the sandstone, a diamond drill was started downward from the 200 fuot level. It was driven 312 feet, making 512 feet in all, and without reaching the bottom of the depositl A core that was taken out showed no material change in the char acter or quality of the rock.
"The sandstone" says Prof. Rice, of Middletown, "was deposited in a long, narrow estuary, extending from New Haven nearly to the northern boundary of Massachusetts.
No fossils have been found except trunks of trees and tracks. The latter are probably not tracks of birds, but of reptiles and amphibia." The latter opinion, it will be noted, is directly contrary to the popular belief in the "bird tracks," for which the Portland quarries are widely known. The sandstone lies in horizontal strata, usually, and every few feet there is a well defined horizontal crack. On lifting a flat section of stone, the tracks are found on the surface of the stone beneath, with corresponding projections of the upper stone fitting into them. Professor Dana, in that model text book, " The Geological Story briefly T'old," coincides with Professor Rice that the tracks are those of reptiles and amphibia. The late Edward Hitcbcock, father of the present State Geologist of New Hampsbire, and a famous writer on geological topics, was the first to assign to these fossil tracks in the Connecticut Valley sandstones their true significance in geology. His views wers received with incredulity at first, but have since been adopted by the scientific worla:
The stone is removed by blasting and by drilling and splitting. The blast is generally of powder in a single bole - from 25 to 60 pounds of powder in a nine inch hole 15 or that it may be easily broken into rubble for foundations. When large and regular blocks are required, a chiseled cut is made one or two inches wide and of varying depth, iuto which wedges are driven with sledges, and the block slides off at the interception of a horizontal seam. Flood, the California millionaire, has given the Middlesex Quarry Company an order for the stone for the grand mansion he is to erect in San Francisco. It calls for 40,000 cubic teet of best quality, such as is used for monuments. This will make twentyfive schooner loads. It is shipped to Newark, N. J., there dressed, boxed, and sent to New York, to be shipped for a four months' voyage around Cape Horn. The freight is $\$ 7$ per ton, and Flood pays, therefore, $\$ 28,000$ extra over the cost of putting up a similar building in New York. It is estimated that the bill for stone, when set in the walls of his residence, will amount $t \mathrm{o} \$ 200,000$, but this is a smallamount for the mere shell of the house, whose total cost will be nearly $\$ 2,000,000$.

gadges for mechantcal work.

In a lecture delivered before the Franklin Institute a short time ago and recently published, Mr. George M. Bond spoke of the modern accuracy in the work of the machinist as compared with former crudity. James Watt, in a letter to a friend, claimed that he had attained remarkable accuracy in boring a cylinder of a steam engine and fitting its piston so closely that "the thickness of a balf crown could not be introduced between them." Standard gauges are now made that show errors of one oné-hundred-thousandth of an inch, and work is exacted to one fifty-thousandth of an inch. Such accurate work is not, however, generally necessary, except in the construction of gauges; but these standard gauges are the means provided for keeping within proper,
useful, and practicable bounds in the production of thousands of pieces of the same size and shape in whicb oftentimes a certain amount of variation is allowed both plus and minus. A certain amount of looseness must be allowed, for Instance, in the fit of journals and bearings, the amount to be determined according to the length and size of the journal; but this variation should be referred to some particular gauge as a standard.
Tbis allowance of difference is necessary in the fittings of bearings and journals, as, if made with the extreme accuracy of gauge work, the surfaces would cohere and speedily destroy each other. This is seen in the construction of end measure pieces as gauges; where two are pressed together by their ends they will cohere even in a vacuum. In the perfect fit of plug and ring gauges where the plug is inserted in the ring, both being of bardened steel and both'
at the same temperature, it is necessary to keep the plug moving, or the easy sliding fit will change to a driving fit. In fact, there is no room for one to expand and not the otber. A plug gauge of three-quarters of an inch diameter but which is tbree-ten-thousandths of an inch smaller than the ring, is a loose fit which can be tested by feeling; and if the plug and ring are clean and of the same temperature, the plug will drop through the ring.
In order to make standard gauges within the limit of accuracy necessary for interchangeability, to fulfill the requirements of modern sbop practice, line measure is the best standard for practical reference. This measurement is by means of engraved lines on a ruled steel bar, the tests heing made by the microscope. For this purpose a hard. ened steel bar is used, the subdivisions being ruled or engraved by a diamond.

OUR NEW SUPPLEMENT CATALOGUE.

A new catalogue of valuable papers contained in the Scientific American Supplement is now ready, and will be supplied gratis to all readers who choose to send us their vames.
This catalogue exemplifies the astonishing progress that is now being made in the various branches of science and the arts. Not quite ten years have elapsed since the publication of the Supplement was begun; yet within this brief period many important discoveries have appeared and many great works have been undertaken or completed. Among them the Telephone, the Electric Light, the Panama Canal, the Brooklyn Bridge, the St. Gothard Tunnel, are conspicuous. The Supplement records the complete history of these and many other useful achievements; it presents in compact form the most recent papers by eminent writers in all the principal departments of general, technical, and theoretical science, embracing Biology, Geology, Mineralogy, Natural History, Geography, Astronomy, Archæology, Chemistry, Electricity, Mining, Mechanical Engineering, Technology, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. The array of authors is great; it includes almost every prominent name connected with science, sucb as Huxley, Tyndall, Crookes, Maxwell, Siemens, Reynolds, A. M. Mayer, Bessemer, Tissandier, Dumas, Gladstoue, Newberry, Remsen, Leeds, Mallet, Thompson, Hughes, Hopkins, 'Trowbridge, Ericsson, Copeland, Sellers, Eads. MacCord, Hammond, Loomis, and hundreds of others. Most of the papers contained in the Sopplement are illusrated, many of the drawings being to scale.
The new catalogue occupies 24 large quarto pages, same size as Scientific American. The extensive range of its subjects will be understood whèn we state thät it includes over 5,000 titles. Stereotype plates of all the issues of the Supplement have been preserved, thus enabling us to supply, on call, any particular numbers that may be desired, at 10 cents per copy. No periodical in the world offers so large and varied a collection of scientitic, technical, and useful papers, all of them readily available to the public at a low price, as the Scientlfic American Supplement. As before stated, the new catalogue will be sent, free of charge, to any desired address. Send for it to Munn \& Co., 361 Broadway, New Yorl, office of the Scientific American.

A SUGGESTED LATHE IMPROVEMENT.

The ordinary back-geared engine lathe of the macbine sbop is not a special tool, it being used generally for turning, boring, and screw cutting, and frequently for drilling and chucking. There are, bowever, special lathes, as boring latbes, pulley latbes, and others. It is proposed to add to the list of special tools for the machine sbop a screw cutting lathe oi a pattern somewhat different from the ordinary back-geared lathe. Io constructing a special machine recently, ou which the principal rotating spindle had to be reversed in motion instantly and frequently, the superintendent introduced a supplemental spindle carrying two step cones with their small ends contiguous. These turned freely on the spindle, and were belted to run in opposite directions. Between them was a sliding friction clutc:h that by a very slight movemeut of a lever could be made to engage with either cone, as desired. The arrangement suggested the possibility of an improvement in screw cutting lathes by constructing the latbe head in a similar manner, and dispensing with the overhead clutch, which requires so long a lever that the time used up in shipping interferes with accuracy of work.
The details are not completed as yet, but the superintendent, who is a skillful mecbanic, is confident that much is to be gained in the way of positive and instautaneous reversing by having the clutch directly under the operator's band.

A REMARKABLE STRAIGHT EDGE.

Some notice was made in the Scientific American of March 29, 1884, of a trio of remarkable straight edges made by the Pratt \& Whitney Company, Hartford, Conn., wbich are each 12 feet long and wouderfully exact. These straight edges are castings of iron, forming a chord and a segment of a circle, the extreme radius in the center, from the chord or straight line to the higbest point of the curve, being 20 inches, the depth gradually tapering on a curve. The width on the face is about $21 / 2$ inches, making a face $21 / 2$ inches by 12 feet. Between the chord and the curve the casting is a honeycomb of diagonal braces. Recently some remarkable tests have been made with these straight edges, one of them being a test of flexure. The straight edge was placed on a true and ' perfectly clean planer bed, with a slip of tissue paper under

