

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, ÁND MANUFACTURES.

$\text { Vol. L.-No. } 24 .$	NEW	YORK,	JUNE 14, 1884.	$\left[\begin{array}{c} \text { \$3.20 per Annumo. } \\ \text { [POS'IAGE PREPADD. } \end{array}\right.$

srientific semmican.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TELMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included....
One copy, six months postage included
Clubs.-One extra copy of THe SCIENTIFIC AMERICAN will be supplied
gratis for every ctub of tive subscribers at $\$ 3.20$. gratis for every ctub of tive subscribers at $\$ 3$
same proportionate rate. Postage prepaid.
mit ty postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin street, New York. The Scientific American Supplement
is a distinct paper from the Scientiflic american. The SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, unifoner is issued weekly. Every number contains 16 octavo pages, uniform in size
with SCIENTITC AMERICAN. Terms of subscription for SUPPLEMENT, with Scientimic american. Terms of subscription for Supplement,
$\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined Rates. - The Scientific american and Supplement will be sent for one year postage tree. on receipt of seven donars. Both papers to one address or different addiresses as desired.
The safest way to remit is by draft, postal order, or re The satest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 361 Broadway, corner of Franklin street, New Yor

Scientife american Export Edition.

The SCiuntific American Export Edition is a large and splendid periodical, issued once a month. Each number ccntains about (ne hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scic. ctific AMERICAN, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost. The Scientific American Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address MUNN
CO ., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, JUNE 14, 1884.

REMOVAL.

The Scientific American Office is now located at 361 Broadway, cor. Franklin St.

table of contents of the scientific american supplement No. 441,
For the Week ending June 14, 1884.
Price 10 cents. For sale by all newsdealers

ade that show errors of one one-hundred-thousandth of an inch, and work is exacted to one fifty-thousandth of an inch. Such accurate work is not, however, generally necessary, except in the construction of gauges; but these standard gauges are the means provided for keeping within proper, useful, and practicable bounds in the production of thousands of pieces of the same size and shape in which oftentimes a certain amount of variation is allowed both plus and minus. A certain amount of looseness must be allowed, for instance, in the fit of journals and bearings, the amount to be determined according to the length and size of the journal; but this variation should be referred to some particulaŕr gauge as a standard.
This allowance of difference is necessary in the fittings of bearings and journals, as, if made with the extreme accuracy of gauge work, the surfaces would cohere and speedily destroy each other. This is seen in the construction of end measure pieces as gauges; where two are pressed together by their ends they will cohere even in a vacuum. In the perfect fit of plug and ring gauges where the plug is inserted in the ring, both being of hardened steel and both

THE BROWN STONE QUARRIES OF CONNECTICUT.
Probably the most extensive quarries of red free stone
" browu stone" in the world are on the Connecticut River at Middletown and at Portland, on opposite sides of the river, fifteen miles below Hartford, the capital of the State. The Portland quarries on the east side of the river have been most extensively worked, aud the place gives a local name to the stone as " Portland stone.
A recent article in the Hartford Daily Times gives an array of facts concerning these celebrated quarries, some of which are quoted in this article. It appears from undoubted his torical evidence that these quarries were worked iu 1645, 239 years ago, as there is an ordinance alluding to them at that time. The deposit of brown sandstone at Portland covers an area of 200 acres, and is practically inexhaustible. It lies in horizontal strata, usually with each stratum in the upper levels varying a trifle from the other in fineness o the sand. Occasionally there is found an intermixture of tine pebbles. Generally speaking, the deposit is not unlike that of silt upon a beach. In one of the three quarries now worked, several acres have been quarried to a depth of 200 feet below the surface. As an experiment, some years ago to decide for business reasons the probable depth of the sandstone, a diamond drill was started downward from the 200 foot level. It was driven 312 feet, making 512 feet in all, and without reaching the bottom of the deposit! A core that was taken out showed no material change in the char acter or quality of the rock.
"The sandstone" says Prof. Rice, of Middletown, "was deposited in a long, narrow estuary, extending from New Haven nearly to the northern boundary of Massachusetts. No fossils have been found except trunks of trees and tracks. The latter are probably not tracks of birds, but of reptiles and amphibia." The latter opinion, it will be noted, is directly contrary to the popular belief in the "bird tracks," for which the Portland quarries are widely known. The sandstone lies in horizontal strata, usually, and every few feet there is a well defined horizontal crack. On lifting flat section of stone, the tracks are found on the surface of the stone beneath, with corresponding projections of the upper stone fitting into them. Professor Dana, in tha model text book, "The Geological Story briefly'Told," coin cides with Professor Rice that the tracks are those of rep-
tiles and amphibia. The late Edward Hitchcock, father of the present State Geologist of New Hampshire, and a famous writer on geological topics, was the first to assign to these fossil tracks in the Connecticut Valley sandstones their true significance in geology. His views wers received with incredulity at first, but have since been adopted by the sci entific worla:
The stone is removed by blasting and by drilling and splitting. The blast is generally of powder in a single hole from 25 to 60 pounds of powder in a nine inch hole 15 or 20 fect deep. The object of this is to shatter the rock, so that it may be easily broken into rubble for foundations. When large and regular blocks are required, a chiseled cu is made one or two inches wide and of varying depth, into which wedges are driven with sledges, and the block slides off at the interception of a horizontal seam. Flood, the California millionaire, has given the Middlesex Quarry Company an order for the stone for the grand mansion he is to erect in San Francisco. It calls for 40,000 cubic feet of best quality, such as is used for monuments. This will make twentyfive schooner loads. It is shipped to Newark, N. J., there dressed, boxed, and sent to New York, to be shipped for a four months' voyage around Cape Horn. The freight is $\$ 7$ per ton, and Flood pays, therefore, $\$ 28,000$ extra over the cost of putting up a similar building in New York. It is estimated that the bill for stone, when set in the walls of his residence, will amount to $\$ 200,000$, but this is a small amount for the mere shell of the house, whose total cost will be nearly $\$ 2,000,000$.

GAUGES FOR MECHANICAL WORK.

In a lecture delivered before the Franklin Institute a short time ago and recently published, Mr. George M. Bond spoke of the modern accuracy in the work of the machinist as compared with former crudity. James Watt, in a letter to a friend, claimed that he had attained remarkable accuracy in boring a cylinder of a steam engine and fitting its piston so closely that "the thickuess of a balf crown could not be introduced between them." Standard gauges are now racy of wo
The details are not completed as yet, but the superintendent, who is a skillful mechanic, is confident that much is to be gained in the way of positive and instautaneous reversing by having the clutch directly under the operator's hand.

A REMARKABLE STRAIGHT EDGE.

Some notice was made in the Scientific American of March 29, 1884, of a trio of remarkable straight edges made by the Pratt \& Whitney Company, Hartford, Conn., which are each 12 feet long and wonderfully exact. These straight edges are castings of iron, forming a chord and a segment of a circle, the extreme radius in the center, from the chord or straight line to the highest point of the curve, being 20 inches, the depth gradually tapering on a curve. The width on the face is about $21 / 2$ inches, making a face $21 / 2$ inches by 12 feet. Between the chord and the curve the casting is a honeycomb of diagonal braces. Recently some remarkable tests have been made with these straight edges, one of them being a test of flexure. The straight edge was placed on a true and perfectly clean planer bed, with a slip of tissue paper under
each end. These slips raised the entire straight edge, so that another slip of tissue paper could be moved under its face from end to end. Then a man weighing 220 pounds sat on the center without deflecting the straight edge a particle. But in order to avoid all opportunity for error on account of the possible inequality of the planer platen, two of the straight edges were placed face to face, one on the other with the shims of tissue paper between, and the superimposed weight of a heavy man, with the same result; the middle sip of tissue paper could be slid between the two faces at ny point betreen the end shims. It is doubtful if better accuracy bas ever been secured.

Milk Testers

The instruments used for testing milk are the thermomeer, the cream gauge, the lactometer, the lactoscope, the pioscope, and the lacto-butrometer. The value of milk testers has, however, according to the Farmers' Gazette (Dublin), been but little appreciated by British dairy farmers in the past.

In all those countries with which British dairy farmers bave to compete the farmer would be laughed at," adds the Gazette, "who would attempt the making of either cheese or butter without testing apparatus. A dairymaid would be surprised if you proposed to make butter or cheese without a tbermometer, and even a complete set of testing apparatus, to enable her to go to work scientifically and successfully." It is therefore satisfactory to note "that dairy farmers and town dairymen in England are becoming alive to their position in competition with the continent of Europe, the United States of America, and our colonies."
The proportion of cream in any sample of milk can be determined by the cream gauge, which is simply a glass tube, about five inches long, graduated from zero downward. The milk to be examined is poured into this tube up to zero, and allowed to stand about twelve hours, at the end of which timethe cream will have raised to the top, and its percentage may be read off. This instrument, although very useful to those who sell cream, is not reliable in detecting the adulteration of milk.
The lactometer, or bydrometer for milk, indicates the specific gravity of milk; that is, the relative difference in weight betweeu milk and water. The specific gravity of water is 1,000 , and that of milk may be taken to average about 1,030 .

The specific gravity of milk varies, however, not merely with the amount of water it contains, but with the amount of butter fat in its composition, and for this reason the lactometer used alone is of little or no practical value. As cream is lighter than milk, and of nearly the same specific gravity as water, it follows that when milk is very rich, or contains a large proportion of butter fat, its specific gravity is less than the ordinary standard, and if tested by the lactometer alone might give the idea that it had been watered. A cream gauge should therefore always be used in connection with the lactometer, in order to test the amount of cream or butter fat in milk.
The best instrument for testing the value of milk hitherto invented is the so-called lactoscope. This shows, with considerable accuracy, the percentage of fat; and fat, being the most valuable constituent of milk, forms a safe gauge as to the purity and value of the milk.
The action of this instrument depends upon the fact that the opacity of milk is chiefly caused by the globules of cream So that when water is added to milk until we can see through a certain proportion of it, we are able to do so because we separate the cream globules to that extent that light can pass through between them with a certain degree of clearness. Then, if we measure the amount of water added, we have quite an accurate gauge for comparing different samples of milk.
overcrowding the Principal Cause of Diphtheria.
Dr. T. J. Hutton has, within the past three years, treated sixty-four cases of diphtheria, occurring in Minnesota, and says in the Medical Record: These cases were all in comparatively new houses, in a belt of country where white men never lived before, so that the soil contained no sewage and had no accumulation of surface filth. Diphtheria had never before been there, and could not have been brought by visitors; it was of a malignant type, and some families lost five and six members each. All of the cases were included in seventeen rural outbreaks, three of which were in summer and fourteen in winter, and every house attacked was small and greatly crowded. Many of the winter outbreaks bappened when the temperature was 30° to $40^{\circ} \mathrm{F}$. below zero which would have been death to all ordinary surface germs, and in one instance the thermometer registered 60° below, when the surface of the earth and all bodies of water were frozen solid. From the experience thus derived, of all the details of which a careful record was kept, Dr. Hutton adopted a plan of treatment, which he summarizes as follows: 1. Diphtheria is caused by ochlesis, or crowd poison. 2. It is an emergency-' an event or combination of circumstances which calls for immediate action or remedy." 3. It is at first a local disease, resembling the animal poisons -snake bite, mad dog bite. Properly treated in this stage, it is one of the most curable of diseases. 4. It is contagious and infectious, and the poison may retain its vitality from three months to two years. 5. This poison is not identical with that of measles, croup, or scarlet fever, nor is it intimately related to them. 6. Diphtheria may occur sporadically; any small overcrowded, ill-ventilated house
may prove a diphtheria factory. 7. Its period of incubation is from twelve hours to several days. 8. Directly, tem perature none; indirectly, mucb. Crowding can occur in any temperature; practically it occurs most in cold weather. 9. In the local stage there is but one indication-to destroy the false membrane already formed; prevent further formation and spread. For this only two remedies are required as a rule. 10. In the stage of systemic infection there are two indications-the foregoing, and to support the system. A remedy or combination, internally, with food and stimulants meets this indication. 11. An abundance of pure air is the first requisite in treatment. 12. Being an asthenic disorder, and prone to heart failure, rest in the recumbent position and warmth to the extremities assist in the cure 13. The plysician must not only prescribe, he must administer the local treatment, when present, and see to it that food and medicine are administered punctually in his absence. 14. The physician should visit severe cases three times a day; all cases at least once a day for the first nine days. 15. The physician should not despair, though call ed late. I have seen patients, apparently moribund, restor ed by fresh air and food alone. So have other observers.
The two remedies used in the local stage are lunar caustic and chlorate of potassa. Twenty grains of the former in one drachm of water is applied thoroughly every hour or two to the affected parts, and continued so long as there is formation of membrane, whether two days or seven. A saturated solution of the chlorate is used as a gargle every fifteen minutes. One ounce and a balf of potassa is ordered to eight ounces of water. The latter administered internally, if the patient be too young to gargle. I use none bu Squibb's. Common liquid food. This has been the sole treatment when called early.
With the second stage, or to forestall it, comes the second indication, to support the system, "the disease being perhaps of more lowering character than any other with which we are acquainted." As a rule, three remedies meet this in dication: Chlorate of potash, tincture of iron, and quinine. For adults these formulæ are used:
Tincture ferri chloride, 3 v. Quin. sulph., gr. xvj. Sirup cort aur., Aq. M. P., āā q. s. ad $\bar{\jmath}$ iv. A teaspoonful every two hours.
Potass. chloral, 3 iv. Aq. dest., $\overline{3}$ iv. A teaspoonful every two hours.
These are administered alternate hours, night and day, if patient be awake.
Five remedies-lunar caustic, chlorate of potassa, tincture of iron, quinine, and carbolic acid-meet both indica tions fully as a rule. In all cases carbolic acid is used as disinfectant, and in nasal cases it is used in the form of por, or in glycerine, or in a one per cent aqueous solution. In the septic slage the diphtheria patient cau bardly be overfed or over-stimulated. Many die for want of food and stimulants to tide them over, the popular notion being that sick people do not require food, especially those who manifest febrile action. Two quarts of milk, each pint bolding a fresh egg in solution, one cupful of homemade beef essence, properly seasoned, a pint of pure port wine, or half that quantity of pure brandy, form a fair skeleton of one day's rations for an adult. Food and stimulants are administered every hour.

How Paper Pails are Made.

At a paperware factory in Syracuse, N. Y., intended to urn out 500 paper pails a day, the process of making is thus described in a local paper:
Rags and paper waste are steamed in vats for a few hours, and then thrown into beating troughs partly filled with water. The "beating" is done by a revolving cylinder with fifty knives set at different angles. The knives reduce the rags to a dirty purple pulp, and change the newspaper wrappers to a soft mass. About 400 pounds of material are put under each beater. When paper and rags are each reduced to pulp, the opening of a trap lets it run into the stuff chest in the cellar. One part of rag pulp to three of paper is run into the chest. When pumped from the stuff chest into the rough of the winding machine, the future paillooks like thin water gruel. A hollow cylinder covered with brass wire splashes around in the trough, and the pulp clings fast to the wire. After the cylinder has performed a half revolution it comes in contact with another cylinder, covered with felt, that takes off the pulp. As the large cylinder goes down on the return trip, and just before dipping into the trough again, ali little particles of pulp sticking to the wire are washed off by streams of water from a sieve. On the inside of the cylinder is a fan pump that discharges the waste iquid.
From the felt covered cylinder the pulp is paid on to the forming cylinder, so called. It is about the shape of the paper cone caps worn by bakers and cooks, but made of solid wood and covered with zinc, with the small end or bottom part of the pail toward the workman. The forming roll drops automatically when pulp of the required thickuess is wound around it. From here the now promising pail is put in the pressing machine, which looks something like a ilk bat block, in six sections, with perforated brass wire upper faces. The sections move from and to a common center, and the frame is the exact size of the pail wanted. The workman drops his damp skeleton of a pail into the frame, touches a lever, and the sections move to their cener and squeeze the moisture out of the pail. The pail is anll a little damp, and spends afew hoursin the drying room
machine mark the bands which are seen on the finished pail. After it is dry the pail isironed, or calendered, as it is called. The pail is drawn, like a glove, over a steel forming roll, which is heated, and is ironed by another revolving calender, with steam thrown on the pail to keep it moist as if it were a shirt bosom. The pail, or rather its frame, is pared at each end, punched with four holes to fasten on the ban dle, and corrugated, or channeled, for the putting on of the ron hoops. A wooden p!ave large enough to spring the pail so that the bottom can be put in, is inserted and the paper bottom held under a weight which drops and knocks the bottom where it belongs. The factory has a machine of its own invention for the bending of the hoop into shape.
After it has been cut to the proper length and width, the traight strip of iron is run over a semicircular edge of steel, on which it is held, and drops on the floor a round hoop with a fold in the middle to catch the top and bottom edges of the pail, After a waterproof composition is put on, the pail is baked in a kiln for about forty-eight hours at a temperature between 200 and 300 degrees. It is dried after its first coat of paint and sandpapered, and then takes two more coats of paint, with a drying between, and a coat of varnish which is baked on, before-with its wooden bandle and brass clamps-the pail is ready for the hand of the dairy maid, hostler, or cook.

Insect Pests.

A subscriber to the American Cultivator relates how it sometimes happens that the destructive pest known as the canker worm makes its appearance on the apple tree all of a sudden, even where it has not been in the habit of visiting Then, of course, it is too late to use any preventive, there fore a cure must be sought. I have found, says the writer under certain conditions that this worm can be destroyed by the use of Paris green. Put a heaping teaspoonful of Paris green into a pailful of water, apply the mixture with force pump, throwing the water through the tree thooughly. This should be done as soon as possible after the presence of the worm is ascertained. I found one applica ion to be sufficient. Soon after the application of the liquid, the worms can be seen to let go and string down from the tree.
The present is the time for looking after the currant bushes, and if the currant worm makes its appearance, apply powdered hellebore. Place the powder in a common dredging box, and sprinkle the bushes when the dew is on. I have usually found it necessary to go over them when in blossom, then again after the fruit is set and of considerable size. This remedy bas never failed with me, and does not injure the fruit.

The Corrosive Action of Cements upon Metals.
The late Mr. J. C. Trautwine, civil engineer, published a brief memorandum, giving the result of some experiments which he had made to determine the corrosive action of hydraulic cements upon metal embedded in them. The cement used were English, Portland, and Louisville; in addition to which he tried plaster of Paris pure, and also mixed with equal measures of the cements. All were of the cousistency of common mortar; and all were kept in an upper room during ten years, unexposed to moisture other than that of the indoor atmosphere. The metals were partly embedded in the pastes, and partly projected from them. They consisted of cu iron nails, some of which were galvanized; smooth iron wire nails; brass in both sheet and wire; zinc in sheet; copper wire; and solid cylinders of lead $3 / 8$ inch diameter. The re sult at the end of the ten years was that all the metals in both the pure cements were absolutely unchanged; and this was also the case with the plaster of Paris, with the excepion of the ungalvanized nails, which had become covered with a thin coating of rust, as were also those in the mixture f plaster and cement, but to a less degree. Mr. Trautwine concludes from his experiments that if dampness be exclud ed, both cement and lime mortar will protect from injury all the metals employed in ordinary constructions for an indefinite time.

Forbidden Coloring Materials in France。

Serious accidents have frequently resulted from the employment of wrapping paper colored with poisonous ma erials for packing alimentary substances.. The "Prefecture de Police," Paris, have therefore issued the following regulations:
Manufacturers and dealers in all kinds of food are forbidden to use the undermentioned colors, and will be held personally responsible for any accident which may occufrom such use of them.

mineral colors.

Containing copper-"Cendres bleues," mountain blue. Containing lead-Massicot, minium, pale orange, oxy chloride of lead, Cassel yellow, Turner's yellow, Paris yelow, white lead, ceruse, silver white, Naples yellow, sul phate of lead, chrome yellow, Cologne yellow, chromate of barium. Containing : arsenic-Arsenite of copper, Scheele's green, Schweinfurt green, vermilion.

ORGANIC COLORS.

"Aconit Naples;" fuchsine and its immediate derivaive, such as Lyons blue, eosine; coloring materials containng nitrous compounds; such as naphthol yellow, Victoria yellow; tropeolines, xylidine red, ete.
Children's toys must not be colored with poisonous pigments.

The Cod Liver oil City-Hammerfest.
If we pass the wonderful Lofoden Islands, and continue the route toward the north, we arrive at Hammerfest, where we quit the birds for the fishes. As for the city itself, imagine a town watered by cod liver oil, and you will have some notion of the odor. The captain had warned the party beforehand, but their bandkerchiefs steeped in eau de Cologue were but a slight defense. This horrible smell is due both to the important manufacture of the oil and to the thousands of fish on burdles drying in the sun.
The two to three thousand inhabitants of Hammerfest, the most northern town in the world ($71^{\circ} \mathrm{N}$.), are all occupied in this trade. Suffice it to say that a single boat well equipped, well stocked with bait, and in a good place can take from 500 to 600 cod a day. The scientific estimate that the ovary of a female of ordinary size contains nine million eggs. This is the mode of preparation:
First they remove the head and abdominal viscera; the ovary serves for bait; the liver yields the oil. Not long ago the heads were wasted; now they are dried and powdered and used as manure for poor land.
The body, dried hard and roiled in sticks, is called stockfish, which is imported chiefly into Greece, Italy, France, and Spain.
The fresh livers are piled in barrels, slightly pressed, and the virgin oil runs out, unfortunately a kind rare in pharmacy, though its quality is beyond doubt superior. Then the livers are treated by a press similar to those used in Normandy for cider.
This is oil, second quality; color, reddish brown.
The waste livers are subjected to strong heat, and an oil is produced, third quality and black.
Whales afford an industrial occupation at Hammerfest.
The day before the arrival of Monsieur Labonne, the
ishermen had caught a whale without trouble. The fishermen had caught a whale without trouble. The natural trap, and it was unable to regain the open sea. The captain was asked what might be the value of the fish; and captain was asked what might be the value of the fish; and
he replied 6,000 crowns (£336). They begin with selling rather dearly the 600 or 700 fins or whalebones; then they make great profit out of the immense quantity of fatty matters contained in the huge creature. This fat, improperly calledloil, is naturally liquid, and is used for dressing skins. Beside the oleine, margarine, and phoceine, there is a volatile principle of the odor of leather, which gives the latter its characteristic smell.
Turning to quite a different train of ideas, there is a monument at Hammerfest erected to the memory of Struve, who measured an arc of meridian from Ismail on the Danube to the frozen ocean precisely at this spot.
Farther north all cultivation disappears, and tree vegetation ceases-nothing but an underwood of stunted birch and willow.
Fish, even the largest, is caught with extreme ease; the large red hooks are scarcely plunged into the water than up comes an inhabitant of the sea, not a miserable specimen, but weighing some pounds at least.

MACHINE FOR WORKING BUTTER.

Upon each side of the stationary portion of the working platform, which is fastened to the middle of a common frame, are hinged parts that have handles at the outer back corners to aid in raising them when it is desired to throw the butter on to the middle of the table. When the leaves are open, the top of the table is a plane surface with a slight incline forward to carry off the water from the butter; and to prevent the water running over the edges, small grooves are made near the edges of the leaves. The connecting arms are made of iron, one end being firmly bolted to the levers and the other end being provided with a roller which travels in a groove in the side of the frame. The levers carry the working roller. This construction of the lever admits of a

WASSON \& HITT'S MACHINE FOR WORKING BUTTER.
free motion backward and forward, or upward, at the option of the operator. A sheet of white cambric or flannel is fastened over the entire table.
The machine is operated by placing the butter in the center of the table, and then working the roller backward and forward by means of the lever handle. When the butter bas worked its way nearly to the outer edges, it is thrown back upon the center of the table, by first raising the lever out of the way and then lifting the side leaves.
This invention has been patented by Messrs. J. Wasson \& R. T. Hitt, of La Porte Cily, Iowa.

IMPROVED SAW ARBOR.

The engraving represents a cheap and effective device for bolding circular saws for the purpose of jointing, setting, and filing them. The saw arbor or mandrel is journaled in bearings on a suitable frame, and at one end is made coneshaped as shown. A corresponding hollow cone and shaft it over the arbor and cone; the bollow shaft being of less length than the inner one. When it is desired to clamp a saw upon the arbor, the hollow cone is removed, and the hole in the saw placed so as to rest upon the face of the cone when the hollow cone is replaced and its end pressed against the face of the saw. The sleeve is then washered up

until the washers abut against the nut on the end of the shaft. Upon tightening the nut the saw is pressed against the cone and held firmly in place. Means for revolving the arbor, either by pulley or crank, are provided. The file is carried upon the end of the upper of two cross bars, which are adjustably clamped upon the upper and under surfaces of the side bars of the frame by a bolt and nut, as shown in the perspective view. With this device saws having eyes of diferent sizes, from the diameter of the shaft to the greatest diameter of the cone, can be held securely in place.
This invention has been patented by Mr. T. N. Hacket, of Emporium, Pa.

Electricity and Vital Power.

If we wish to judge of the electrical condition of the atmosphere, we do not examine for that purpose a paving stone, the trunk of a tree, or the surface of a lake. They undoubtedly experience the effects of the cbanges for which we are looking, but they are not fitted to show them, and we select instruments which are sensitive; that is, those whose structure enables them to make manifest the changes as they occur. And we must apply precisely the same method of common sense if we would fairly learn how real and decided is the effect of atmospheric electricity on human health. We are well aware that the degree of individual susceptibility to the influence of external causes varies most remarkably, and this is true of morbific causes as fully as of any others. The "seeds of disease," to adopt a popular term (whether we accept the germ theory or not), are floating about us in myriads without number, and are inhaled by us with every breath, and yet the diseases are manifested only here and there, wherever the "seed" finds a susceptible point for its growth. In the same manner, though the electrical influence may come alike upon all, yet is its effec made manifest to us in certain cases with great power, while in others we fail to detect it.
Inasmuch as the two forces have so much in common, $i t$ is reasouable to infer that any disturbance of the nerve force should be greatest and most easily seen and measured where the vital powers were in an enfeebled condition, and most strikingly of all where the nervous system itself was in an irritable hyperæsthetic state; and this is precisely what is noted in constant clinical observation. Every physician whose line of practice brings under his charge many patients suffering from depression of nerve force, that which is of late recognized as neurasthenia, sees daily proof that they are more sensitive to electrical changes than any electrometer. The approach of a thunder shower is felt and mentioned by them often twelve hours or more before its arrival. Sometimes it causes an intense pricking and tingling of the skin, "like ten thousand needles," as they expressit. Notunfrequently it induces active and even violent disturbance of the bowels, which will not subside without assistance, even after the cause has passed away.
Very often, in those hysterically inclined, it brings on hysterical unconsciousness, lasting many hours. And where no physical demonstrations occur a heavy mental depression, what they often term "a fit of the blues," gives evidence that the electrical force is bearing down the nerve force sadly. And it must be noted that these effects are not to be con-
founded with those produced by fear of the thunder; to those we make no reference.
Still again, without any electrical display in the form of lightning and thunder, there of ten come similar conditions of the atmosphere, continuing for, it may be, many days, and during the whole of that time every nervous patient is under a burden, though commonly ignorant of the true cause, and disposed to attribute such bad feelings to this thing or to that, as may be, and to try the patience not a little of friends, aud perbaps of the pbysician, unless be recognizes the truth.
We set forth this class of sufferers as the nerve-electrometers, only because they manifest the changes so conspicuously. But whenever the vital force is enfeebled by specific or organic disease it is entirely easy to see how powerfully the electrical conditions of the atmosphere may intervene to the electrical conditions of the atmosphere may intervene to
determine the probabilities of life or death. When the power of life is barely able to hold its own in the struggle, a very slight cause of depression may be sufficient to turn the scale, and death will be the result; and it is sure that we have in atmospheric electricity a force which is capable of producing that result.
We have thus far been discussing only one side of the question, but very fortunately there is an opposite influence. Those degrees of tension which are seeking relief by discharges more or less violent, we have seen to weigh heavily on the vital force, but the stages of greater equilibrium show, as we might expect, precisely antagonizing effects. Even those of us who are in perfect health notice it. We say that the air is " bracing," etc., and it is perfectly sure that the sensitive, hyperæsthetic patients, of whom we have been speaking, respond to the influence, and the physiciae on his rounds learns to expect it, and is not disappointed as be innds one after another of them, like an old-fashioned weatherglass, pointing to "set fair."
No sufficiently extended observations are as yet on record to enable us to judge how closely the condition of atmospheric electricity is associated with the spread and continuance of epidemics of various diseases. That is yet to come.
W. O. A.
[Our correspondent makes some very strong assertions; but he fails to present any evidence for the support of his electrical theory. Our impression is the humidity, varying pressure of the atmosphere and fluctuations of temperature would account for nervous disturbances better than the theory of atmospheric electricity.-EDs. S. A.]

Successful Men.

In every class of business the princes of the trade are the men who began with nothing, and whe fook around on all the attainments of their age with the honest gratulation that they have been dependent for their success and prosperity upon their own integrity, fidelity, and skill. And the circumstances of the commencement of active business life should not be regarded as a reason for regret or a cause for sorrow, for there is no other process less painful or harassing which will so surely stir up the gift which may be in a man, and bring out for circulation and use the veins of gold which may be embedded in his hidden mines. If he be faithful, honest, honorable, his early straitness of condition will be an everlasting blessing. It is a soil that will yield to appropriate cultivation the richest and most lavish fruit. But it will involve care, thought, labor, purpose, and unshrinkng honor to prevent its becoming not merely a perplexity n occupation, but a poison to the soul.-U. S. Economist.

CAR TRACK CLEANER.

The device herewith shown is for clearing snow, mud, etc., from horse car tracks, and was recently patented by Messrs. J. G. Holden and J. E. Coe, of Danville, Ill. The crapers are made of wood and are shod at their lower edges with steel plates; they are attached in oblique positions to the cross bars, as shown in the cut, so that the forward ends are a less distance and the rear ends a greater distance apart

HOLDEN \& COE'S CAR TRACK CLEANER.

than the rails. To the rear are secured handles by which the cleaner may betplaced upon and guided upon the track. The tongue which carries the ordinary whiffletrees for attaching the team to the cleaner is secured to the heavy cross bar and is braced by rods.
The cleaner is to be used after an ordinary snow plow has been passed over the track, and while being drawn along the track it will be so guided by a person at the handles that the shoes will run fairly upon the heads of the rails. The shoes are made thin and sharp, so that they will effectually remove all snow and ice.

THE ALLEN DENSE AIR ICE MACHINE.

The many advantages which the use of air presents in the working of ice machines bave for a long time led inventors to seek a means of applying it without incurring the large losses which have heretofore accompanied its use. These losses were due primarily to the low specific heat of air compared with other cooling gases or vapors, and in consequence thereof the machinery required was large and wasteful of fuel, on account of the large volumes of air required to produce a given cooling effect. In the old form of machines the air was taken at ordinary pressure, compressed, cooled and re-expanded to ordinary pressure, at which it circulated in the cooling pipes. It will be readily seen, however, that the greater the heat-absorbing power per volume of the cooling medium, the smaller will be the volume required to produce a certain amount of conling effect, and consequently the smaller will be the machinery required to compress and circulate that volume. Since however, the weight and consequent heat-ab sorbing capacity of a cubic foot of air at a tension of four atmospheres is four times that of a cubic foot at one atmosphere pressure, it follows that by circulating air at the former tension only one fourth the volume will be required to do the same amount of coolivg.
This latter fact is the basis of Mr. Leiceste Allen's machine, for while heretofore air ma chines have circulated air at or near one atmo sphere pressure, the former circulates air at density of four atmospheres. This obviously gives the machine a great advantage over the older forms, and for the same work enables a ma chine to be used of only one-fourth the size of those in general use.
The accompanying illustration shows a perspective view of a four-ton machine. It will be seen to be mounted entirely on a single bed plate, thus greatly economizing space. On either side, at the rear, are situated cylinders, one be ing the steam cylinder, the other the expanding cylinder. Between these two the air compressor is placed, on both sides of which will be seen two smal cylinders, the air and water pump, respectively. Above all these stands the large horizontal cylinder, through which water is circulated to cool the compressed air which passes through it in coils. The pistons of the compressor, pumps, and expander are directly connected with the crank shaft driven by the steam engine, as shown, thus giving them a positive motion.
The operation of the machine is as follows: We will assume that the pressure throughout the machine and cooling system is at ordinary atmospheric tension, and the steam engine started; immediately the small air pump at the side of the large compressor begins to force air into the system until a pressure of four atmospheres is reached, when a valve closes automatically and maintains the air in the system at that pressure. This dense air is now conducted into the compressor and compressed to 0.45 of its volume, or to a tension of twelve atmospheres. twelve atmospheres order to lower its tem perature it is led hrough coils into the large surface cooler where the circulating water abstracts its hea and reduces the vol ume to one-third the itial volume Whe oled, Whe , r is led into the ex panding cylinder, re expanded to four at mospheres pressure which lowers its tem perature, and is then forced out into the cir culating coils to cool surrounding objects This process is a con tinuous one, and take place in a closed cycle, no new air being ad mitted except to re place that lost by leak age, which amounts to an exceedingly smal quantity. When i does occur, the valve of the air pump opens a trifle and admits just enough air to keep the pressure up to four atmospheres, when it again closes. By employing a closed cycle in operating the machine, several inconveniences and losses incident to air machines are avoided.
It is evident that while the power required to work a given weight of air between the limits of one and three atmospheres, as in the older systems, is the same as that required to work the same amount between four twelve atm ospheres in the new machine, the losses avoided by using the latter are seyeral, In the first place it allows of a reduction of the
compressor and expander to one-fourth of their ordinary size. As a result, the surface losses within the cylinders, radiation, etc., are proportionally reduced; while the passive resistances, such as friction, are reduced very nearly in he same ratio. The machine, which we saw in operation equires no more care or attention than an ordinary etsam engine, and when once adjusted will run indefinitely without the necessity of watching.
During one hour of working the temperature of the air delivered at the exit pipe fell from $84^{\circ} \mathrm{Fab}$. to - 30° Fah., after passing through tbree-fourths of a mile of piping contained in an ice maker and cool room. It is claimed for the

aspinwallis sail wagon

ess from the sea to the cliffs easy, and give pleasant communication with the center of the town. Approach to the beach is not stopped, as the line can be stepped across at any point. The car runs almost noiselessly, and is worked by a stationary engine, which sends a current along the metals.

SAIL WAGON.

Across the wide forward end of the triangular frame ex tends an axle to which wheels are journaled. The short axle of the rear wheels is pivoted by a kingbolt to the narrow end of the frame. To the short axle is attached a gear wheel iuto which meshes a smaller wheel secured to the lower end of a vertical shaft journaled in bearings fastened to the frame. Upon the upper end of this shaft is a hand wheel or tiller, by means of which the wagon may be guided. The speed of the wagon is regulated by brakes upon the front wheels, connected with an upright lever pivoted in the middle part of the frame and pro vided at its upper end with a crosshead, so that t can be operated either with the hands or feet A mast fastened to the middle forward part of the frame is provided with a sail and appliances for raising, lowering, and controlling the sail in the same manner as an ordinary sail boat.
With this construction the wagon can be driven at great speed by the wind, and can be driven with, on, or against the wind, where the beach or road is hard, with as much effect as can a sail boat on the water.
This invention has been patented by Mr. J. A. Aspinwall, of Bay Ridge, N. Y.

Accumulators.

M. Reynier, the well known electrician, has made experiments on three systems of secondary battery: (1) The Plante accumulator of reduced lead, peroxide of lead, and sulphuric acidulated water; (2) the copper accumulator of lead, cop per, lead peroxide, acidulated solution of sulohate of copper; (3) the amalgamated zinc accumulator of zincked lead, lead peroxide, acidulated solution. His object was to test the electromotive forces of the combinations, and find their variations of sul phate of zinc. The accumulators were not completely formed. The electromotive forces were measured during charge and discharge by the method of equal deflection. His results confirm those formerly obtained by M. Gaston Plante, and are as follows:
(1) In the three systems of accumulators studied, the sec ondary electromotive force is notably more elevated during charge than during discharge. The ratio of the smallest of these values to the greatest may be called the coefficient of fall. It is a factor of loss which affects the efficiency of accumulators. (2) The fugitive superelevation of the electromotive force increases with the intensity of the charging l
current and the electromotive force of the source. (3) In
the Plante accumulator the electromotive force is at least 1.95 . volts during the charging, and at mos 1.85 volts during the discharge. The coefficient of fall is therefore 0.95 under the most favorable conditions (4) In the copper accu mulator the electromotive force is at least $1 \cdot 43$ volts during charg ing, and at most $1 \cdot 25$ volts during discharge The coefficient of fall is therefore 0.87 under the most favorable con ditions. The copper accumulator is tha which loses most. (5) In the amalgamated zinc accumulator the electromotive force is at least 2.4 volts during charging, and at most 2.36 volts during dis charge. The coefficient of fall is 0.983 in the most favorable conditions. The amalgamated zinc accumulator is that which loses least. (6) In practice the losses due to varia tions of electromotive

THE ALLEN DENSE AIR ICE MACHINE.

each, starting opposite the entrance to the Brighton Aqua car, which running eastward. There is a single ornamenta is limited to six or eight miles an hour, though a much higher rate can be attained. The scheme has met with a small but vigorous opposition, on the ground that it cuts off access to the beach and will not improve the residential character of the east end of the town. On the other hand some of the most influential residents at that part have de clared that it will be one of the greatest boons ever conferred on the district, as by means of a lift it will make ac-

A FOREIGN contemporary says that a luminous waterproof paper, which may be of use in places not well adapted for the application of the so-called luminnus paint, may be made from a mixture of 40 parts pulp, 10 parts phosphorescent powder, 1 part of gelatine, 1 part of potassium bichromate, and 10 parts of water.

AMERICAN LIJDUSTRIES.-No. 91.
 [see first page.]

THE MANUFACTURE OF FINE PRINTING PAPERS.
In no other department of industry have there been more marked advances in recent years than in the manufacture of paper. Modern printing presses, and a society of which nearly all are large readers, as well of tastily printed books and periodicals as of the daily papers, have increased the demand many fold within the present generation. It would have been impossible to meet this greatly enlarged call for paper if it were all manufactured of rags, as was the case a few years ago, and to use the cotton, fiax, etc., in their raw state would have made the product very expensive; therefore, in this country, wood has been largely used, either in connection with rags or alone for the cheaper grades, and in England the Spanish esparto grass has, since 1856, furnished a very large proportion of all the paper stock. Materials of which paper can be made are found in nearly all vegetable life, but the cellulose is in many cases so intimately associated with coloring and other matters as to require the use of expensive chemicals, while rags, having been originally purified during the manufacture of the cotton and flax, yield a large percentage of fiber with comparatively little cost for chemicals. They give a very pure white with exceedingly strong fiber, and are used from inferior fibers is often mixed therewith in making medium grades of paper. Of the wood used in paper making poplar is most esteemed, as it gives a very white fiber; pine gives a long and strong fiber, but the wood has so much resinous matter that it requires stronger chemicals and more work to fit it for the paper machine. The manufacture of
paper pulp from wood is principally confined to the United paper pulp from wood is principally confined to the United
States and Sweden, though wood pulp is somewhat used by English and European paper manufacturers.
In practical paper making the assorting and dusting of the :ags is the first step. They come in great variety, differing according to the locality where gathered, and are divided into many classes and grades, this market receiving many from the Baltic and Mediterranean ports. When stored in large quantities great care should be taken that they are perfectly dry, many fires having occurred from the heat developed by the slow decomposition of rags stored in a damp condition. The sorting of the rags is necessarily done by hand, but cutting them up into pieces about two by five inches or less is now done principally by maciine. Both before and after the sorting they are passed through thrashers or dusters, which beat the rags and drive the dust through wire gauze partitions.

The boiling, which comes next, may be done in various kinds of vessels, but a horizontal cylindrical boiler, which revolves, gives a more perfect circulation of the liquor, and is generally preferred. The cbemical used is lime, carbonate of soda, caustic soda, or a mixture of the two former, which is equivalent to the latter. The quantities used, as well as the pressure and time of boiling, vary with the quality of rags, and afterward the rags must be thowith more or less pressure of steam. The breaking and washing usually require from two to four hours, and the machinery therefor is represented at the right in two of our first page views.
The bleaching may be effected with a liquor madeby dissolving bleaching powder in water, although bleaching with gas and sour bleaching are sometimes followed, but, whatever the method adopted, any excess of bleaching agent must be got rid of.
The sizing is effected by the precipitation and intimate mixture with the pulp of a substance which will, when dry, to some extent fill up the interstices between the fibers of the paper, and which will not readily take up water. Common resin and alumina, with carbonate of soda, through the medium of a resin soap, make a mixture which may be thoroughly incorporated with the fiber, and it is here that a small quantity of china clay is added, for some qualities of paper, to close up the pores and enable it to take a good surface, such addition, to the amount of five per cent, not being considered detrimental, while more than that would weaken the fiber.
The Fourdrinier paper machine, of which several may be seen in the large view near the middle of the page, forms in itself one of the best representations of the high attainment reached by modern mechanical skill. Improvements bave been steadily made in it through many years, for the better working of different kinds of pulp, and the making of a greater variety of product, but the original features of its construction have been maintained. The pulp is fed to it over sand tables and strainers, to remove lumps and imper-
fections and separate the fibers, then to an endless cloth of very fine wire carried by a large number of small rolls, the wire cloth also having a shaking motion from side to side to weave and intertwine the fibers; thence it passes to an endless felt, traveling over rolls, and between press rolls, till the water is so taken out and the fiber knit together that it can be passed over drying cylinders and between heated and polish-
ed rolls for surfacing and calendering. There are, of course, ed rolls for surfacing and calendering. There are, of course, many different modifications of machines, the details being
variously contrived for the best results in different kinds of work, but these are the essential features in all of them.
The calendering machines, a view of which is given at the bottom of the page, are for the purpose of giving a hard finish, the paper being here passed around steam heated cy-
linders and rolls, where powerful pressure can be applied.

The Jessup \& Moore Paper Company, whose establishments furnish the subjects of our illustrations, have four paper mills, the Augustine, the Rockland, the Delaware, and the Cbester, the two former being on the Brandywine, near Wilmington, Delaware, the Delaware mill on the Christiana River, and the Chester mill near Coatesville, Pa. In selecting a site for a paper mill, it is absolutely requisite to obtain one which shall have an abundant supply of pure water, not only as a matter of economy in working, but fine paper cannot be made at all with the water found in many localities. In respect of this prime essential, these mills have exceptionally advantageous locations.
The Augustine mill was the first built and run by the firm, but it has been successively changed until now nothing remains of the original structure, and it stands to-day one of the most costly and complete paper mills in the world for the manufacture of fine grades of book paper. It has Jonval turbines for a water power equal to 300 horses, besides a 20 inch, a 30 inch, and two 15 inch cylinder Corliss engines. The largest and heaviest leather belt ever then sent from The largest and heaviest leather belt ever then sent from
New York was furnished for this mill about five years ago. The engine room forms a striking feature of the establisument. The entire mill is of stone and iron, fireproof, and lighted by electricity, and all the machinery is of the latest and most improved description, the engines for the preparation of the stock being of iron, and there being at work here two 90 and one 76 inch Fourdrinier machines. Many of the most artistic publications in the country are printed upon paper made at this mill, and it has for years furnished the paper for the Scientific American. The capacity of the mill is 30,000 pounds a day.
The Rockland mill, built in 1860, was designed for the manufacture of newspaper, and was among the first to utilize the process of making printing paper from chemically prepared straw pulp. Reconstructed, after a fire in 1864, of stone and iron, its capacity was greatly enlarged, the straw process abandoned, modern machinery introduced, and good grades of paper for book work and weekly newspapers have
since been made. Besides the water power furnished by Jonval turbines there are employed here two 20 inch and a 16 inch cylinder Corliss engine, and one 28 inch cylinder Babcock engine. Three Fourdrinier machines are used, one 74 inches and two 86 inches wide, and the product is 26,000 pounds of paper a day.
The Delaware mill has a production of 32,000 pounds a day, and the Chester mill 8,000 pounds daily, and both are completely equipped with the best modern appliances.
The firm of Jessup \& Moore was organized in 1843, by
Augustus E. Jessup, of Westfield, Mass., and Bloomfield Augustus E. Jessup, of Westfield, Mass., and Bloomfield
H. - Moore; of Philadelphia, and the corporation of the Jessup \& MoorePaper Company was organized December 1, 1878, its officers consisting of C. B. Moore, President; D. W. Evans, of New York city, Vice-President; F. W. McDowell, Secretary; and J. R. Moore, of New York, Treasurer-under whose management the business is still
conducted. The business offices of the house are in the conducted. The business offices of the house are in the
Bennett Building, New York, and 28 South Sixth Street, Pbiladelphia.
The history of this house bas been in a marked degree typical of the progress of paper making for the past balf century. It bas kept fully abreast of the times, and its exhibit of cellulose at the last Paris Exposition was a great surprise to the papermakers of Europe, showing, as it did,
that American paper manufacturers were decidedly in advance of their European competitors in the utilization of new raw materials in the manufacture.

Death of a Pioneer in Machine Shoemaking.

Mr. Edwin C. Burt, ihe widely known New York shoe manufacturer, died at his home in Orange, N. J., May 23, 66 years of age. It is doubtful whether any other manufacurer in this business ever attained the wide reputation which he achieved, in a short space of time, from the success with which be employed the sewing machine in making the finest grades of ladies' shoes. Previous to 1862, when machinery began to be introduced generaily in shoe fac tories, it was not thought possible to make fine goods in this way, but Mr. Burt bought the finest kids and the best sole leather, employed a bigh class of workmen, and then, himself superintending the work, used machinery to make a iner class of goods than had ever before been offered as ready made, and which was rarely equaled in the best hand made goods. The success which attended his efforts did much to hasten that industrial change from which it now appears that about nineteen-twentieths of all the boots and shoes worn in the country are factory made, and the " bespoke" sbo.
existence.

Annual Convention of Civil Engineers.

The American Society of Civil Engineers will hold its anual convention for 1884 at Buffalo, N. Y., June 10th to 13ıb. A special train over the New York, West Sbore, and Buffalo line will convey members from tbis section. Reports are expected and discussions will be bad on "Standard Time," a " Uniform System for 'Tests of Cement," the 'Preservation of Timber," and other topics.

An illustrated article on paper making macbinery, as manufactured at the Pusey \& Jones Works, at Wilmington, Del., will appear in the Scientific American in next

There was never perbaps a time when the special industries of England were more depressed, or their outlook more gloomy. The fact that the steel rail makers of England have banded themselves with those of France and Belgium into an association for the maintenance of remunerative prices speaks volumes, not only as to the severity of competition, but as to the sources from which that competition comes. On the other side we see the ironmasters of America extending their output year by ycar, and her manufacturers entering into competition with us in neutral markets, while jealously excluding us from their own.
What is to be the remedy for this state of things? How s the demand for manufactured articles, and for the raw materials out of which those articles are made, to be once more equalized with the supply? Uuless some vast market, such as China or Central Africa, can be opened up to European commerce, the only chance seems to lie in a new departure; in some great cheapening of production, or cheapening of transport, comparable to that which was effected by the development of railways. Now, what is the physical fact lying at the basis of railway locomotion? It is simply this, that iron laid in the form of a track offers a resistance to rolling which, as compared with an ordinary road, is insignificant, while at the same time it offers a resistance to sliding large enough to utilize to the full the vast tractive power of the modern locomotive. The first point had long been known; the second was seized by the practical genius of George Stephenson, and enabled him at once to solve the problem of high speed locomotion. In so doing he owed nothing to science; but science might have discovered the fact, and would have done so with small trouble, if the idea had been put into her head-if, in fact, there had been in England that union of
is our present aim to advocate.
What is wanted now is that science shall point out some ther fact of nature, new or old, which practice may seize upon, turn to her own ends, and make the basis of some new industrial development. It is easy to indicate various directions which such a development might take. Thus there is great need of some system of light railways which can be laid down on ordinary roads, and so cheaply that the traffic available on such roads may be sufficient to pay a fair return on the capital. It is impossible to calculate the advantages which would spring from the wide extension of such "third class railways," as they are called in Germany. Again, the storage of power, such as that of the tidal wave, with cheap and ready means for giving it out when and where it is needed, offers a wide field for invention, and may lead to the most fruitful results. The transmission of power to long distances, whether by electricity, compressed air, or otherwise, is a somewhat similar problem, which at present occupies the attention of many engineers and men of science Lastly, the more homely subject of house building offers at this moment special inducements to constructive genius. If houses could be built, by the use of iron or otherwise, at, say, half their present cost, the problem of sheltering our poor would be solved; unsafe and ruinous tenements would disappear, and a demand would set in for building materials and labor such as the world has never known.
Here, however, the question arises, Supposing that science and art should combine successfully for any such purpose, is it in England that the development will take sbape?
At the time of the last industrial epoch, that of the introduction of railways, it would have been safe to prophesy that this would be the case. It is by no means so certain now. As regards cheap transport, for instance, the most promising recent invention in this field, viz., the caustic soda condenser previously described by us, was brought out in Germany. Other improvements in the same field, such as the portable railways of De Cauville, the rack railway of Riggenbach, the cable tramway of Hallidie, the fireless engine of Francq, the iron sleepers which are rapidly becoming universal in Germany, have all taken their rise either on the Continent or in America. The storage of power, in its only practical form, that of the secondary battery, owes its origin to Plante and Faure. The transmission of power is being worked out by Siemens in Berlin, and by Deprez and Tresca in Paris. Lastly, as to building, no one can travel abroad without seeing that as regards scientific architecture England stands far nearer the bottom than the top in the scale of civilized nations.
What is the reason of this? Why is England thus lagging behind in the race? The answer is not far to seek. In America, in France, above all in Germany, the union beween science and art is far more close and cordial than with us. Every practical constructor or manufacturer is anxious to know all he can of science, every scientific professor desires to mix practice with his theory. Thus on the one hand we find ordinary engineers drawing on all the re sources of mathematics for the solution of such problems as the proper sections of rails or the resistance of trains; on the other hand we see Clausius, perhaps the greatest of German physicists, devoting two long papers to investigate the working theory of the dynamo machine. But a concrete instance will make our meaning clearer. Within the last few days we have inspected a safety lamp, of which some thousands have already been sold for the German mines. It has many points of excellence, but we need only dwell upon ne. It is well known to be most important that a miner's lamp should be locked in such a way that be cannot, if he will, open it; and it has been found very difficuit to provide any simple kind of lock which it is beyond the resources of a
clever workman to tamper with. In this lamp the difficulty is got over by making the upper part screw into the lower, while inside the lamp there is a catch or pawl, which, as in a common ratchet, prevents the screw from being turned the opposite way. Hence, that the lamp may be unscrewed, the pawl must be drawn out of place. In the overseer's of fice this can be accomplished by means of a powerful horseshoe magnet. The pawl has a tail, which is attracted by the magnet when the latter is placed in contact with the side of the lamp. The tail moving toward the magnet, the paw moves in the opposite direction, and so allows the upper part of the lamp to be unscrewed, while the lower is held as if in a vise by the same magnetic power.
Now, here we have a simple and beautiful contrivance for effecting an important practical object. It is merely he application of a well known scientific principle to solve a special problem in construction ; but it never could have been invented except by one to whom the resources of sci ence and the needs of art were equally familiar-who was at once a physicist and an engineer. Now, it cannot be questioned that in England we can boast many of the highest authorities in science, many men of the highest skill in practical construction; but the union of the two is comparatively rare, and yet it is this very union-the application of the scientific spirit to the things of common life-which is the vital necessity of the age
We by no means wish to imply that no progress is being made in the direction here pointed out. The work undertaken by the City and Guilds Institute, the foundation of scientific colleges, such as those at Birmingham, Sheffield, Leeds, Nottingham, and elsewhere, the appointment of a Committee on Technical Education, the delivery of scientific leclures at the Institution of Civil Engineers-these are all signs that the gap existing between art and science is at last recognized, and that endeavors are being made to draw them together. Moreover, the old "rule-of-thumb" engineer is rapidly passing away, and a new generation is springing up, who, if they do not possess much science themselves, are at least alive to its value. The testing machine, for instance, is becoming a recognized institution in large workshops, where not many years ago it would have been scouted as absurd. In the skillful hands of a practical engineer, Mr. Wicksteed, of Leeds, it has been made to record its own variations of stress by a self-drawn diagram, and this record seems likely to throw fresh and unexpected light on the physical problems of extension and rupture. The same gentleman has both discovered and applied a new and most remarkable phenomenon in friction; the fact, namely, that if we give a rotary motion to a body which is in contact with another, not only is the friction diminished in the direction of motion, but the friction in the perpendicular direction is also diminished, apparently in at least an equal degree. Hence, for instance, by rotating the leather packing of a hydraulic ram, it becomes quite free to move in its cylinder in obedience to a difference in pressure on one side or the other. Here we have, once more, science helping art, and art in return throwing light upon the path of science.

These facts, and others like them, are encouraging signs, but we must repeat that, something more than signs is needed. The work must be not only begun but finished, the bonds of union must be drawn close, and that quickly, or England will find that it is too late, and that she is once more ready to do the work of the world just when the world bas left her no work to do.-Nature

Opera by Telephone.

When the new opera "Lauriana" was produced recently for the first time, at the Lisbon Opera House, the King and Queen of Portugal were in mourning for the Princess of Shxony. The etiquette of courts prevented their royal wighnesses from attending, and their despair thereat added mo their grief at the loss of the Princess was like to bave overwhelmed them. If Mohammed could not go to the mountain, the mountain must come to Mohammed. And so he brought the opera to their royal highnesses-by telephone.
Six microphone transmitters were placed about the front of the operatic stage in multiple arc. They were mounted on lead and soft rubber pedestals to prevent disturbance from the vibration of the building. Each transmitter was fed by three sets of batteries, which were switched on every twenty minutes in succession to keep on the current strength. There were receivers at the palace end for the use of the royal family, who thus heard the opera from beginning to end.

Germs at Sea

It has generally been thought, and direct observation has confirmed the notion, that the air above the sea is singularly free from the low forms of organic life. MM. Moreau and Plantymansion have taken advantage of their leisure during a. voyage in the Gironde from Rio de Janeiro to Bordeaux to obtain some data bearing on this question. They have found that over the open sea, at a distance from the vessel, the air contained very little solid matter. The land breezes appear to become rapidly free from the multitude of or ganisms which they carry with them from populous districts. M. Miguel, of the Montsouris Observatory, regards the fall of germs into the sea as a reassuring fact; breezes blowing from the distant continents, which might otherwise bring epidemics with them, become purified, it is supposed, in crossing the ocean. The gentlemen above named have found that the atmosphere immediately about the vessel practically swarmed with micro-orgauisms; the vessel seemed to be surrounded by an "atmosphere of microbes."

Contegumature.

Illustrations of Electrical Phenomena

To the Editor of the Scientific American.
Having occasion to illustrate in a lecture some of the phe nomena of atmospheric electricity, I desired to obtain as long strokes as possible. With the apparatus at band the longest stroke I could obtain in air was $41 / 4$ inches. I tried iron filings sprinkled on varnished glass, paper, and wood, but the results were not satisfactory. After several experiments I hit upon the following exceedingly successful method:
I fastened dry boards together to make a plane surface, feet long and 3 feet wide. One side of this I varnished, and before it was dry pressed over its entire surface sheets of tin fuil. After letting it stand over night to dry slightly, with a ruler I passed a sharp knife across the foil in lines about one-eighth to one-quarter inch apart. Allowing it to dry again a short time, I passed the knife across it right angles

Fig. 1.

to the former lines, thus cutting the foil into squares, sepa rated by very short distances-only the thickness of th knife edge. Connecting the poles of my coil to opposite euds of the board, a phenomenon of dazzling beauty was produced. Every time the circuit broke, from six to twenty streaks of lightning zigzaged from one end of the board to the other. These were exceedingly brilliant in the dark, when the circuit was broken only about 180 to 200 times a minute. Judging from the resistance of vacuum tubes placed in the circuit at the same time, I believe I can obtain stroke from 15 to 20 feet in length by this method, if the foil be placed in a narrow strip along a pole of that length.
The drying mentioned above is necessary, as it is very slow under the foil, and the strips will be pulled out of their places in the second cutting.

Reynold Janney.
Wilmington, O., March 16, 1884

My coil is made on the same plan as that given in th Scientific American Supplement, No. 160, and contain about 30,000 feet of No. 36 naked copper wire. The circuit break is a combination of the ordinary platinum contact break and a mercury break, so that either can be used at will. The mercury break produces much better effects. It consists of a platinum wire dipping into mercury covered with alcohol.
The condenser consists of 40 sheets of tin foil, 6 inches by 12 inches, with varnished paper bet ween.
The battery consists of three cells of the Grenettype, each containing
With this battery and coil I to-day obtained strokes in air $1 / 2$ inches long between a brass disk, $11 / 2$ inches in diameer, and a point.
Over a tin foil surface as described I obtained a stroke 10 feet long, with sufficient force to make it much longer had I bad a greater length of tin foil.
There is one peculiarity about these strokes depending upon the connections. If the opposite ends of the board

Fig. 2.

covered with the foil be connected directly with the poles of the secondary coil, the discharge seems to scatter over the whole surface, making several simultaneous strokes and pro ducing a very beautiful appearance. (See Fig. 1.)
If the connections remain as in Fig. 1. but also the poles of the coil be connected one with the inside and the other with the outside of a small condenser containing about 4 to 6 'inches of tin foil, the electricity no longer scatters over the board, but makes only one much more direct and more intense stroke. (See Fig. 2.)

Reynold Janney.

Wilmington, O., June, 1884

Intermarriage of Causins.

To the Editor of the Scientific American:
There is a popular helief that the intermarriage of first cousins is likely to produce offspring imperfect in intellectual or physical development.
Is this belief sustained by scientific observation and statistics?
S.
[Ans.-The prevalent idea that the offspring of the intermarriage of first cousins are specially liable to be Eelow the average intellectually and pbysically is not found to be sustained by good evidence. . Mr. G. H. Darwin, in a verỳ carefully prepared paper, before the Statistical Society of Iondon, comes to the conclusion, as the result of close comparison of all the records available, that the evidence will nert enable any one to say positively that the marriage of first cousins has any effect in the production of insanity or idiocy.

With respect to deaf mutes, there is no evidence whatever of any ill results accruing to the offspring in consequence of the cousinship of their parents." And again, "It tends to invalidate the alleged excessively bigh death rate among the offspring of cousins." And once more, " The safest verdict seems to be that the charge against consanguineous marriages on this head is not proven."-Eds. S. A.]

Dangers of the Proposed Treaty.

Io the Editor of the Scientific American:
I write to call attention to a great danger which hangs over the patent interests of the United States. It lies in the proposed new reciprocity treatr. The danger is just in this: There are a great number of patented machives making goods that are not patented. The patent is on the machine; remove the tariff, and what is to prevent the Canadians building the machine, and killing the patent. The Canadian patents have had but small value, for the conditions are not favorable to a numerous class of patents, such as are obtained to protect a line of manufacture which, from its nature, should be held in the hands of one party, so as to secure uniformity of quality and degree of excellence. This treaty will kill all such patents, to the injury of the public and to the ruin of those who, on faith in protection, have made large investments.
Any treaty entered into with Canada which virtually destroys protection obtained in good faith should not be entered into, and the foundation of such treaty should be founded upon a reciprocity of patent protection. R. T. Smith.
Nashua, N. H., June, 1884.

Soda Water Profits.

Under the caption of "A Business that Pays," a large dealer in soda water apparatus thus enlightens the trade on " the profits which dealers in carbonated beverages may reasonably hope to make," which he says " can be readily inferred from the following accurate estimate of the cost of manufacturing each beverage." In the " dispensing department "-that is, selling from the fountain-the following are the actual costs:
One glass of plain soda water costs one-tenth of a cent.
One glass of soda water with sirup costs one cent and a half.
One glass of mineral water costs one cent.
One glass of ront beer costs one cent.
One glass of ginger ale costs one cent and a quarter.
One glass of fine draught cbampagne costs four cents.
In the " bottling department " the following scale of costs, revails:
Plain soda water, best quality, put up in bottles closed by orks and fasteners, costs eight cents per dozen.
Ditto, with gravitating stoppers, costs three cents per ozen.
Soda water, with sirup, in bottles closed by corks and fasners, costs fifteen cents per dozen.
Ditto, with gravitating stoppers, costs ten cents per dozen.
Ginger ale, in bottles, with corks and wires, costs seveneen cents per dozen.
Ditto, with gravitating stoppers, costs twelve cents per dozen.
Mineral waters in siphons costs three cents per sipbon.
Sparkling champagne (domestic), best quality, costs twen-ty-five cents per quart bottle.
From a simple comparison of the foregoing scale of costs, and the well known retail charges for the same articles, the inference drawn by the manufacturer, that it is "a business that pays," appears to be a correct one.
Then a list is given of the materials included in the outfit for this business. We find in this catalogue the following items:
Sulphuric acid and marble dust to make the carbonic acid gas, which gives the sparkling quality.
Chemical extracts for the flavors.
Coloring to imitate raspberry, strawberry, and other ruits.
Gum foam to give it an artificial foam, which enables the retailer to sell half:a glass of soda as a brimming glassful.
Tartaric and citric acid to do duty for lemon soda.
Coloring for making something sold for sarsaparilla.
There is one item called an "acid dispenser," which appears to be essential in bandling "acids and other corrosive" ingredients. We are not informed if such acids and corrosive substances are eliminated during the manufacture or during their passage into the human stomach. Such facts remain among the mysteries of "a business which pays."

French Academy Prizes.

In mechanics the extraordinary prize of $\$ 1,200$, offered by the French Acaderay of Sciences, has been awarded in part to M. Taurine frc his "Study of Marine Engines," in part to M. Germain for his "Treatise on Hydrography," and in part to M. A. De Magnac for his work on " New Astronomical Navigati on." M. Taurine's book contains the results of numerous original experiments bearing upon the art of shipbuilding.. M. De Magnac's new method of navigation is that suggest/ed by Sumner, and practically tried by Sir W Thomison several years ago. It depends on the fact that a knomison several years ago. It depends on the fact that a whien the altitude of a star is observed, enables the mariner tr', describe a terrestrial circle, on which the ship must neces'sarily be. By observing two different stars simultaneously, or very soon after each other, two circles are oltained, which at their intersection mark the position of the ship. This method has been adopted in the French navy.

The Montyon prize has been awarded to M. Leon Francq, civil engineer, for perfecting a fireless locomotive of the kind invented by Mr. Lamm, of New Orleans. The Fourneyron prize has been awarded to M. Marcel Deprez for his well known experiments on the electric transmission of power. The Lacaze prize has been bestowed on M. Henri Becquerel, the eminent physicist, for his researches on the magnetic rotation of solids in liquids and gases, and other valuable discoveries. The Lacaze (chemical) prize has been awarded to M. Cailletet for bis researches on the liquefaction of gases. In aerial locomotion the Academy has awarded the Penaud prize in equal parts to M. Gaston Tissandier, M. Duroy de Bruignac, and M. V. Tatin. M. Tissandier's experiments on the application of electricity to ballooning are well known; M. De Bruignac has invented a compound aeroplane combining a small balloon with sheltering surfaces; and \mathbf{M} Tatin has modeled the belix used by Tissandier, besides constructing artificial birds which fly by actual strokes of the wing.

New Febrifuge-Kairin.

The reports of the remarkable antipyretic effect of kairin continue to augment. Most observers seem to agree that it is best to begin in adults witb a dose of about $121 / 2$ grains, to repeat this two bours later, then to administer 9 grains every two to three hours, until the desired effect-decrease of temperature-has been obtained, when a smailer dose, about 5 grains, employed ever tbree hours, usually suffices to keep down the temperature. But at the least indication of the temperature falling below normal, the remedy must either be omitted or given in small doses and at very long intervals, say 3 grains every twelve iours. Should, however, the temperature nevertheless again ascend, the same course as described must be gone through anew.

Tamarinds.

There are but few people to whom the flavor of preserved tamarinds is not agreeable, but do those who frequently use tamarinds know how they are prepared? They come into commerce both from the East and West Indies; the latter, it would seem, are simply the fruits, or, rather, pods from which the shell or epicarp has been removed, and the pulp, together with the strong fibrous framework upon which it is work upon which it is built, and theseeds are placed in alternate
layers with powdered sugar in a cask or jar, over which boiling sirup is afterward poured. In the East Indies it seems they are prepared by first removing the epicarp and seeds by hand, after which the pulpy portion is usually mixed with about 10 per cent of salt, and trodden into a mass with the naked feet with the naked feet. Of these tamarinds several qualities are known in the market, the best being free of fiber and busk, and the worst containing both, together with the hard, stone-like seeds, which are commonly eaten in the East Indies after being roasted and soaked to remove the outer skin, and then boiled or fried, when they are said to be tolerably palatable. West Indian tamarinds are alone officinal in the British Pharmacopcia; while on the Continent those from the East Indies are alone employed. Besides the tamarinds sent to Europe th $\in \mathrm{y}$ are also sbipped in large quantities from Bombay to Persia and other northern countries.-Gardoners Chronicle.

PORTABLE ELECTRIC TESTING APPARATUS

Electric light engineers often have occasion to ascertain the resistances of the machines and circuits with which they have to deal, under conditions which make it inconvenient to have at hand the comparatively cumbrous apparatus which is usually provided for the purpose. The instrument of which we this week give an illustration has been designed with a view to portability, and to enable it to be used without much time being lost in setting it up. It is made by Messrs. Latimer Clark, Muirhead \& Co., and although the last and improved pattern is somewhat larger than that originally introduced, it is still of so small a size that electri cians can easily carry it with them. The range and sensi tiveness of the instrument are amply sufficient, and it is further capable of forming a useful adjunct to more delicate apparatus in the laboratory, seeing that it is always set up

DIAGRAM OF CONNECTIONS.
ready for instant use, and that measurements can be made with great rapidity. To combine in such small compass so many different parts in a practical form, and to insure correct reading with the minianum of skill on the part of the operator, necessarily required some little evolution, yet the result has been obtained by taking advantage of known methods without embodying any new principle.
Chloride of silver elements, wrapped in blotting paper moistened with a solution of zinc chloride, supply the current. The galvanometer needle is astatic, suspended from a torsion head by a silk fiber, and can be set to zero without it being necessary to adjust the position of the instrumen relatively to the magnetic meridian.
A single plug, which, when not in use, is placed in the cover as shown; serves to vary the comparison coils from $0 \cdot 1$ to 100 ohms. A battery and a galvanometer key prevent the extra current due to induction disturbing the blanče
The arrangement of branch coils, while, as in the ordinary "meter" bridge, permitting of continuous variation in values being read, provides a length of wire the resistance of which bears a due proportion to the other resistances in circuit. The principle is derived from Messrs. Thomson and Varley's well-known slide resistance box. Eleven coils, with contact pieces, are arranged in series in the base beneath the turntable, this latter carrying two contacts, which neath the turntable, this latter carrying two contacts, which
serve to embrace two of these coils; a wire having double
flection of the needle, a final adjustment being obtained by moving the index arm. The number pointed to by the arrow is then read off as hundreds, that indicated on the table itself as tens and units. The instrument, as we our selves bave observed, gives fairly correct readings from $0 \cdot 005$ to 2,000 obms, but will give approximate readings of a much bigher value
Two terminals (shown close together in the perspective view and diagram) are also provided for the insertion of extra battery power should it be desired to take insulation ests with a higher E. M. E. It would also be possible to measure the sectional resistance of cells by Mance's method, by taking out the ordinary cells, bridging over the two batery terminals, connecting the cell to be measured at \mathbf{X} and B, and adjusting the galvanometer either by the torsion bead or by an external magnet.
Lastly, the instrument can be used as a simple detecter by joining up to B and C, and using the left hand key.Electrical Reviero.

Curious Case of Cause and Effect.

During a storm at Greenville, R. I., May 9, the lightning ran by the telephone wire to the Windsor Mill, where there is no telephone, but the wire is disconnected just outside the building. The lightning was led by the wire to the corner of the mule and weaving rooms, and entered the building under the jet. It followed the water pipe and set the sprinklers going, and at the same time fired the stock in the mules. lers going, and at the same time fired the stock in the mules.
By this singular provision of an active extinguishing agent at the moment the fire started, serious loss was prevented, as the fire was soon drowned out. Many of the spindles in the mules lost their temper, and some of the belts were burned, but the mill was saved.

Eggs by Weight, Count, and Measure.

There is a great deal of difference in the size of eggs, and herefore a difference in the nutritive value per dozen when used for domestic purposes.
From time to time the newspapers take the subject up, and argue the propriety of selling eggs by weight, instead of by the dozen, as is the custom in the Eastern and Middle States. But in California, we believe, not only eggs, but fruit and many kinds of vegetables, that are sold in New York and other Eastern cities by the dozen and measure, are sold in San Francisco by weight only, and we caunot help but think that the latter is the most equitable mode of dealing to both the seller and purchaser.
In the great market, the " Halles Centrales," Paris, France, the egg dealers do things still differently. The eggs are assorted, according to their size, by passing them through rings, which, like all other measures, have to be stamped. These rings have a diameter of 38 and 40 millimeters, and ggs which do not go through the larger ring are first quality; those which go through the first but not through the second are second, and all others which go through the second ate third quality.

The Aasgeier and the Telephone

According to the Brazilian Germania of Rio de Janeiro, the telephone wires in that city have found a formidable enemy in the " aasgel. er," a large bird of the vulture species-a kind of John Crow-which flying very low, as it, passes over the tops of the hotuses in scavengering the streets, hits the wires and breaks them or else becomes entangled. Good wire is very expensive in Brazil. In consequence of the damage done by these birds, the telephone people are compelled to keep up a large force of men for repairs. No sooner are the wịres mended in one part of the city than report comes of interruption in another part, owing to the operations of the aasgeier. It is against the law to kill these birds, and as a result they increase very rapidly in number. The Provinzia, too, says that nothing positively remedial can be done at present. The telephonists must wait until the bird learns by

PORTABLE ELECTRIC TESTING APPARATUS.

of a single coil is stretched round the edge of he table and joins the two contacts, being for final adjust nent capable of subdivision at any point by the index arm which carries the battery current. When used for taking re istances, the connections are made to the two terminals marked X and B. The table is then set with the arrow pointing to such a number as on trial gives the smallest de-
experience that it will experience that it will
enjoy more personal comfort by flying higher. It would be interesting to know whether anything similar to this has been noticed in other tropical or subtropical town in which telephone wires have been strung. The advocates of underground systems may feel disposed to look on these John Crows as very sensible birds, engaged in making a laudable protest against aerial electric wires.

NATURAL HISTORY NOTES.

American Palms.-It is ouly when the literature of the order is brought together, says a writer in Science, that we appreciate the extent and varieties of palms. In the new Genera Plantarum of Bentham and Hooker there are 132 genera of true palms characterized, and about 1,100 species indicated. The following palms are indigenous to this country: Without counting one or two tropical species, which grow in Southern Florida, and which are outlying Cuban and Bahaman species, we have two true palmettoes-Sabal palmetto and S.Adansoni; the Blue palmetto, Rhapidophyllum hystrix; the Saw palmetto, Serenoa serrulata; just beyond our national borders, on the islands off Lower California, a palm of a peculiar genus called Erythea edulis; and finally, in Southern California, the elegant Washingtonia bilifera, named in honor of our first President.
Scales, Feathers, and Hairs.The idea current among natu ralists generally, and largely taught to students, that scales, feathers, and hairs are identi cal in nature, is combated by Mr. J. E. Jeffries in a recent is sue of the Proceedings of the Bos ton Society of Natural History Mr. Jeffries considers the epiderm to be the primitive, if not the true skin, as it is formed long before the corium, which is a late and very variable produc of the mesoblast; and becaus all the organs of sense are form ed from it. The epiderm may be considered as primitively con sisting of a smooth mucou layer, an epitrichial one, and perhaps an intermediate one o pareuchymatous cells. In birds and mammals the outer layer is lost, aud never renewed, while the middle layer becomes thick ened and subject to various modifications, such as drying conversion into horn, etc. Scales are moulted and renewed, scut are not. The toe pads of birds may be seen to pass over into scuta on the sides of the toes of many birds. Scuta bear feather as epidermal appendages, scales never do, thus pointing to scuta, which have a mucous layer and outer horn coat, with a meso dermal core, as simple folds of the skin, not as appendages
The early stages of a feathe and of a bair differ. The latter is formed in a solid ingrowth of the epiderm, and the latter from the epiderm of a large papilla. A hair does not contain any of the mucous cells, while a con siderable portion of a feather consists of them. The supposed homology between feathers and scales seems to fail before th facts that the mucous layer is absent in the later, and that Studer has shown that the imagined scale-like nature of the remiges of the penguins is a fallacy.
Mr. Jeffries avows his be lief in the distinct origin of the dermal appendages of the highe vertebrates, and asserts that the vakedness of the Amphibia is a strong argument against the identity of any of the alvian
appendages with those of reptiles or mammals.-(American Naturalist.)
The Coloring Matter of JTlowers.-The petals of flowers are far oftener colored by a pigment soluble in the cell sap than by one in a solid, granular form. Of 200 species examined by Mr. P. Fritsch, who has recently investigated the subject, ouly 30 contained solid pigments in the cells either of the petals or of the fruits.
Far the most common of these solid pigments is yellow, much the greater vumber of yellow flowers, includ ing nearly all the yellow compositæ, being indebted for their color to substances of this natnre.
Exceptional instances of soluble yellow pigments occur in the petals of Dahlia, Althea (marshmallow), and Tagetes (marigold), and in the hairs of many species. Solid yellow pigments are described in Impatiens longicornu, where they vary greatly in size and form, in the Indian cress (Tropœolum), in the evening primrose, pot marigold (Calendula), pansy, cone flower (Rudbeekia), digitalis, etc. The particles of pigment are often seen in a state of active molecular motion; they are always colored green by iodine, and are soluble in concentrated sulphuric acid, with a deep blue color

The pigment appears to be always embedded in matrix of protoplasm. A solid red pigment was observed in the fruits of the dog rose, mountain ash, lily-of-the-valley, white bryony, spindle tree, climbing bittersweet (Celastrus), and yew. The red pigment in the cortical portion of the root of the carrot is of a very peculiar kind, resembling long, pointed crystals.
Insoluble violet pigments are rare, but occur in Thunber gia alata and the larkspur; while blue granules are found in the fruit of Viburnum tinus. Brown insoluble pigments were found only in the seaweeds Fucus and Furcellaria.
The development of the colored granules does not end

last the lion that we gave路 tantaneous photograph was re produced directly upon wood and then accurately engraved by the artist. The photograph was taken by a skillful English oper ator, Mr. Henry Dixon.

Compressed Air Delivered in

 Pipes.The machinery and plant of the Birmingham Compressed Air Power Company, which is shortly to be laid down upon a site already selected, will cost, with the necessary buildings and service construction, some $£ 140,500$. It will be capable of delivering 5,000 indicated horse power in compressed air. At the outset there will be put down four air compressing engizes driven by compound condensing steam engines, and heated by six sets of elephant boilers, four in each set. Now, in the three wards forming the experimental area, we find from the latest total returns that scarcely 3,000 indicated horse power can be needed for engines up to 30 horse power; it may fairly be assumed that for no engines above that power is the new motor likely to supplant steam, since the pressure obtained by the user even after rebeating will not exceed 40 pounds to the square inch. The whole of the surplus 2,000 indicated horse power is scarcely likely to be used up by tradesmen other thau those engaged upon industrial processes, by builders and contractors for working winches and cranes, and by tramcar companies. In any case the user will have to look to the ice difficulty by having the service pipe passed through the nearest flue, or making special arrangements.
The air will be supplied at a pressure of four atmospheres, and heating to at least $321^{\circ} \mathrm{Fah}$. will be necessary to obtain the best results. However, should the estimates of the engineers be anything like correct, the scheme should be a success. They see their way, it is said, to furnish the compressed air at forty dollars per annum per indicated horse power. An addition of 20 per cent-assuming say $\$ 50$ for small steam poweris suggested. This movement, contemporaneously with the through a variety of changes of development or degrada- starting of refrigerating plant in the same town, is of much tion.

The

The belief of some persons that sugar in paying quantities can be got from corn stalks as well as from sorghum, recalls the fact that the State of Connecticut gave to Edward Hinman a patent for making molasses from corn stalks in October, 1717, or nearly 167 years ago. Senator Platt, who introduced this statement in a recent speech, cited some other curious old Connecticut patents, showing that the spirit of invention was rife there at an early date. There were no devices in the list for manufacturing wooden nutmegs, but in 1783 a patent was given to Benjamin Hanks for "a clock which will wind itself up."
Another interesting point that may be derived from Mr. Platt's tables is that, while in 1790 there were but three patents issued by the United States Government, in 1792 but eleven, and in 1795 but twelve, the issue for year before last was 18,135, and for last year it was 21,196. At certain Thus, in 1854, the number of new patents rose to 1,759
industrial significance for Birmingham, and of interest to all engineering centers.

Dr. Adolph von Bruening.

The German color industry has met with a serious loss by he death of Dr. Adolph von Bruening, who died suddenly in his forty-seventh year of age, on the morning of April 21 last, at Frankfort-on-the-Main. He was one of the founders of the colossal color works, known to the industry as the "Farb werke, formerly Meister, Lucius \& Bruening," at Hoechst on-the-Main, which owe their flourishing condition in a great measure to his proficiency and inventiveness as a practical chemist. The excellent organization of institutions for the laborers connected with the color works are the manifestations of his philanthropic care for his subordinates. He was born at Ronsdorf, near Elberfeld, in 1837, and only a year ago he was raised to nobility, by the Emperor Wilhelm, in acknowledgment of his patriotism and distinguished merits in industry. He was also a member of the German Reichstag, representing from 1874 to 1881 the district of Homburg-Usirgan
whitewood.
Whitewood is gaining favor rapidly. Not many years ago it was used in th is vicinity chiefly for coffins and wagon box boards. Farther south, in the sections where the wood grows, it has been used for finishing to considerable extent, but builders who could readily get white pine discarded whitewood.
Until recently, for finishing purposes, and for the manufacture of sash, doors, and blinds, whitewood was little thought of north of those sections where it grows plentifully. A representative of one of the largest sash, door, and blind factories in the country recently said in this office that if he were building he would bave little choice between pine and whitewood for the purposes above mentioned. He admitted that his interest is purely identified with white pine, and that he would not admit openly that whitewood is the peer of pine; such, however, in bis opinion, is a fact. This is a big admission to come from such a source, but one that is based on a good foundation.

It can be easily understood why whitewood can be used successfully for many purposes for which pine is employed. It is more inclined to twist than pine, but this is not much of an objection where it can be used in small pieces, or if in large ones, securely fastened. Even gum, the most rebellious wood that grows out of the ground, if properly nailed, answers for finishing admirably. Whitewood is very easy to work-it probably ranks next to pine in this respecttakes a good finish, and makes a close joint. There are complaints against cypress for sash, doors, and blinds because, it is said, it is too hard a wood to drive together and make a perfect joint. Too much work must be put on the pieces where they come in contact to cause them to fit closely. In pine work this extra work is unnecessary. The wood is so soft that it readily gives, and the tight joint is at once produced. There are others who claim that such a fault with cypress does not exist; but that it does somewhat there can be no question. Not that perfect cypress sash, doors, and blinds are not made, but it requires a little more attention and labor to make them than it does In regard to softness, whitewood probably ranks next to pine; it is not quite so easily worked as pine, and a little more easily than cypress.
The easiness with which whitewood can be smozthed is greatly in its favor, as it is prepared at light cost for the paint. Its ability to bold paint well is questioned, and justly where the lumber is used on the outside of a building. Place two boards, one pine and the other whitewood, side byside in an exposed condition, and paint them at the same time and with the same number of coats, and the pine without question would look the better for the longer time. For inside work, though, any difference that may exist in this regard would not count for enough to take into consideration. The paint holding quality of whitewood is good, while in white pine it is extra good.
The cost of whitewood is decidedly in its favor. When clear whitewood can be bought for $\$ 20$ per thousand less than clear pine, the difference shows up in the light of a big inducement to the consumers of lumber. With many there would have to be big advantages in favor of pine to counterbalance this difference in price. Twenty dollars in a thousand feet of lumber is a good deal of money, and when such a difference exists there ought to be more points in favor of the higher priced lumber than in this case really exist. As the prices of the different kinds of lumber are now ranging, whitewood, considering its value, is the cheapest finishing lumber to be had.
With the popularity that whitewood is winning it is not to be wondered at that whitewood stumpage is increasing in value, and it may be expected to be worth still more. Not many years ago it did not take much money to buy as mucb timber as any man cared to own, and few cared to own much; but now it is sought not only where it can be immediately got at; but in the out-of-way places which will necessitate the timber standing until improvements in streams and in the way of building railroads are made. It has also come to light that it is not so plentiful as many, a few years ago, supposed it to be. In some of the best Tennessee districts a good share of the available whitewood has been cut; a big proportion of it, when it is considered how short a time the whitewood mills have been at work.N. W. Lumberman.

New Style of Parlor Car.

The Pennsylvania Railroad Company have had built at their Altoona shops a parlor car, No. 901. Its dimensions are 62 ft . in length, 9 ft . 10 in . in width, and 9 ft . from the floor to the upper deck of the roof. It is constructed upon an entirely new plan. It contains five separate compartments, retiring rooms for ladies and gentlemen, one at each end of the car, the main parlor, a ladies' boudoir, and a smoking room. The parlor contains four movable rattan chairs, fourteen fixed chairs, and a sofa, a seating capacity of twenty-one. A noticeable improvement is the manner in which the fixed chairs are secured. They are balanced on a handsome brasswork pivot, and furnished with two gracefully curved brass legs at the back, which upon the occupant reclining and the chair touching the floor and giving the chair
stability, prevents unpleasant swinging from one direction to
another when turning sharp curves, and at the same time readily permits the chair to be moved while in that position, as the feet of the legs are formed of easily moving rollers. The boudoir is 7 ft . by 6 ft ., and contains a lounge and tbree rattan chairs. A wooden partition of the height of the window sills separates it from the parlor, and entrance to it is obtained through a highly ornamented gate. Rich curtains, of fine plush, of a gendarme blue, supported by rods attached to a framework of oak, afford the means of securing to the occupants perfect privacy if desired.

The smoking room is $121 / 2$ feet by 6 feet. Partitions reaching to the roof divide it from the other portions of the car. A novel arrangement of the windows has been adopted. Instead of the old style flat window, there are five bay windows on each side, each window about 7 ft . in width. The center light or outer glass of each window is within the outer line of the car, and from it two panes deflect inwardly in opposite directions. This arrangement affords not only a greater lighting surface, but enlarges the prospect from the window, and, it is claimed, ventilation and air can be secured without the introduction of cinders by opening the rear panes of these windows, thus forming a draught outward from the interior. The interior wood work is oak, prepared to resemble English oak. There is no frescoing or veneering, but the ornamention consists of elaborate carving and beautiful repo,usse brass work, exquisite chandeliers of brass, cut glohes, rich upholstery and carpets, delicately stained glass ventilators, all harmonizing delightfully and giving a most pleasing air of solidity and comfort. The exterior is painted in the standard red of the company; the guards and railings of the platforms are nickel plated, and the body of the car rests upon two six wheel trucks, larger than ordinary, the introduction of an additional spring giving greater ease.

AN OLD UNIVERSAL TOOL.
Several years ago a so-called "universal tool" was ad

attempt; but the latest of these magic names of science which we shall have much occasion to use calls for some particular consideration.
3. What is energy? We have outgrown the intellectual stages at which men invented a specific fluid to answer such a question, and we recognize that we cannot say what anything is; we can only state the idea we form of it from its actions; we have no conception of energy except as a relation of matter and motion. It may be either expressed as the work capacity of matter in motion, or of matter uuder a stress capable of generating motion. But the essential feature of the modern scientific ideas as to energy is the recognition that it is uncreatable and indestructible. We can form no concrete idea of its nature; it is best conceived as motion, yet it is impossible to even conceive of motion apart from matter. It must therefore be recognized as an attribute of matter, yet distinct in its origin and nature, because it is transferable from one mass of matter to another, and even to that more intangible something, the ether. It is here, in fact, that the most usual explanations of energy fail us; we can form some sort of idea of energy in the form of work imparted to or effected by a moving mass of matter but the imagination fails in realizing the existence of vast stores of energy in mere space. It is a relief to accept the "ether," of which we know nothing, as almost representing the underlying essence of all things-the substance of metaphysics, endowed by the mathematician with the properties of an elastic solid, possessing none of the attributes of matter itself, while it is interchangeable with matter in the relations of energy.
4. Kinetic energy appreciable as work is the natural starting point of the endeavor to reach the unseen. A cricket ball struck by the bat gives us a perfect picture of the nature of energy, for it shows us an inert mass of matter suddenly endowed with motion, and with the capacity of doing work in consequence of that motion. We know that this capacity of doing work has been imparted to it from the muscles which moved the bat, that it is partly expended in air during its transit, and that if the motion is suddenly arrested some considerable results may be produced; in fact, the ball bas received, has transmitted, and has transferred that something which modern science calls " energy," and which is one most important element out of which modern science is constructed.
5. This energy can be definitely measured. But here we should clearly recognize that, while professing to measure a thing which has after all no conceivable existence, we are measuring, not the thing itself, but an effect it produces. This not an idle truism, for probably few people realize that it applies to all measurement, to all our knowledge. The most concrete idea-apparently-is that of matter, and the most apparent of our conceptions of matter is its weight, or in scientific terms, its mass. Yet; when we weigh a thing we are not weighing matter itself, we are we are not weighing matter itself, we are
merely measuring a force exerted by it. In
a practical way, but have not had sufficient experience to know that such an implement is not convenient. It is inter-
esting to know that this "novelty" is very old, and had died out of existence until the modern imitation of old things brought it to light again.
In the collection at the Flechtingen Castle, among other things, is the " universal tool" shown in the accompanying cut, taken from the Illustrirte Zeitung. This implement is at least three hundred years old; it is almost nine inches long, very heavy, of very good workmanship, aud bears traces of having been gilded.

Electricity and Light.*

Electricity appears almost to realize for us one of the oldest and most striking of the representations of creative power, "Let there be light, and there was light." In most of our other sources of artificial light we appear to consume something which to the ordinary mind is converted into light. Here we have to all appearance light produced out of nothing, or as the nextstep from the ordinary unscientific reasoning to that of partial scientific enlightment, electricity converted into light. A further advance in knowledge teaches us that-1. Electricity is not converted into light; 2, that no illuminating agent is so converted; 3, that light does not exist at all; that it is not a thing, but the perception of an action. The light is in the eye itself.
2. Light is a function of energy, and its study involves four considerations-1. The phenomena of its origin; 2 , the mode of its transmission across space; 3 , the nature of its perception; 4, the energy expended in these several pro-
cesses. Each of these calls for and will be worth some little cesses. Each of these calls for and will be worth some little
examination; but inasmuch as one of the great dangers of science is the acceptance of words (which are worthless except in so far as they convey a definite meaning) in the place of realities, it will be well to begin at an cven earlier starting point. Electricity itself is a word which we all use, and which too many employ as though it were one of the old " words of power," the mere utterance of which is in itself sufficient to place the powers of nature under subjection. Yet what conflicting ideas exist as to what the word really means, and how few could give a really intelligible explanation of what they mean by it. That task we need not now
rdinary cases we simply measure the mutual forces of 6. The of the earth and the object.
6. The most concrete measure of energy is furnished by tbis very attraction, viz., the unit of mechanical work, the footpound, the energy imparted to a pound weight while moving through one foot of space under the force of the earth's attraction, or which must be expended in lifting that pound weight against the earth's attraction.
7. Heat gives us another concrete unit in the quantity of heat, which is now known to be an action of energy, neces sary to raise one pound of water one degree of temperature. Here again, however, we bave to recognize that we cannot measure a thing itself, but only its effects. We speak of a quantity of heat, but we never measure heat itself; we measure either a temperature effect, variable in every separate substance, and necessary to be ascertained by experiment, or we measure an expansion effect variable also in every substance except in pure gases.
8. The correlation of the forces, the knowledge of which is the greatest achievement of this age, as far as pure science is concerned, because it is the starting point of progress of discovery in all directions, means that many actions which used to be attributed to special fluids or forces are merely different manifestations of energy. It follows, therefore, hat one unit of energy can represent all these actions; that s to say, that just as a quantity of heat contained in a mass of red hot iron can be expressed in terms of the number of pounds of water it will raise $1^{\circ} \mathrm{F}$. in temperature when the relations are ascertained, so can it equally be expressed in foot-pounds of mechanical work once the interrelation of hese actions of energy is ascertained.
9. The action of heat on a pure gas is the most apparent evidence of this relation, although not the one by which it is usually illustrated. We can impart heat to a gas in two ways: 1. The gas being inclosed in a rigid vessel and beated, a certain number of degrees exhibits that heat in the form of temperature, just as water or iron does; this is the heat of constant volume. Under these circumstances a force is also developed-a pressure or tendency to expand. 2. The gas may be allowed to expand freely while beating, and will now absorb what is called the heat of constant pressure. Now, if we pass the gas into a calorimeter, we shall find that the heat of this second case is the greater by a
measurable quantity. But as the same quantity of gas is a the same temperature in each case, how has this excess of heat been disposed of so as not to be apparent, and yet capable of being recovered? Something else bas been done besides heating the gas; the art of expansion involved the lifting a column of the atmosphere, and this work can be measured in foot-pounds. This work therefore represents the energy corresponding to the difference of the two heats. Various experimental conversions have been made resulting in the two figures of 772 foot-pounds and 1 pound $1^{\circ} \mathrm{F}$. of water, which are received as the " mechanical equivalent of heat;" that is to say, the same quantity of energy will appear as either of the two forms, and one pound of water falling 772 feet would be beated 1° if it could be stopped so as to retain in itself the whole energy of the earth's attraction.
10. Potential energy is more difficult to conceive than kinetic, but our cricket ball may furnish some ideas. When it is flying through space it is not doing work, except as friction in the air; hut it has the capacity to do work, and this friction work is a gradual exertion of that capacity. Its motion at each instant is therefore the measure of its remaining capacity, and is in fact the consequence of and the evidence of the energy potential, or latent in the ball. Now the unscientific mind would imagine that this energy was created by the striker, the production of his will; but science knows that the player no more created the energy than the bat did. The player in exerting his muscles burnt away a portion of their material or consumed some of the substance stored in his blood and derived from his food; in fact, he corresponds in function to a steam engine and boiler fed with coal. We come then to the result that he simply transferred potential energy to the ball, converting it first into kinetic energy or mechanical work in his muscles. The food itself simply stored up energy derived from the sun's beams, because the process of vegetable life is a continual unburning of hydrogen in water and carbon in carbonic acid, and the setting free of oxygen in the air, a process which requires an equivalent of energy to be imparted to the atoms, which energy they give up on their reunion, whether in the lungs and muscles of the cricket player or the boiler of the steam engine.

Boiler Settings and their Defects

The Locomotive is a small sheet published monthly by the Hartford Steam Boiler Protection and Insurance Company; every issue contains a list of the boiler explosions and such other casualties, pertaining to steam appliances, which have occurred during the month prior to the issue of the paper.

The officers and engineers connected with the above company, from their experience derived in the inspection of boilers aud their business as underwriters in this kind of risks, have more than ordinary opportunity for knowing which class of boilers are the best for the work required of them, as well of the best mode of setting them and the best attachments for insuring economy and safety. The May number has an article condemning the running of flues over the tops of boiler shells, as follows:

One would naturally suppose that when the number of boilers that have beeu ruined, and the still greater number that have been seriously injured, hy this form of setting is taken into account, no one would think of setting new boilers in this manner. Yet it is done every day, and by intelligent and experienced men too. The argument used in its favor, that the passage of the hot gases over the steam space superheats the steam, and thereby renders it more economical, is a plausible one, and doubtless leads many stcam users to adopt this form of setting; but if the circumstances are carefully examined, the argument will be seen to be fallacious. It will be impossible to superheat steam when it is in intimate contact with such a large surface and body of water as it is in the case of a tubular boiler. Moreover, it will be difficult for any one who has in mind the poor conductivity of ashes to see (when looking into one of these flues after it has been running a few months) how superheating of the steam can occur. Our experience with this form of setting (and it is a somewhat extensive one) points to this: So long as the brickwork at the sides of the boiler is perfectly intact, so as to compel all the gases of combustion to pass through the tubes before they reach the top of the boiler, and the water is good, the influence of the flue is nil, because, if the boiler is properly proportioned, the temperature in the flue cannot much exceed that of the steam in the boiler, and if the boiler is badly proportioned, the deposit of ashes which soon collects on top of the shell protects it, in a great measure, and this very protection is sufficient to prevent any superheating of the steam. But as soon as the side walls begin to heave, as they almost always do, and crowd away from the boiler shell, then the fire takes a short cut up past the side of the boiler into the flue, the draught is sufficient to carry away the ashes at the points where the openings are, and the exposed portion of the shell gets "scorched." Sometimes, when the feed water is very acid, the overheating, while hardly violent enough to burn the plates, is just sufficient to bake all scum on the surface of the water on to the shell above the water line, beneath which coating corrosion goes on with surprising rapidity. We have seen boilers set in this way, with a coating several inches thick above the water line, after they had run only a year, beneath which the plates were eaten nearly half way through, while other boilers in the same room had been running under the same circumstances, with the single exception that the fiue did not pass back over the shell, for up-
ward of fifteen years, and only showed very slight trace of this action. This seems to us to be conclusive evidence of the injurious action of this form of setting, asidefrom the liability, at any time, of the side walls becoming so badly disarranged that actual overheating and fracture therefrom may occur.

IMPROVED CLAW BAR

An invention patented by Mr. Hugh Robertson, of Breckenridge, Minn., relates to claw bars for drawing spikes from railroad ties and for similar uses. Fig. 1 is a perspective and Fig, 2 is a sectional view. The bar is chise shaped on the extremity of the handle, and upon the oppo site end is formed a convex head having concave sides. The end of the bar is slotted to receive a bolt that clamps the auxiliary claws to the sides of the bars, the inner faces of the claws being curved to adapt them to the concave sides of the head. The points of the claws extend outward

from the sides of the bar nearly at a right angle, and are slotted to receive the body of the spike to be drawn. The claws, near their points, are countersunk to receive the head of the spike, and the sides of the bar are similarly countersunk. The claws may be both clamped in position for use when the bead of the bar and the outer surface of the claws will form a curve of long radius. The bar may be used without the claws, or one of the claws may be attached in position for use and the other reversed. The bolt is flattened and fitted to the slot in the bar and to oblong holes in the shanks of the claws, which are thus prevented from turning. The chisel at the end of the handle can be used to form a cavity into which the claw may be inserted if there should be any difficulty in getting under the head of the spike.

WATER COOLER.

An invention recently patented by Mr. J. E. Welling, P. O. Box 100, Georgetown, Ky., is shown in the accompanying cut. The space between the removable water tank and the shell is filled in with some good non-conductor of heat. The faucet passes through apertures in the tank and shell, and is provided with annular shoulders which are kept pressed

WELLING'S WATER COOLER.

against the outer surfaces by a nut screwed upon the inner end of the faucet. On the back of the outer shoulder are two lugs which enter notches in the edge of the aperture in the shell, and thus prevent the faucet from turning.

The shell is provided with a removable bottom having a folding handle upon the under side. On the edge of the bottom is a series of notches, and the base of the shell has a corresponding number of lugs. To secure the bottom in position it is so placed that the lugs pass into the notches when it is turned so that its rim, between the notches, rests over the lugs. After the tank bas been secured in the shell, the whole is inverted, the space is filled with sawdust, mineral wool, or other non-conductor, and the bottom fastened in place.

Antimony in Dyed Cotton Yarns.

by dr. CARL BISCHOFF.
As is well known, it is at present a frequent practice to fix aniline colors on cotton yarns intended for stockings, etc., by means of tartar emetic and tannic acid. Commonly the yarn is first drawn through a sumac bath and then run into water containing the dye, together with the necessary quan tity of tartar emetic in solution. In this way a tannate of antimony is formed, which is found to adhere well to the fiber, and acts as a fixing agent for the color, consequently the majority of dyed stocking yarns of all classes above the lowest contain appreciable quantities of antimony. Soluble antimony compounds, especially tartar emetic, when applied o the human skin in suitable and sufficient doses, cause a peculiar cutaneous irritation and inflammation.
Now, although the above mentioned method of fixing anilines may almost be called fast, owing to the colored anti mony compound being difficultly soluble or pretty insoluble to water, y et under certain circumstances, among which may be mentioned insufficient rinsing, by wo means unimportant quantities of soluble antimony compounds, more especially of tartar emetic itself, may remain in the finish ed yarns. In the last few months of 1883 a large firm of cotton stocking yarn dyers was induced to institute a research on a considerable collection of samples dyed in baths containing tarta emetic. Complaints of injury to health, etc., resulting from wearing miscellaneous goods which had been manufactured from these yarns, were the cause of this step being taken. The intention was to have determinations made of thequan tities of antimony which might remain in such yarns after skilled dyeing and proper rinsing, also of the extent to which the aniline antimony tannate lakes remain soluble in water, and finally to ascertain how much antimony could be go out of the aforementioned lakes on the application of ener getic dissolving agents.
The samples examined were fair average ones, not spe cially treated nor specially selected. After extraction of weighed quantities of yarn by means of hot water, the antimony was determined both in the aqueous extracts and in the yarns remaining therefrom. Digestion with concentrat ed muriatic acid, sometimes after addition of chloric acid, was the means employed for solution of the antimony firmly held in the yarns. Sulphide of ammonium was the precipi tant employed, and when weighable quantities were obtained the precipitate was converted into and weighed as antimony pentoxide. The following scheme clearly and concisely ex hibits the results obtained:
antimony in dyed cotton yarns.
(Traces not determinable quantitatively.)
Soluble in Water. Soluble in Acid.

Color of Sample. P	Per cent Antimony.	Per cent Antimony
1. Bluish violet.	traces	$0 \cdot 11$
2. Red (Bordeaux)	traces	$0 \cdot 26$
3. Dark violet	.. 0.012	$0 \cdot 12$
4. Light reddish brown.. traces	$0 \cdot 24$
5. Pure blue............ traces	$0 \cdot 13$
6. Dark blue	.. 0008	$0 \cdot 25$
7. Light red (Bordeaux).)... traces	$0 \cdot 18$
8. Bluish violet.	traces	$0 \cdot 10$
9. Scarlet	.. 0.008	$0 \cdot 22$
10. Dark red brown...... traces	0.244
11. Dark red.............. traces	0.31
12. Red brown	. 0.0135	0.30
13 Scarlet..	0.014	0:20
14. Light blue... traces	0.036
15. Water blue.......... traces	$0 \cdot 11$
16. Orange brown	traces	$0 \cdot 121$
17. Brownish		

It is well to be borne in mind that the weight of a pair of ordinary cotton stockings is about from sixty to seventy grammes. Hence the antimony contents of such articles made from these yarns would be with a maximum say 0.25 gramme. Only the quantity of antimony which is soluble in water can in this case be of physiological importance, and, according to the above table, this amounts to a maxi mum of 15 centigrammes per pair of stockings. We leave it to medical experts to figure out the influence on the health of the individual exercised by these quantities of antimony. We, bowever, do not by any means deny the possibility of cutaneous irritation, etc., in cases where the dyeing has been done in a loose, slovenly manner, no care given to the indis pensable rinsing, and consequently the percentage of anti mony soluble in water rendered comparatively high.-Tex. Manuf.

New Telegraph Cables between Europe and America A new cable is now being laid between Iceland and Nova Scotia, thence to this country, by Messrs. Bennett and Mackey. The cable used in the present enterprise is undoubtedly the best that bas ever been made, representing the accumulated experience gained in the construction of all previous ocean cables. It was manufactured by the Messrs. Siemens at their works near London. Upward of 2,500 men are employed in the establishment, and 1,700 of these were employed on the present cables, for there are two of them, two to extend side by side from Ireland to Nova Scotia, whence one goes to Rockport Mass, and the othe round Cape Cod to Fire Island, N.Y., and thence to New York. The aggregate length of the two is over six thousand miles. The shore ends are two and one-half inches in diameer, while the cable proper is but one inch in diameter. The conductor is formed of thirteen wires, consisting of twelve mall wires coiled around a central wire one-tenth of an inch in diameter. The insulating material is gutta-percha, be tween which and the armor there is a cushion of jute.

engineering inventions

A dumping car has been patented by Mr. Terrence Reynolds, of Atalla, Ala. This invention
covers a tilting platform journaled at poiuts a little in covers a cititing platform journaled at poiuts a a ittle in
front of its center to a stationary frame, worked by various special arrangements and devices, to facilitate the unloading of cars in
loads are to be dumped.
An amalgamator has been patented by Mr. Edward Pike, of Salt Lake City, Utah. The inven tion provides for a sluice box with opposite riffles, faced
with amalgamated plates, and connected with wires with amalgamated plates, and connected with wires
leading to a generator of electricity, in order to save leading to a generator of electricity, in order to save
fine gold, floured quicksilver, and amalgam, and facilitine goid, floured quicksilver, and amalgan, and facilit
tate the concentration of ores and gold and silver tail ings.
An ore concentrator has been patented by Mr. Jobn L. Loomis, of Leadville, Col. Inclined
slaices are made to abruptly change the course of the current at numerous intervals, combined with which are water pipes having jet orifices or tubes to increase
the volume of water in the sluices and disturb the pulp the volume of water in the sluices and disturb the pulp
in the current, thus facilitating the separaion of the in the current, thus faciitating the separa
ore from the lighter accompanying particles
A car coupling has been patented by Mr. William M. Robinson, of New Franklin, Mo. In combination with a drawhead is a side pivoted lever, with a laterally moving coupling pin held in the front end of
the lever. the inner end of the lever being connected with a sliding vertical bar in the drawhead, this vertical bar being connected with a pivoted dever for m
ing the bar to the front to nncouple the drawheads.
A car coupling has been patented by Mr. John Mealey, of Prescott, Ontario. Canada. Each draw head has one hook and one socket, the hooks being always in the same side, so the conplings will match
when two cars run together; the device may also be when two cars run together; the device may also be
made to work with the ordiuary link and pin coupling, made to work with the ordiuary link and pin coupling,
when cars of other systems are used, and there are coupling
A car brake and starter has been patented by Mr. Frank Tompkins, of New York city. Combined with the front axle of the car is a ribbed wheel on
the axle, with sliding sleeves, the latter having ribbed disks to engage with the ribbed wheel, chains on these sleeves being connected with an air compressing piston in a cylinder, a rack connected with the piston engaging with a ratchet wheel on the rear axle for revolving
it when the piston is forced outward by the compressit when the piston is forced outward by the compress-
ed air, thus using the energy stored in braking to help ed air, thus u
A process of and apparatus for producing heating gas has been patented by Mr. Herman Haug, of Dortmund, Prussia, Germany. The essential prinofle of the invention is that the quantity and intensity of beat necessary are produced principally by super-
heating to a high degree the converting agent, which may be steam or carbonic acid, or mixtures of them with air or with combustible gas, while the crude carbonacêoũs material contained in a converting chamber may at the sam

MECHANICAL INVENTIONS.

A pipe wrench has been patented by Mr. Conrad D. Volkmann and William F. Peddycord, of Napanee, Ind. This invention relates to that class of a self-adjusting hook, and makes a wrench that is strong and reliable, suitable for use on large and small pipes, and adapted to take hold of short pipe nipples.
A grinding mill has been patented by Mr. Charles C. Burner, of Traveler's Repose, W. Va. This invention is for mills used for grinding apples to pomace preparatory to making cider, and provides for the cogs being slid out and in with mechanical certainty
and ease, their mortises kept clear, and the apples being gradually reduced to the fineness required.
A polisbing wheel has been patented by Mr . aniel W. Abbott, of Leetonia, Ohio. It is proposed drels, so purchasers may readily fit them to the mandrels in use; the plan for securing the leather is simple ither fort, and the wheels may be cheaply made, ng.
A rag engine for paper making has been patented by Mr. William Whitely, of Housatonic, Mass.
This invention covers, in part, improvements on former letters patent issued to the same inventor, and the nected by bolts, so the upper parts can be conveniently nected by bolts, so the upper parts can be conveniently and allow them to be easily removed, with varions ther devices to facilitate the leveling and adjusting of the rolls.
A saw set has been patented by Mr. George A. F. Clayton, of Masonville, Va. The inveution consists of an inclined bed plate with an angular face, on
which the teeth of the saw are to be bent, over which is a die for cending them, arranged on a pivot, and with a spring to raise and hold it for adjusting the saw; over the die, also, is a press screw with great pitch, with weighted lever handles, to work quickly and ser the
teeth accurately, the whole being readily at tachable to a bench or other support.

MISCELLANEOUS INVENTIONS

An automatic fan has been patented by Mr. Logan W. Everhart, of Parsons, Kansas. It is and may be suspended from a ceiling, to be easily red orlow to suit

A meat clamp has been patented by Mr. Joseph H. Tabony, of New Orleans, La. It is a device
adapted to be attached to a butcher's bench, or to a aptl bench to meat, and thus promote convenience in slicing.
A composition of matter for giving a metallic surface to paper has been patented by Mr. Julius
Fransecky, of East New York, N. Y. It consists of
argentine, vermilion, silver bronze, etc., in certain
definite definite proportions, applied in a specified m
whereby a coating and metallic luster are given.
A lock for wagon end gates has been patented by Mr. Andrew Sproul, of Hannibal, Mo. A rod is held to turn on the outer surface of the nd gate, the ends of he rod being bent over the ends of he gate,
and adapted to engage with tuds projecting from the side boards of the box
A vehicle spring has been patented by Mr. Willard S. Everett, of Hyde Park, Mass. This invention covers a new form of spring, arranged in elliptical or circular form, with an ordinary or diamond shaped or semi-diamond shaped base, thus combining in one spring the action of the two forms of springs.
A flour refiner has been patented by Mr. Isaac Morgan, of St. Louis, Mo. Within a suitable casing are a rotary shaft, suction fan, agitators, coni-
cal feeder, and various special arrangements, for sepacal feeder, and various special arrangements, for sepa-
rating impurities as the flour is fed in and drawn rating impurities as
A spring shade roller has been patented by Mr. Gideon B. Massey, of Mount Vernon, N. Y. It is so constructed that when the shade is suddenly released
the roller will be checked, and will be prevented from the roller wil! be checked, and wil be prevented from
winding up the shade too far, as is now commonly the case with ordinary spring rollers.
A hold back for pole irons of wagons has been patented by Mr. William D. Hatch, of Olean, N. Y. The invention covers a novel construction and wear and prevented from cutting into the pole by the pull of the neck yoke ring on the hold back.
A street car fare box has been patented by Mr. Gustave S. De Blanc, of New Orleans, La. Comined with a fare box having an orifice or chute for receiving the fare is a bell or gong so placed as to be
struck by the money as it drops, thus giving an audible struck by the money as it drops, th
signal to the driver and passengers.
An improved gate has been patented by Messrs. Josiah Austin and Rossco Cbamberlain, of East Liberty. Ohio. This invention covers improve-
ments on automatic gates formerly patented by the same inventors, by which a quicker movement is ob
tained, and the A portable apparatus for heating minera water in bottles or flasks has been patented by Mr. Edwin D. Newton, of New York city. The invention covers a special construction of apparatus whereby the nccessary heat may be readily obtained from a lamp or
gas burner, and regulated by a thermometer, so that gas burner, and regulated by a thermometer, so that A device for thawing outsink spouts has been patented by Mr. John G. Coburv, of South Car-
thage, Me. In combination with a hot water pipe, end threaded on the outside, is a cup and internally thread the cup, to facilitate the pouring of hot water into sink pipes for thawing them out.
A multichambered bottie bas been patented by Mr. Edwin D. Newton, of New York city. The botorifice at its lower end to introduce hot water or a hea ing fluid, with passages at the upper end for the escape of air, the thermic chambers being surrounded by fluid A wagon tongue support has been patent by Mr. William P. Martin, of Chico, Cal. Brackets are so arranged with a rod, sheave, chain, and hook, as to make a simple pole support, wholly removing the weight of the tongue from the necks of the horses, and the tongue or pole down on the ground.

A nest box for fowls has been patented by Mr. William Z. Allen, of Monrovia, Ind. The object, from being annoyed by other hens, or by rats their nest or other animals, a balanced nest heing combined with and operating a hinged door, with which is connected a vertically sliding locking bolt.
A cooking stove has been patented by Mr. Ernst J. Krause, of Carlisle, Pa. A detachable partition plate, in combination with a horizontal stop plate, is so arranged as to check and control the fire, by re-
ducing the capacity of the fire pot, so as to limit the heat to the smaller requirements of a stove for sum
mer use.
A breech-loading fire arm has been patented by Messrs. Pius and Charles Kaul, of Lancaster, P the broech is opened and closed by means of a vertical ly sliding block, a lever being adapted to pull down the block and cock the hammer by a single downward or rearward movement.
A folding table has been patented by $\mathbf{M r}$. John McGrath, of New York city. It has hinged legs connected in pairs by cross bars, and held in place by folded and unfolded, for convenience in srorage an transportation, and when opened for use the table will
be firm and ripid.

A flying target bas been patented by Mr Cbarles F. stock, of Peoria, m . This invention co sists in providing that class of targets known as "clay
pigeons" with a separate re-enforcement of paper, pigeons" with a separate re-enforcement of paper,
leather, or wood, applied to the edge or flange, so the target may be made very thin and fragile, and y thrown from the trap without breaking
A dust pan has been patented by Mr. Sala thiel C. Sweetson, of Island Fa.lls, Me. It is formed of
sheet metal, with its side edges bent to form flanges, one higher than the other, the lower flange baving it lap edge beveled from rear to fronl, so that it can be
used for cleaning dust out of angles, and dropping the same into small openings in a stove
A tool for raising sucker rods from wells has been patented by Mr. Marvin Newton, of Knapp' Creek, N. Y. The tube is made of spring metal, an has a slit so that the lower end of the metal will spring
outwardly when passing a joint, its lower edge being formed as a steel cutter, so that it will pass around the

A skidway has been patented by Mr. Josbua L. Given, of Philadelphia, Pa. The invention covers on a floor and their upper ends on \& flight of stairs shaped midway in a curve to which the two ends ar tangent, to facilitate the sliding of
one story of a building to another

A wind engine has been
A wind engine has been patented by Mr. David H. Bausman, of Lancaster, Pa. In combination
with a horizoutal wind wheel is an ndependent shield partly surrounding it, a vane connected therewith with a joint between the ends, devices for giving the parts of the vane the desired inclination to each other, with
other devices, to make a simple and self-regulatin wind engine.
A combined cotton chopper and scraper ba been patented by Messrs. Samuel A. Myers and John J. Kelly, of Memphis, Tenn. This invention covers a special construction and combination of parts to facili-
tate the chopping of cotton plants to a stand, and the tate the chopping of cotton plants to a stand, and the
scraping of the rows of plants, and also to promote convenience in adjusting and controlling chopping and machines.
A thermo-reservoir has been patented by Mr. Edwin D. Newton, of New York city. The inven tion covers a vessel adapted to hold hot water, with
coil extending downward from an upper vessel, the lat ter having at its lower end a cock projecting from the hot water vessel, so that mineral water stored in the upper vessel is heated by passing through the coil, th heating water being heated in a separate vessel.
A top for children's carriages has been patented by Messrs. Uriah McClinchie, of New York, and covers a many angled bearing attachment to the para ol or canopy, in connection with a suitable locking de vice, thus making a clamp to hold the canopy in position on
riage.
A piano-forte frame has been patented by Mr. Henry Kroeger, of New York city. Along all the board, and the frame has in one corner a triangula part with its inner surface flush with the bearing sur faces for the sounding board, the object being to pro-
mote the making of full, strong, and rich tones on the mote the ma
An improved upper plate of copying press es has been patented by Mr. Henry N. Hubbard, of New York city. The water bow is made in a convenien position on the top of the upper plate of the press, and strengthened by being formed on the face of the water receptacle, the upper plate, the bowl, and the socke eing all cast in one piece.
An improvement in hand shears has been patented by Mr. Karl Witte, of Hartford, Conn. The invention covers an im provement on former letters patent issued to the same inven tor, providing the handle ber or other material, and the handle for the thumb with a hard or soft rubber bow, for allowing a firme rip winout chams the fige
An envelope for currency, checks, etc., has been patented by Mr. Charles A. Ball, of Delphos, O A slotted metal strap and a covering or wrapper with an opening over the slotted part are so arranged as to
make a convenient package for currency,'notes, checks, make a convenient package for currency, 'notes, checks,
etc., for shipment by express or otherwise, so the conor withdrawing the bills.
A calcimeter, for treating cane juices in the manufacture of sugar, has been patented by Mr. Lucas M. Campi, of Havana, Cuba. The invention with a slide and screw, to enable any person, skilled or unskilled, to use the exact quantity required to clari y or.defecate the cane juice, without having it a matte
of chance or guesswork, as heretofore.
An irrigating apparatus has been patented by Mr. William R. Chisholm, of Laredo, Texas. An in ner water pipe has nozzles projecting from its inner and casing inclosing the outer ends of the nozzles, the oute pipe having water passages in its ends, and the apertures varying in size according to the head of water A sawhas been patented by Mr. Walter Peak, of Peakville, N.Y. The teeth of the saw blade are made vertical upon their forward edge, with a cut orty-five degrees, their forward edges having V-shaped grooves, and in swaging the ends are thus formed outwardly, thus maling a tooth that cuts both ends of the
kernel at once, and will take out the kerf, clearing itf beter than the common types of saw,
A rudder holder and support has been pa a bed plate is fixed to the yessel and alpena, Mich udder post tongned and yrooved together to hold the rudder firmly in place while permitting its easy movement, and so the post and its casing are protected from wear and leakage, and the lower bearing shoe of the
rudder is or may be relieved of downward strain by the weight of the rudder.
A vacuum pan has been patented by Mr. Lucas M. Campi, of Havana, Cuba. This invention steam and air tight joint them, with various improvements in construction, so the evaporating of cane juice will be greatly accelerated, the operation be almost continuous, and the juice rystallize, leaving practically no molases.
A lime kiln has been patented by Mr. Bernhard Albers, of Conception, Mo. The base of the
chamber of the kiln has rounded convergent shoulders, he chamber having ledges below the outer edges of thus providing a more effective sombustion af fuelmix ed with limestone than is obtained where the fire bed extends over the whole area of the chamber on the floor of the kiln.

The Chargefor Insertion under this head is one Dollar
 Aavertisements must be received at publication office
asearly as Tluursayy norning to appear in next issue.

Steam Gauges and Vucuum. W. Norris, Paterson, N.J.
Second-hand Springfield Gas Machines. We often have on hand (taken in exchange for larger machines) seconaliana ines. epair, putting in prime order, substantually as good
as new, and sell at less rates than our new work. Parties wanting a good machine cheap, will please Gibert \& Barker Mfg. Co.,

Maiden Lane, N. Y. City; $\begin{aligned} & \text { Springeld, Mass, } \\ & \text { Union St., }\end{aligned}$
The most fastidious smokers are editors, lawyers, ooctors, preachers, students, and gentlemen of taste and
eisure. Whether they incline to the pipe or cigarette hey must have a guarantee of a pure, mild, fragrant thereal tobacco, which will bring comfort without injury, and inspiration without excess. They therefore se, to the exclusion of all other tobaccos, Blackwell's urham I Cut. They know about the soil and cliits peculiar flavor and fragrance. Therefore their conidence.
Rubber, Linen, and Cotton Hose. Rubber, Leather, Stephens' Bench Vises are the best. See adv., p. 365 U. S Standard Thread Cutting Lathe Tool. Pratt \& Whitney Co., Hartford, Conn.
All Scientific Books cheap. School Electricity, N. Y. prings. List free. T. F. Welch, 11 Hawkins St., Boston. If you want the best cushioned Helve Hammer in the 60 Lathes, new and second-hand, $12^{\prime \prime}$ and $14^{\prime \prime}$ swing, ain and screw cutting. J. Birkenh Mansfield, Mass. Mills, Engines, and Boilers for all purposes and of every description. Send for circulars. Newell Univer-
sal Mill Co., 10 Barclay Street, N. \mathbf{Y}. Wanted.-Patented articles or machinery to manafacBrush Electric Arc Lights and Storage Batteries. wenty thousand Arc Lights already sold. Our largest machine gives 65 Arc Lights with 45 horse power. Our
Storage Battery is the only practical one in the market. rusu Ele
Cyclone Steam Flue Cleaner. The best in the world.
Crescent Mfg. Co., Cleveland, $\mathbf{0}$. rescent Mfg. Co., Cleveland, O.
For Freight and Passenger Elevators send to L. S.
Graves \& Son, Rochester, N.Y., or 46 Cortlandt St., N. Y. Sewing machine, water closet, \& other light castings ade to order. Lehigh Stove \& Mfg. Co, Lehighton, Pa "How to Keep Boilers Clean." Book sent free by ,
Stationary, Marine, Portable, and Locomotive Boilers
specialty. Lake Erie Boiler Woriss, Buffalo, N. Y.
Railway and Machine Shop Equipment.
Send for Monthly Machinery List
to the George Place Machinery Company,
21 Chambers and 103 Reade Streets, New York.
The Hyatt filters and methods guaranteed to render an kinds of turbid water pure and sparkling, at economi-
"The Sweetland Chuck." See ad. p. 316.
Choi ee English Walrus Leather, very thick, for polish-
ng. Greene, Tweed \& Co., 118 Chambers St., New York. Turn Steam Boilers, Rotary Bleachers, Wrought Iron Turn Iron Planer, Lathe, Drill, and other machine tools of odern design. New Haven Mfg. Co., New Haven, Conn. or Power \& Economy, Alcott's Turbine, Mt.Holly, N.J. If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent, \$40. Various other anada. Cost for Canadian patent, \$40. Various other oreign patents may also be obtained. For instructions
ddress Munn \& Co., Scientific Amertcan Patent gency, 361 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping
ion. Send for catalogue.

Presses \& Dies. Ferracute Mach. Co., Bridgeton, N. J. Nickel Plating.-Sole manufacturers cast nickel andes, pure nickel salts, polishing compositions. etc. Complete outft for plating, etc. Hanson \& Van Winkle,
Newark, N. J., and 92 and 94 Liberty St., New York. Supplement Catalogue.-Persons in pursuit of information on any special engineering. mechanical, or scienentific american supplement sent to them free. The SUPpi, memp contains lengthy articles embracing the whole range of engineering, mechanies, and physiMachinery for Light Manufacturing, on hand and Electrical Alarms, Bells, Batteries. See Workshop eceipts, v. 3.8 .00 . E. \& F N. Spon, 35 Murray St N. Y. Curtis Pressure Regulator and Steam Trap. See p. 365. We are sole manufacturers of the Fibrous Asbestos Removable Pipe and Boiler Coverings. We make pure
asbestos goods of all kinds. The Cnalmers-Spence Co., 419 East 8 th Street, New York.
Steam Hammers, Improved Hydraulic Jacks, and Tube Emerson's 1884 Boak of Saws. New matter. 75,000. ree. Address Emerson, Smith \& Co., Beaver Falls, Pa. Hoisting Engines. Friction Clutch Pulleys, Cut-off ouplings. D. Frisbie \& Co., Philadelphia, Pa. Munson's Improved Portable Mills, Utica, N. Y. Mineral Lands Prospected, Artesian Wells Bored, by,
Pa. Diamond Drill Co. Box 423. Pottsville. Pa. See p. 365 . For best low price Planer and Matcher. and latest mproved Sash, Door, and Blind Machinery, Send for catalogue to Rowley \& Hermance, Williamsport, Pa. Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 364 C. B. Rogers \& Co.. Norwich, Conn., Wood Working Gear Cutting. Grant, 66 Beverly St., Boston.

The Porter-Allen High Speed Steam Engine. South-
Trk Foundry\& Mach. Co., 430 Washington Ave.,Phil.P wark Foundry\& Mach. Co., 430 Washington Ave.,Phil.Pa. Split Pulleys at low prices, and of same strength and
ppearance as Whole Pulleys. Yocom \& Son's Shafting Works, Drinker St., Phiradelphia. Pa.

HINTS TO CORRESPONDENTS
No attention will be paid to communcations unless writer
Nriter. Names to inquirers.
Werenew our request that correspondents, in referring o former answers or articles, will be kind enough to of the question.
Correspondents whose inquiries do not appear after reasonable time should repeat them. If not then published, they may con
Persons desiring special information which is purely of a personal character, and not of general interest, should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and
btain such information without. remuneration.
Any numbers of the Scientific American Supple Any numbers of the Scientific american Supples-
ment referred to in these columns may be had at the office. Price 10 cents each.
Correspondents sending samples of minerals, etc or examination, should be careful to distinctly mark or fication.
(1) C. W. G.-We do not think the appli cation of compressed air in the manner proposed will to the screw or propeller.
(2) C. E. M. writes: I am building steam launch 16 feet long, 40 inches beam. Boat will weigh
only 150 pounds, engine and boiler 200 pounds; cylinder $2 \times 3,100$ pounds steam, 500 revolutions. What size proeller shall I use, and how many blades, and giveprobe le speed of boat? A. About 18 or 20 inches diameter, 3 blades; speed probably 6 miles per hour.
(3) F. F. W. writes: I have a steam launch which has a boiler of about 30 inches in diameter, $41 / 2$ Fow, can you tell me why the glass breaks, one nearly every day ortwo? It is five-eighths of an inch in diameter, and it cracks when the steam is between 40 and 90 ounds pressure. A. Perhaps on account of currents of cold air striking the glass. Protect your glass by a
screen made of sheet tin, copper, or brass.
(4) P. S. M. asks: Are not V-cone pulleys and round belts as powerful as flat belts on light machinery, and would they not be better for foot lathes? A. V-cone belts-jointed belt built up in this shapeof power has to be transmitted, and there is not room for a large flat belt but these belts the not room as efficient as fiat belts. In light machines, such as ewing machines and those of similar requirements fo power, round belts are used on a pulley with channeled face, with perhaps as good or better effect than
the same weight and strength of leather would give if the same weight and strength of leather would give if
fiat, but the object is rather to serve convenience in fat, but the object is rather
(5) J. F. M. asks why a steam pump working with forty or fifty pounds of steam will uot pump
water against sixty or higher pressure. A. It will pump against 60 or 100 pounds pressure if properly
(6) R. F. H. asks: 1. In making a dynamo half as large again as the one in Supplement, No. 161, inches long, what sizes silk covered wire should I use to obtain the greatest electric lighting power? A. That depends somewhaton the manner in which you in tend to use the dynamo. If for an arclight-which will ve the greatest illuminating power-it would be best what candle power would such a dynamo have?
A. Probably 12 or 15 . 3 . How much power would A. Probably 12 or 15 . 3. How much power would
it require to drive it?
(7) G. M. G. asks: Is there any kind of paper, or anything, that upon a current of electricity ary paper dipped in the following solution changes to bluecolor when a current of electricity passes through he paper: Nitrate of ammonia 2 pounds, muriate of

water 1 gallon.

(8) J. B. D.-Hydrochloric acid will clean off the rust scale better than sulphuric acid. Any acid is rather troublesome to apply to the inside of a keir
Pieces of sandstone or broken grindsione are very good to rub offt the rust with, but will not reach the corners and seams, or around the rivets. A file with the end broken off, used as a scraper, will work in the corners
(9) A. W. B.-There is nothing that can be added to sodium silicate or water glass to prevent its varnish over the dry coat of the silicate will naturally help to preserve it.
(10) J. T. B. S. writes: 1. I want some ap paratus that will show the vibrations, or rather coun
the vibrations, of plates of wood or metal, so as to determine their relative pitch and qualities of vibration, and show them to the eye. Can you help me? A Arrange a very light but rigid lever to amplify the vi-
bration. Provide the lever with a needle point, and bration. Provide the lever with a needle point, and
make your tracing on a cylinder carrying enameled paper moked to receive the impression. 2. Can carbons for arc lights be made of different grades of conductivity,
so that one will last longer than the other, say in the
proportion of 1 to 2, or 1 to 1 .5s A. They can be mad (11) W. E. V. writes: 1. A claims that vessel sinking at sea does not sink to the bottom, owing to the density and pressure of the water under-
neath, but only sinks to a certain depth, while B claime neath, but only sinks to a certain depth, while B claims
that a vessel going down at sea will certainly reach the bottom of the ocean. A. There is great pressure at the bottom of the ocean, owing to the weight of the wate verye. Water is so slightly compressible that there thing that will sink will go to the bottom of the ocean, unless it is porous and contains air that may sustain it for a while, or until the air becomes absorbed by the
water. The great pressure soon watersoaks all wood substances when carried to the bottom by being at tached to denser substances. 2. Haswell gives as the
estimated depth of the Atlantic, 26,00 feet; depth of estimated depth of the Atlantic, 26,000 feet; depth of
the Pacifc, 29,000 feet; and the depth of the course of he Pacifc, 29,000 feet; and the depth of the course .
the Atlantic cable varying from 20,000 to 18,000 feet. Is the latter depth (18,000) estimated, or taken from actue soundings? A. The cable soundings were actuall made. See Scientifio American Supplement, Nos 433 and 434 ,for an interesting account of deep sea work The sea is filled with animal life at great deptns
Fishes live at from 3,000 to 13,000 feet below the sur face, to fifteen hundred pounds per square inch, and how much greater we do not know. See Scientifio Ameri-
can SUPLEmentr No. 437.
(12) C. M. G. writes: I have a magnet of Ive-eighths square steel, horseshoe pattern; have tempered and charged it as directed in Scientifio Ameri can Supplement, No. 2n6, that is, I have wrapped closely with fine insulated copper wire and placed it in the circuit of a 40 lamp power (Brush) generator, run
ning full capacity. The charge received in ning full capacity. The charge received in magnet 1
not sufficiert to lift its own weight. What is the cause of so slight a charge, and how can I obtain a charge of magnetism in this magnet sufficient to lift ten pounds or more? A. It would be difficult to point outthe cause of your failure without knowing more of the details of the experiment. Your wire may have been so fine as
to offer too much resistance to the current Yourstee to offer too much resistance to the current. Your steel
may have been either too hard or too soft, or it may have been of a kind poorly adapted to the purpose. Try is the cause of one pole being stronger than the other A. Probably some defect in the bar or in its temper.
(13) F. A. B. asks: 1. If I buy an incandescent lamp, is there any patent to prevent my using when I choose, or must all lighting be under control of
patentee? A . We understand that one at least of our largest electric lamp manufacturers furnishes lamps and with them the privilege of using. 2. Why will no a plunge chemical battery furrish current for incan descent lamp? A. Such a battery composed of a suffl cientnumber of elements will furnish the current; bu expense and roune wil segreat
(14) F. W. J. asks: What kind of lining can I put into a steam box so as to have it air tight and not cut out? Have used both zinc and galvanized iron, steam boxes, especially for steaming wood. The ship builders use 2 inch pine plank held together with out ide frames and
(15) F. E. W. asks: Is there any process for depositing 8 or 10 carat gold by the electrical process for practical purposes? If so, will you please give
the formula and describe the process? A. See Sur the formula and
PLEMENT, No. 310 .
(16) J. F. N.-On page 937 of Scientific Anerican Supplement, No. 59 , is given a process for
bleaching soap; it may be suitable for your wants. We bleaching soap; it may be suitable for your wants. We
should think, however, that the most satisfactory way should think, however, that the most satisfactory way
would be to bleach the resin with which your soap is prepared. Tin crystals are the stannic chloride or per
chloride of tin and are largely used indyeing and colico printing. The preparation consists in dissolving granulated tin in hydrochloric acid and evaporating the solation.
(17) F. L. writes: Some time since I sent to ou for SUPPLEMENT No. 161, containing instruction for making a dynamo electric machine. I made one
and cannot get it to work, except with the aid of 2 3 cells of Bunsen battery, and then it gives only a ver weak current. A. As a large number of successful
machines have been made by different persons in different parts of the country from the directions given we conclude that the fault is yours. Try changing you commutator, try reversing the
magnets. You ought to succeed.
(18) J. E. asks: How can I caseharden mall wrought iron objects, such as small set screws? . Take a length of gas pipe of from 6 to 12 inches and the screws in them with bone dust, or with equal pactit of charcoal dust and unslaked lime; heat to a red for of charcoal dust and unslaked lime; heat to a red for
two hours, then chill in cold water. A charcoal or a coke fire is best; anthracite will do, but bitumioous oal is objectionable.
(19) A. B. writes: I see in your paper of May 3, a view of the Quaker dam as contemplated. A
apparently the shores are rocky, would not in tead the straight dam, a horizontally curved one, with apex against the water pressure, form
and cheaper construction? A. No.
(20) H. B. R. asks: What would be the 30 feet long to matime proper dimensions to make a spline Straight grained cedar or fine grained white pine, A. say
about three-eighths inch wide and three-sixteenths to about three-eighths inc
one-quarter inch thick.
(21) F. B. asks if it is necessary to get two or three engineers to sign application papers when applying for engineer's license. Also where and what
places in Minnesota is it neeessary to apply to be es amined for license, and what are the fees for the same A. We think there is no rule as to the number of engineers signing the application. We do not know what the State law of Minnesota is in respect to engineer
If you wish to obtain a license as a steamboat eng
neer, you must have license from United States In
spectors. You can get information by addressing spectors. You can get information by addressing
Mark D. Flower, St. Paul, Minn., Supervising Inspecto Steamboats.
(22) J. B. Z. writes: In Harper's Weekly, in giving dimensions of steamship Oregon, it says, o answer through your paper if 84 feet beam means the ctual width of the ship, and is the Oregon that wide This part is in dispute, left to you to settle. A. This an error; it should be 54 feet bea
(23) H. L. C. writes: I have made a dy namo electric motor for running sewing machines; am single fluid battery. What is the best form of battery for the purpose-the common Smee battery or a carbon battery, with single fluid? A. With carbon and zin battery use the bichromate solution, which has heen re
(24) H. M. H. asks: 1. How can we tes all paper, cloth, etc., for arsenic, in some simple way . To identify the presence of arsenic in wall paper, dissolve the coloring matter off in a little ammonium
hydroxide, pour off this solution on a piece of glass, hydrozide, pour off this solution on a piece of glass,
and drop into the liquid a crystal of silver nitrate. A yellow coloration around the crystal indicates the pre sence of arsenic. This will answer as a general rule but it is only a rough test. 2. How can we test water ng? A. See answer to query No. 18, in Scientipic American for March 29, 1884. 3. How is the fine black polish got on carbon contacts in transmitters? Have rried on all kinds, both hard and soft, and cannot do it hey look as if varnished. A. Polish the carbons by
ubbing them on sheets of very fine French emery paper. The emery paper to be placed face np on a har evel surface. The French carbon is best. 4. Is cas transmitters as cast iron? A. Brass will do. 5. Also please give directions for making fluid for bichromate of potash batteries. A. You will find this given in several of the recent numbers of the Scientific Ameri-
es and Queries colum
(25) W. C. M. asks: Could the exhaust steam from a 35 horse power automatic cut-off engine Hampson patent, which is only working up to 15 horse power, be used for heating to carry the exhaust 125 feet
underground, and then through 13 small radiators situ ated on three floors? How should it be connected What amount of back pressure would there be? A
Your exhaust steam can be utilized for all it is worth Your exhaust steam can be utilized for all it is wort
In leading it so far underground care must be taken t noand pipe so that it will retain as much heat as pos ible, putting a drip at the end. Use three inch main and make all the branches to the various radiators so that the aggregate area or opening shall not be less than the main pipe. The drips from the radiators hould also be nearly the same area as the main, and
pen freely. You can then heat all the radiators with ery little back pressure say half a pound to the squar nch. If well proportioned, with ample outlet, you may ressure.
(26) W. F. B. asks a simple way of cleaning and roughening or recutting old mill saw files-a
dip or solution of some kind. A. Old files are some dimes put to additional service by boiling in strongsoda or potash water to clear them of grease or oil; scrub al dirt and filings from the teeth with a wire brush, in hot water, then dip for 10 to 20 minutes in a bath
of nitric acid 1 part, water 4 parts. You must use your judgment by inspection as to the exact time, and should also in regard to the exact strength of the bath. A coarse or bastard file will stand a stronger bath than a second cut file. This process is very little used here
there are parties who recut files in the regular way.
(27) D. J. R. asks: How will it answer to puta circulating boiler for bath tub into the cellar, Will the the pipes to a hot water back in the room above Will there be danger of an explosion, or will the ho and the cold water rise from the boiler to the range? . Your plan will not work. There will be no circula and draw from the top into the bath; make the cold water connection into the bottom of the boiler, and have the pipe open to the reservoir or water supply, so as not to produce undue pressure from overheating
when the hot water is not required for use. Care when the hot water is not required for use. Care
should also be observed in making the connections beshould also be observed in making the connections be-
tween the waterback and the boiler so as.to insure cirulation.
(28) W. J. M.-The lacquer blisters be cause the tubes are not heated before they are lacquered. is put on the plates by means of electricity or electro deposition. As to the silver plate being hard or soft, it is immaterial. The composition of the alloy is of no onsequence. The soldering fluid is made by dissolvalcohol, and then adding 1 ounce glycerine. Carbon Manganese dioxide is stable, and will not change. The Leclanche cell will last six months if properly taken
(29) J. E. S. asks how the small corundum Wheels used by dentists are made, and how, if moulded We believe that the wheels are prepared by using the ordinary groundemery, and caking in plastic moulds o such a degree of heat that the corundum solidifies
nto the given shape. The mould is then broken off.
(30) M. L. P. asks how to temper small ael springs, such as plain springs, for gun and smal
ane springs. A. Where gun lock springs are made in quantity, they are packed in iron boxes with pul verized charcoal and sand, heated to a full red, and dumped into a trough of oil. For a single spring this
is not necessary. Cover the spring with a little is not necessary. Cover the spring with a little heat to a cherry red in a charcoal fire slowly, by cut ting down the blast; when evenly heated dip in lard oil

Clean and polish, then draw to a light blue by holding (31) B. Y. Y. asks: Is there any circulation of the water in a steam boiler, when steam has been all the valves are shut off and no steam escapes or is rawn off; and if there is any, will the increase of pressure increase the circulation; and if the circulation only
takes place when the steam is drawn off, where will takes place when the steam is drawn off, where will
circulation be the greatest, if much or little steam is drawn off? A. There will be circulation as long as
drealite steam is generated. The more rapid the generation, the greater the circulation. If steam is drawn off more or lessrapidly, the circulation will be increased. The direction of the circulating currents will depend upon the design or character of the boiler.
(32) C. W. T. asks for a liquid composition an adhesive nature, that could be applied to any
ind of paper, and when dried by hot air will make the paper hard and tough. A. Flour paste is much used by book binders for fastening she paste is much used and cloth together. This may be made much stronger by the addition of a small quantity of glue. Starch is quired. A little white glue added to the starch strengthens it. A little gum tragacanth in the starch starch also strengthens, and makes clean work. The starch also strengthens, and makes clean work.
sheets should be pressed if you require flat work.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Granted
May 27, 1884,
AND EACH BEARING THAT DATEE.
[See note at end of list about copies of these patents.]

Bolt threading device. W. F. Walker.... 299,299 for buffing, Flagg \& Maloy 299,123
Boot or shoe heel stiffener, G. A. Fullerton..... 299,125 Boot or shoe sole protecting plate, J. Borrett...... 299,455
Boot or shoe soles, machine for setting or mould ing the edges of. E. B. Kelsey 299,145
Boring and slotting machine, metal. J. Richards.. 209,496 Bottle, multichambered, E. D. Newton 299,253 Bottle stopper, M. Rubin.
Bottle washer. A. Von Schade
Bux. See Sheet metal box
Box covers, securing. Shaw \& Chidley.............. 299,276

Brush, fountain. T. Huntbatch
Brush, window, J. s. Wh
Buckle, L. P. Edwin..
Buckle and ring, combined, J. B. Sayre
Button, w. W. Covell
Button, detachable, B. J. Angell.
Button fastener, H. Brossel
Buttonhole cutting machine,. . A. Behn..........
Buttons to shoes, etc., attaching, W. Halkyard..
Cabinet for holding and adjusting bill heads, etc

Cable tramway. S. Hampi.................................
Calctmeter, L. M. Camp
Calcimining and frescoing walls, etc., compoun for, J. Quinn, Jr.........
Can. See sheet metal can.
Can opener, J. Greenwood

Ca

Car starter, W. J. Caldwell.........................$~$
Z. P. Boyer................
card grinding rolier, w. B. Guild..
Carding machine, J. Shinn.........

Carding machine, J. Shinn.
Carpet fastener, J. Denton..............
Carriage top, child's, McClinchie \& Butle

Cartriages, mechanism
Case. See Pocket case.
Cash and parcel carrier, w. P. Bigelow
Caster, stove, A. J. Price
Casting slugs and leads for printers' use, mould
for, G. W. Surguy...
Ceiling plate, R. T. Crane
Chain, drive, $\boldsymbol{\prime}$ C. C. Waters
Chain, ornamental. L. Heckmann
Chain, ornamental, R. F. Simmons....
Chair backs, nachine for knitting rattan, Taft
Rich
Chimey cap and ventilator, w. J. Kayser
Chimney top and ventilator, J.
Chopper. See Cotton chopper.
Chuck, J. G. Blount
Chuck, A. E. Elinw ..
Churn, J. Burl..
Circle iron support, F. Mutimer..
Clamp. See Floor clamp. Meat clamp.
Cleaner. See Belt cleaner.

Clod crusher, B. Landret
Closet. See Dry closet.
Cloth folding and measuring machine, P. H. Fow-

Col:ar, horse, Stanley \& Lemass
Collar lock, horse, E. S. Laffert
Colter, plow, J. Johnson........
Combs from colluloid, etc., manufacture of, J,
w. Hyatt...............................399,
Confectioner's ornamenti
Cooler. See Milk cooler.
Copying presses, Corn sheller, W. H. Hall.
Corn sheller, J. M. Hawle
Corset steel fastening. T. C. B
Cotton chopper and scraper, Myers \& Kelly......... Coupling. See Car coupling. Shait coupling. Thill ceupling.
Crusher. See Clod crusher.
Cultivator, scraper, H. L. Miller.........
Cultivators, foot lift for riding, J. B. Neff......
Curbstone and telegraph wire conduit, combined J. S. Woodward...

Curtain fixture, J. C. Doty.....................
Curtain fixture, adjustable, C. F. Hiney.. Curtain roller, spring, W. B. Noyes.... Damper, J. W. Shaw
Digger. See Potato digger
Door hanger, E. Y. Moore
Drawer pull, O. F. Garvey
Drill. See Grain drill.
Drill and countersink, combined, A. J. Smart... Dry clo Coventry.
Dry separator and amalgamator, H. Earhart.
Dust pan, S. C. Sweetson.
Easel, D. M. Ireland.
Eaves trough hanger, M. B. Lee
Electric battery, secondary, E. T. Starr Electric battery, secondary, E. . Starr
Electric circuit connection, Drake...
Electric machines, construction of, P. Die Electric machines, construction of, P. Diehl........ power. L. D. D. Shaw...

Hodges

End gate lock, wagon, A. Sproul.
Engine. See Portable engiue. Rotary engine. gine.
Envelope, J. F. Dodd
 Envelope for currency, checks, etc
Envelope opener, C. S. Watson....
Eye bars, constructing, J. Naegeley, Jr

Fan, autamatic. L. W. Everhart -
Fare registering device, C. S. Foss.
Farm gate, C. W. Mann...
Farm gate, L. \& M. Taylor
Farm gate, L. \& M. Taylor...
Felting machine, C. H. Merritt
Felting machine, C. H. Merritt
Fencing, machine for making wire and picket, Harrison \& Martin.

Fibrous materials, opener and cleaner for, J. E.

File, newspaper, G. V. Nauerth...
Filter, hydrant. Shawk \& Wetmore
Finger rings, ferrules, etc.., device for expanding, Firearm, magazine, R. Rhodes. Fire escape, J. Haege

Fire extinguisher, automatic, R. W. \& F. Grin-

Floor clamp, H. E. Hatch.
Folding table, J. McGrati

Forge, J. F. Winchell.

Funnel, c. B. Shafer.......
Furnace grate, T.
Gas meters and low pressure water meters, re
volving drum for, W. c. Parkinson.......................

Gas, process of and apparatus for producing heat

 ing, H. Haug................. Glass bottles and vessels for containing fire extinguishing compounds, manufacture of, T. B. Atterbury
Atterbury
Grain drill, C. F. Kulp.................
Grain separating, sorting, and grading machine,
Grate, T. Kirkwood.
Grinding mill, C. C. Burner
Guard. See Saw guard.
Halter or tie for animals, M. Sweet.....................
Hanger. See Door hanger. Eaves trough
Harness, breast collar for, L. H. Hillis. Harness fitting. J. C. Covert......... Harnesster R ∇. Boice

Harvester, corn, S. C. Kenaga
Harvester, corn, S. F. \&eaver.....
Hat brims, wire frame for, Sherman \& Nutt
Hat wires, machine for bending, Sherman \& 1latchway gate for elevators, L. Hixson
Hay rake, horse, Smith \& Kienardt..... Hay rake, horse, Smith \& Kienardt Saunders
Holdback for pole irons of wagons, W. D Hatch Holder. See Pillow sham holder. Sash holder Tool kolder.
Hook. See Swiv
Hook. See Swivel hook.
Horses, device for controlling runaway, D. J
Index, T. C. Brown.
nnjector F W, E. A. Jillson.
Insulating pipe union, C. Deavs
rron, manufacture of pi
ron wheel, J. R. Little

Journal bearing, C. F. Brigham Journal bearing, H. H. Hewit
Kev. See Extension key. Kiln. See Lime kiln.
Fink.........
nife. See Planer knife. Knitting machine, J. Terwilleger. Lamp burner, N. S. Wax...
Lamp, electric arc, E. \& A. Lamp, electric arc, E. \& A. E. J
Leather for insoles, fabric or substitute for, \mathbf{G}
A. Fullerton.........................
A. Fullerton.................... Letter opener, J. Jones....... Lime kiln, B. Albers.
 Lock, J. G. Mattelin.
Locomotive ash
Locomotive ash pan. s. H. Edgerly Locomotive, road, C. P. Leavitt.
Lubricating cup. W. S. Young.
Lubricating device, car axle, W. S. G. Baker. Measuring device, tailor's,
Meat clamp. J. H. Tabony Meat clamp, J. H. Tabony
Mechanical motor, G. W. Reams. Mechanical movement, w.
Meter. See Waier meter

Mill. See Grinding mill. Pug mill. Windmill. Mineral fiber or wool from furnace silag, proces
of and apparatus for forming. R. Burns....... Mineral water in bottles or flasks, portable appa
ratus for heating, E. D. Newton........... Mirror. F. F. Weber.

Dickey... Mortar and

 }Motion, device for transmittin
Motor. See Mechatical motor

Musical instrum E. F. O'Neill. Nailing or

Nest box for fowls, W. Z. Allen
Niro cellulose, apparatus
of.J. W. Hyatt t al....
Nut lock, Hebert \& Butler
Nut lock, Hebert \& Butler
Nut lock, C. A. Willians..
Nut lock, C. A. Williams..................
Nut lock bending machine, J. B. Sutch Nuts to bolts, locking, B.
Oil can, S. S. Getchell.

distillable, Baynes \& Fearensi
Ore concentrator. J. L. Loomis...
Lauder shafts, base plate for the teeth of, G Overflow trap for washbasins, bathtubs, etc., W
Paint cleaning compound, A. S. Cluff.... mötive ash pan. Vacuum pan. pan..f
Panel for walls, ceilings, etc.. I. C. Tiffany. Paper bag machine, o. W. Allison...
Paper, composition of mater Paper, composition of matter for giving a meta
lic surface to. J. Fransecky Paper cutting machine, S. Brown Paper cutting machine, S. Brown.....................
Paper making, rag engine for, W. Whitely.
Papers, ring suspending device for, G. W. McGil. Pen, c. G. Spengler
Pen, fountain, J. R. Haight..
 Pencolator, Bradford \& Benedict.
Phosphate rock, ores, etc., a ppara
F. Brotherhood. etc., apparatus for washin

Pianoforte frame, H . Kroeger
Pignoforte frame, . H. Kroeger
Pure, H. D. Pursell....
Pile driver, G. H. Cavanagh
Piles, sinking. R. E. Peary.
Piles, sinking, R. E. Peary............
Pill making device. E. B. Patterson.
Pillow shan
Pillow sham and holder, D. R. Wilso
Pillow sham holder. J. J. Kelsey....
Pilot or wheel guard, Bennett \& Fitch.
Pipe cutter. well, A. W. Benson
Pipe wrench, Volkmann \& Peddycord.
Pitchers, ice guard guard for, L. Messer
Planer knife. P. McCourt......
Planter. corn, A. R. McMullen
Planter. corn, A. R. McMullen
Plow, J. A. Bilz..............
Plow, Whitlock \& Etheridge.
Plow, cultivator. He Parriss
Plow, hillside, J. Neft, Jr..
Plow, sulky, N. S. Barger..
Plow, sulky, N. s. Barger..
Plow. sulky, w. L. Casaday

Hasbrouck.
Polishing wheel, D. W
Pool rack, J. Felbel...
Potato digger, C. Boul.
Potato digger, B. Freeman....
Potato digger, C. W. Kattell.
Power. See Wind power
Press. See Cotton press.

Press. See Cotton press. Pug mill, Fletcher \& Thomas

Pump, J. J. Gardner.
Pump, A. Jorgensen...
Pump, J. R. Maxwell...
Pump, compound vacuum, w. kichter..............
Pumps, ratchet apparatus for chain, G. M. Shaw Pumps, water jacket for rotary, A. Schmidt.
unch, I. M.
Rack. See Pool rack
Rack and scrap duster, T. Ferry..
Railway rail, F. B. Stevens.......
Railway

Reel. See Harvester reel.
 Roof and skylight, klazed meteali, , G. Hayes.
Rotary cutters, making. D. H. Cturch...... Rotary cutters, making. D.
Rotary engine, I. L. Clough

Rotary steam engine. G. W. Price...................
Rudder holder and support, C. A. Richardson.
Safe, J. R. Grove.......
Salt cellar. S. C. Ivilcox
Sand blast apparatus, J. J. Sachs.
Sash cord fastener, R. N. Brown.
Sash fastener, H. Keppel....
Sash fastener, R. T. Murphy
Sash fastener, R. T. Murphy.
Sash holder, G. C. Bolgiano..
Sash holder, G. C. Bolgiano..
Sash holder, G. E. Gorham...
Saw guard, G. F. Kuhlmann et al.
Sawmill, circular, R. M. Beck......
Sawmill, circular, W. J. F. Liddell
Saw. segment. J. Hilton.
Saw set, G. A. F. Clayton
Saw tooth, adjustable, G. W. Stinebring.
Screen. See Window screen.
Screw machine, A. Johnston
Secondary battery, W. Stanley, Jr 299,177
Seed and fertilizer distributer, Q. Tyler
Seed and fertilizer distributer, G. Tlier.......
Seed, removing fiber from cotton, J. J. Green..
Separator. See Dry separator.
Sewiny machine, Fisher \& Hart
Sewing machine, Fisher \& Hart....
Sewing machine, buttonhole, Dowling \& Con
Sewing machine, buttonhole, F. E. Schmidt
Sewing machine table, D. H. Coles
Shade roller, spring, G. B. Massey
Shade roller, spring, G. B. Mas
Shaft coupling, S. S. Lukens..
Shaft cushioning device, W. H. . Clark....
Shaft iron. sleigh, H. H. Richards.....
Shears, K. White.............................
Sheet delivery apparatus, L. C. Crowell.
Sheet metal box, J. Munger.
Sheet metal can, F. H.
Sheet metal can, F. H. Arnd...........................
Sheet metal, press for hoiding and cutting, N. Stiles
Sheller. See Corn sheller.
Shoes, manufacturing, C. W. Reynolds
Show stand
Signal. See Railway signal.
Sink spouts. device for thawing out, J. G. Cobu
Skidway, J. L. Given.
Skylight, G. Hayes........
Sleigh, bob, W. C. Case..
Spring. See Vehicle spring.
Square and bevel, combined
Stand. See Show stand.
Stave packing machine, J. H.Overton.
Steam distributing pipes, automatic relief device
for, E. H. Ashcroft..........
steam engine or water motor, G. S. Peppard...
Store service switch, E. L. Giles
Stove, heating, L. F.
Stove, heating, L. F. Betts.
Stove, oil, C. O. Scbwertz
Swivel hook for ornamental chains, D. F. Brigg
Switch stand, F. W. Snow................
Table. See Folding table. Ironing table.
Tack machine, H. B. Chess..
Tag fastener, G. W. McGill.
Target, flying. C. F. Stock
Telegraph call box, district, M. J. O'Sulliva
Telephone support, N. G. Warth.
299,476
299,351
Thill coupling, ©. S. M. Westcott
Thrashing machine, D. Lippy .
299,181
299,097
,
Tool, combination, J. A. Morre
Tool stock or handle, R. A. Small.
Torch, J. A. McPherso
Toy gun, L. Steckman
Traction engine, W. L. Shep
Trap. See Overflow trap.

Vachum pan, L. M. Campi........
Vehicle dashboard, т. \mathbf{H}. Mader.
Vehical spring. w. S. Everett..
Vehicle turning gear, F. Bremerma
Vehicle, two-wheeled, J. C. Blocher
Vehicle, two-wheeled, W. M. Buchna
Vehicle, two-wheele, w. S. Frazier
Vessel, sea going, J. Gartner
Wagon. dumping, Graff \& Hipple..
Wagon jump seat, c. H. Stratton..
Wagon, sail, J. A. Aspinwall.
Washer. See Bottle washer.
Washing machine, Park \& Par
Watch case bezel, E. C. Fitch..

Water closet, attachment, J. W. Birke..................
Water closets, attachment for operating cistern valves for, D. Burro
Water meter, B. Fitts.
Water pipes against freezing, protector for, P. E.
Katerproofng cellars, etc., J. J. Schillinger... apparatus for, W. H. Beehler..
Well boring machine, w. Velte...
Well drilling machine, L. C. Weltner...............
Wells. tool for raising sucker rods from, M. New-
theel. Se. See Iron wheel. Wheel, Ellwood \& Staugaard. Whip and line holder, combined, H. B. Pitner. Wind engine. D. H. Bausman.. Wind power. C. S. Garrigu
Windmill, G. M. Beard...
Window, W. D. Smith........
Window screen, S. R. Hazen.
Window shade pull, W. Lang.
Wire, imitation twisted, J. Spruce.
Woodworking machine, R. H. Wrench. See Pipe wrenc
Wrench. s. Robinson.....
Toke, neck, A. S. Bailey.

DESIGNS.

Basque, lady's, L. Tully..
Burial casket handle, A. Vogt
Burial casket knob, W. H. Hutchinson
Collar, lady's, S. Loewenstein.
Costume, lady's. J. Q. Reed.
Costume, lady's. S. J. Shiels.
Costume, lady's. L. Tully....
Costume, miss's. S. J.
Moulding, A. Vogt.
Monument, A. J. Nellis..........
Oil cloth; C.T. \& V. E. Meyer

TRADE MARKS

FOR SALE. Set of Patemy Ofice Reporis nad
Problems of Nature.

2" wave

siquor Fongue slalicylatus
THE NEW REMEDY FOR
NEURALGIA, RHEUMATISM, GOUT, SCIATICA, NERVOUS HEAD-ACHES, ETC., ETC.

st a sp

ROOFING

ROCK BREAKERS AND ORE CRUSHERS

THE SCIENCE OF LIFE. ONLY I\$

A Great Medical Work on Manhood

 PATENTS.
 ON SECONDARY BATTERIES AND THE

EVAPORATING FRUIT
 BOX R," WAYNESBORO, PA.

FOR SALEE LOW. Patent No. 283, 10 for Portable CONGESTIVE HEADACHE-A VALU

THE PATENT Rivht for the Unitod States for THE TONIC SOL-FA METHOD OF teaching to Sing.-By Prof. C. F. Kroch. Description of
a new system of musical notation, by the use of which
atudents may move easily learn to sing correctly from

WAPrer

Cities, Towns, and Manufactories patent tube and gang well systen. Wm. D. Auldrews \& Bro., 233 Broadway, N. Y

PILES AND ACCUMULATORS. - DE

WATCHMAKERS.

Before buying see the Whitcomb Lathe and the Web stion Foot Wheol made by the AMERICAN WATCB TOOL

The Rider Hot Air COMPRESSION
PUMPING ENGINE For Residences or lustitution

SAY卫I \& CO
MANCFACTURE OF CHARCOAL I

 RECENT STUDIES ON THE CONSTI-

ICE MACHINES
10 lb. per Hour to
50 Tons perDay Biinary Ahsorption System.

Delamater Iron Works: NEW YORK, V. S. S. A.
 U. S. LAUNCH " STELLA."-DETALIS

TISSANDIER'S ELECOTRIC EALLOON

NEWSPAPER FILE

lication of the scientific Ambrican, continue to es-
amine Improvements, and to act as Solicitors of Patents for Inventors.
years 'ermerier thisiness they have had thirty-iight
the preparation of Patent Drawings, Speciifcations, and
the prosecution of Applications for Patents in the the prosecution of Applications for Patents in the
Cnited States, Canada, and Foreign Countries. Messrs. Munu \& co. also attend to the preparation of Caveats Copyrights for Books, Labels, Reissues, Assignments,
aund Reports on Infringements of Patens.. All business
intrusted to them is done with special care and prompt.
\qquad
\qquadcure them; directions concerning Labels, Copyrights,
Designs, Paients, Appeals, Reissues, Infringemens, AsWe aiso send free af chary.e.a Synopsis of ForeigPatent Laws, showing the cost and method of secu
MUNN \& CO., Solieitors or Patents,
Washington, D.

IRON REVOLVERS, PERFECTLY BALANCED, P. H. \& F. M. ROOTS, Manufacturers,
 SEND FOR PRICED CATALOGUE.

VOLNEY W. MASON \& CO FRICTION PULLEYS CLUTCHES and ELEVATORS

\qquad

MICROSCOPES! FLOUR ANALYSIS.-BY DR. A. T. CUZ

FOREIGN PATENTS.
FOREIGN PATENTS.
Their Cost Reduced.

The expenses attending the procuring of patents in
most foreign countries having been considerably re-
duced, the obstacle of cost is no longer in the way of a most foreign countries having been considerably re-
duced, the obstacle of cost is no longer in the way of a
large proportion of our inventors patenting their inven-
\qquad
\qquad ected as in the United States.
O'TIER COUN'TRIES
\qquad nd all the other Spanish Colonies), Brazil, British ludia Australia, and the other British Colonies.
An experience of THIRTY-EIGHT years has enabled
he publisbers of THESCIENTIFIC ANI 1 IICAN to establish
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TheBest in the World.

 We make the Best Packing that can be made regardiessof cost. Users will sustain us by calling for the "JENKINS STANDARD PACKING.
Our "Trade Mark" is stamped on every sheet. None
genuine unless so stamped. Jenkins bros.,

FIVE REASONS WHY New Forlit line Ingurance Companiy

IS \triangle GOOD COMPANY TO INSURE IN.

It is a Large and Striong Company. It has the stability which age and success bring. It has
over sixty-nine thousand policies in force, covering over sixty-nine thousand policies in force, covering
nearly two hundred millions of insurance, and holds in trust over fifty-flie million dollars. After provid-
ing for all its liabilities, its surplus is on dollars by the Standard of the State.

It is a Purely Mutual Company. It never
had capital stock, nor stockholders. It is owned by had capital stock, nor stockholders. It is owned by
the insured themselves, and is managed by persons of thefr own selection and in their own interest. Proftssare divided among posicy-holdersex cost with
They thus secure their insurance at low cost absolute security.
It is a liberal and Progressive Company In 1860 the NEW YORK LIFE broke the iron rule of premiums, by the issue of non-forfeiture policies. It anticipated the New York State law on this sub-
ject, in time by over nineteen years, and in liberality ject, in time by over nineteen years, and in liberality to the insured, by giving more paid-up insurance
than the law requires. It issues aliberal contract of than the law requires. It issues aliberal contract of
insurance, and construes it liberally in the interest of the insured when it becomes a claim.
It is a Rapidy Growing Company. During the ten years just ended following the panic of 1873 ,
the NEw-Yorik LIFE has more than doubled its the New-Yoresedife has more than doubled its and paid policy-holders over forty-nine million dol-
lars. During these ten years its interest income has exceeded its losses by death by over four million dollars, and its annual income has lars, and its an
to thirteen mill

It is a Prudently Managed Company. In estimating its liabilities the NEW-YORE LIFE em-
ploys the severest standard, and so keeps its surplus about flve million dollars larger than required by the
law by which its solvency would be tested keeps a strip of neutral ground between the line es
 usual losses, no sudden depression in the nor all of these combined, can so reduce its surplu
pany.

Send for circulars showing the superior advan
tages and favorable results of its Tontine Invest MORRIS FRANKLIN, President. WILLIAM H. BEERS, Vice-President \& 1 ctuary HENBY TUCK, 2d Vice-Presiden

H.W.JOHNS asbestros LIQUID PAIINIE: ROOFING,

Fire-proof Building Felt,

 Fire-proof Coatings, Cement, \&c.
H. W. JOHNS M'F'G CO

87 Maiden Lane, New York.

170 N. 4th St., Phila. 45 Franklin St., Ohicago.

 A. \& F. BROWN, 43 Park Place, New York.
 The " ${ }^{6}$ MONITOR." $\left\lvert\, \begin{gathered}\text { Best Boiler Feede } \\ \text { in the world. }\end{gathered}\right.$

F. Brown's Patent

FRICTION CLUTCH.
Send for Hystrated Catat

Leffel Water Wheels, ${ }^{\text {B }}$ With important Improvements.
11,000 IN SUCCESSFUL OPERATION. FINE NEW PAMPELET FOR 1883

JAMES LEFFEL \& CO., Springfield, Oh

30 to 300 Horse Power. Send for Illastrated Cirealar and Reference List. STATE THE HORSE POWER REQUIRED,

ASK OUR PRICES

THE WESTINGHOUSE MACHME CO., tseura pa.

BOOKS ON BUILDING, PAINTING,

HOLLAND \& THOMPSON, Manufacturers of ther strenet, Bropy N. N. Y.

 With Harris' Pat. Improvements, from 10 to 1,000 H.
Send for copy Engineer's and Steam User's Sen for col. By J.W. HIII, M.E. Price \$1.25.
Manual

SPEAKING TELEPHONES.
the anerican bela telephone company

FRICTION CLUTCH Pulleys and Cut-off Couplings.

PERA GLASSES Microscopes, Telescopess

Cornell University.
Electrical Engineering, Mechanical Engineering, Civil Engineering and Architecture.
Entrance Examinations Begin at 9.
16 and Sept. 161884.
For the UNIVERSTTY REGISTER, containing full
statements
regarding
requirements
for admission,

ALAND PATENT BLOWER CO. Manufacurers of ALA ND'S PATENT INJECTOR

Steel Castings

NEW YORK BELTING AND PACKING COMP'Y. EJECTORS
Water Elerators

Columbia Tricycles

Staunch, Reliable, Light, Easy Running, Finest Materl-
als, , Skillful Workmanship Beatifuly Fin isised, Hvery
Pita Part Interchangeable. Adjustable to permit any size or
riderto usethe same machine. Price, \$160. With Colum riderto usethe eame machine. Price, \$160. With Colum-
bia P ower-Gear, hhich enables the rider to instanty in-
crease the leverage, and easily ride steep grades and

THE POPE M'F'G CO.
597 Washington St., Boston, Mass.

FOSsulumat ancum

 know, applied. durable, absolutely
easily
Sold ing

FOSSIL MEAL TUBES FOSSIL MEAL COMPOUND FOSSIL MEAL CO., 48 Cedar Street New York. Reliable parties, destring te take the Agencyfor thei
respective territory, will apply in writing, giving refer

prownuive

Scientific Ancricau

 The Most Popular Scientific Paper in the World. Only \$3.20 a Year, including postage. Weekly. This widely circulated and splendidy illustrated paper is published weekly. Every number contains six teen pages of useful information, and a large number of original engravings of new inventions and discoveries,representing Engineering Works, Steam Machinery New Inventions, Novelties in Mechanics, Manufactures Chemistry, Electricity, Telegraphy, Photography, Arch A ll Classes of Readers find in the ScIenTIFIC AMerican a popular resume of the best scientific in
formation of the day; and it is the aim of the publishers formation of the day; and it is the alm of the publishers
to present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind, this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. every community where it circulates.
Terms of Subscription.-One
Terms of Subscription.-One copy of the ScIen-
TIFIC AM ERICAN will be sent for one year-52 numbers postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars and twenty
cents by the publishers; six months, $\$ 1.60$; three months, $\$ 1.00$.
Clubs.-One extra copy of the SCIENTIFIC AMERI-
CAN will be supplied gratis for every clubof five subscriber at $\$ 3.20$ each; additional copies at same proportionate One copy of the Scientific American and one copy of the Scientific American Supplement will be sen for one year, postage prepaid, to any subseriber in the
United States or Canada, on receipt of seven dollars br The safest way
The safest way to remit is by Postal Order, Draft, or Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

361 Broadway, New Yor To Foreign Subscribers.-Under the facilities of
the Postal Union. the ScIENTIFIC AMERICAN is now sen by post direct from New York, with regularity, to sub scribers in Great Britain, India, Australia, and all other British colonies; to France, Austria, Belgium, Germany Russia, and all other European States; Japan, Brazil, Terms, when sent to foreign countries, Canada excepted \$4, gold, for Scientific American, one year; $\$ 9$, gold
for both Scientific American and Supplement fo one year. This includes postage, which we pay. Remi
PRINTTINTG INTKS

