

A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW	YORK,	MAY 24, 1884.	[Postage prepad.]

A NEW CABLE RAILWAY SYSTEM.

Of late years the rapid increase in size and population of many of our cities has brought into prominence the question of rapid communication between their distant parts, and the result has been that various systems of railroads have been put into operation to supplement those worked by horses.
Among them we find, especially in New York city, the elevated roads, which, although they fulfill the object desired, are nevertbeless attended by such grave and numerous incouveniences as to make their general adoption out of the question.
More recently cable railways have been put into operation in several cities, such as San Francisco and Chicago, and the results attained have been such that many now conceive this to be the best plan of car propulsion.
In these roads the cars run, as usual, upon tracks laid in the street, and running below the ground between the tracks is a trench or tunnel, through which a cable driven by a stationary engine travels. A slot permits of the passage of the bar to which the grip is attached, which when gripping the cable propels the car at the same rate as the cable travels. Althougb these roads are, in a measure, successful, they nevertheless present a number of disadvantages, and it is with a view to re moving these that the system represented in our engravings was devised.
This system differs radically from all others in the fact that the wheels of the cars are placed underground in the same tunnel in which the cable travels.
The accompanying illustrations show a general and a cross sectional view of the new cãble railway, that on page 326 being an isometrical view showing the grip arrangement. It will be seen that no tracks are laid in the streets, but in their stead

two slots appear which communicate with two tunnels, constructed in the following manner:
Upon a bed of concrete there are erected cast iron chairs, bolted together at their ends so as to form one piece. Each of these double chairs has two oval openings, and all openings on the same side are connected by sheet iron, thus forming two separate passages or tunnels. All the in tervening space between these tunnels is filled up with concrete, and upon this solid bed the paving stones are laid, the distance from the bottoms of the chairs to the top of the pavement not exceeding four feet.
The rails are laid on the bottom of the tunnels, and at suitable intervals along the sides pulleys are provided upou which the cables travel. The car runs on four 24 inch double flanged wheels, and is supported by four steel standards balf an inch in width, which pass through the slots and are attached to the fork-shaped journal bearings, which rest on springs.
The slots are formed by two angle irons placed half an inch apart, the tops being flush with the pavement. This does away entirely with troublesome tracks and leaves the street unbroken from side to side, besides providing an excellent track for vebicles to run on without fear of breaking axles or wheels when turning aside.
Another very important feature of this system is the means provided for establishing varying rates of speed, according to the amount of traffic in the street. This is effected by means of two cables, a slow speed and a bigh speed one in each tunnel, each of which has a constant speed of its own. Each grip car is provided with two levers, and by throwing out one or the other the corresponding grip is fastened either to the slow speed or the high speed cable. Thus the car can (Continued on page 326.)

A NEW CABLE RAILWAY.-CROSS SECTION AND GENERAL VIEW.

§rieutific ब smmxicau.

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 published weekly atNo. 361 BROADWAY, NEW YORK.

o. D. MUNN.

A. E. BEACH.

TERIMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included..
One copy, six months postage included
One copy, six monts porane included 1820 gratis for every club of tive subscribers at $\$ 3.20$ each ; additional coppes at same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 361 Broadway, corner of Franklin street, New York
The Scientife American Supplement
is a distinct paper from the SCIENTIFIC AMERICAN. 'THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, uniform in size with Scientific American. Terms of subscription for Supplement, $\$ 5.00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by Combined Rates. - The Scientific
will be sent for one year postage tree. on receipt of seven dollars. Both papers to one address or different addiresses as desired.
The safest way to remit is by draft, postal order
The sufest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 361 Broadway, corner of Franklin street, New Y
Scientific American Export Edition.
The Sciuntific American Export Edition is a large and splendid periodical, issued once a month. Each number ccntains about one hundred
large quarto pages, profusely illustrated, embracing:
(1.) Most of the plates and pages of the four preceding weekly issues of the Scuextipic American, with its splendid engravings and valuable in formation: (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire
to secure forelgn trade may have large, and handsomely displayed announcements published in this edition at a very noderate cost.
The Sciextific Am buch an Export Edition has a large guaranteed circulation in all commercial places throughout the worli. Address M UNN \&
CO., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, MAY 24, 1884.

REMOVAL.

The Scientific American Office is now located at 361 Broadway, cor. Franklin St.

TABLE OF CON'TEN'S'S OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 438,
For the Week ending May 24, 1884. Price 10 cents. For sale by all newsdealers.

 The thitachuelolo. - Her guns, armor, engines, etco.-Comparison with
III.

 PRN. Mechanical Theory of Magnetism.

VI. NTVURALHITTORY.-Lynx and Grouse.-With full page en-

VII. Horticulnure.-Show Beds of Hyacinths at Haarlem.-with

Ix. MISCELLANEOUS. - Minegarit

steam at a thousand pounds pressure.
Jacob Perkins, an American in England, who was the father of the high pressure system of heating by hot water in closed circuits, early gave his attention to the immense power of steam at high pressure for the projection of missiles of war, and so far perfected a steam gun as to exhibit it before the Duke of Wellington in 1824. It was very effective, but the "Iron Duke" considered that a steam boiler that threw away balls as fast as that did would be out of place in an army, and would waste ammunition. From this, steam as a high pressure power has slumbered, with occasional revivals, for more than a half century
About 1840 a steam rifle made by Perkins was brought to the United States, and exhibited at the southwest corner of Broadway and Cbambers Street, New York. It consisted of a steel barrel of medium rifle size, a lever valve, bullet magazine, with a revolving plug arranged for feeding single bullets or a volley. The whole swiveled upon a substantial frame.
The steam generator was of the vertical tubular type, con sisting of a strong wrought iron pipe of three inches inter nal diameter and about eight feet high, with eight interna tubes, each about one-quarter inch in internal diameter. The chamber of the large tube was connected with the valve chamber of the gun by bydraulic pipe with metallic swivel attachment, while the internal tubes were connected with a coil of hydraulic pipe forming the walls of a portable fur nace, so that steam used for operating the gun was derived from a secondary generator; the primary circulation being a closed hot water circuit with an air expansion chamber both divisions having hydraulic or high pressure safety valves.
A small hydraulic pump worked by hand served to feed the generator with the water required for steam; the whole apparatus being very compact, occupying but a few square feet of flour.
A cast iron target a bundred feet away completed the plant.
The closed circulation of hot water from the coil in the furnace through the small tubes in the generator carried the pressure up to a thousand and more pounds to the square inch in a few minutes, and would set the safety valve singing in a tone unknown at ordinary pressures. Under this pressure no waterissued from the tiny apertures of the gauge cocks; a blue vapor could be discerned, the tone giving the indication of steam or vater.
The safely valve upon the generating or circulating coil was set at three thousand pounds to the square inch, and would sometimes blow off when the gun was not in action, or the water low in the generator.
The heat of the water in the circulating coil was so great as to immediately blue the surface of the pipe when freshly scraped near its entrance to the generator, and would fire pieces of pine instantly.
The heat of the steam in the gun chamber frequently melted the bullets, and rendered volley firing very difficult; for on more than one occasion the whole volley was melted in the chamber by the sticking of the first bullet. The report from the discharge much resembled that of the ordinary rifle, with perbaps less sharpness.
The bullets fell from the iron target in dust, when thrown at the highest pressure; while from lower pressures they were battered into all shapes, from cones to flat, ragged disks.
A peculiar feature of that high pressure steam apparatus with the necessarily high temperature of its active element was the entire absence of any form of packing; every joint was a metallic contact, and
seats of the hardest bronze.

elasticity of leather belts.

One excellent, if not absolutely necessary, qualty in a belt is elasticity. Under some circumstances a belt that is an-elastic and only pliable will act, but it is not so useful string used as a round belt is not elastic-only pliable-and string used as a round belt is not elastic-only pliable-and
to do effective duty it must be kept very tight, making a to do effective duty it must be kept very tight, making a
strain on the bearings of the spindles it connects. But a belt that is greatly elastic will develop its full driving power, even though it may run quite slack. An amateur foot lathe of considerable capacity can be run by an India rubber thong with so slight a tension as to allow the finge to pass between it and the scored pulley without pain.
Much of the value of leather belts is due to their elasticity this, as well as their substance, aiding in their adherent contact with the pulley face. By the term elasticity the quality of stretch--permanent stretch-is not intended. An ordinary bullock bide is usually permanently stretched five inches before being cut up, but the elasticity of the belts made from it is not impaired. New belts also have to be "taken up" usually after running a short time. But there is an elastic quality in a well fitted belt that is recuperative it will return on itself when the temporary strain is re-
moved. It follows, then, that the periodical release of belts from their working strain is a reasonable practice.
A recent experiment appears to prove this. As a test, a mechanic put new leather belts on two iron turning lathes at the same time. The lathes stood side by side, the work on them was similar, and the belts were cut from the same roll. The belt on one lathe was thrown off every night, and that on the other was never released. The latter was short-
ened four times during its life, while the other was taken up only once, and when the continually strained belt was so
nearly worn out as to require repairs, the nightly released belt was in excellent condition.
This treatment of belts is not always possible; the prime movers and secondary belts can hardly be released every nigbt, unless in such cases as where a long belt is run with an idler pulley or tightener; but the small ultimate belts that drive lathe cones, drills, milling machines, planers, and many other tools and machines could be so treated without rouble and with a resultant economy.

NAILS.

A large dealer in builders' hard ware said recently that the demand for clinch or clout nails and for chisel pointed wire nails had largely increased within a year, as compared with that for the ordinary cut nails, and that flooring nails with the wedged-shaped heads were also used in place of the nails with the flat upset heads. His reasons were that better work resulted from the better nails, and there was far less waste. For the coarsest purposes the less first cost of the ordinary cut nails with the flat head induced builders to continue their use; but be believed the improved form and better material of the tough wire and clinch nails would, in time, drive out the inferior material and defective form. The principal advantage of the wedge shaped head, as in Hoor nails, is that the head never breaks off in driving, as it is only a gradual enlargement of the body of the nail, instead of an upset across the nail. But the chisel point of the wire nail is its especial merit, as it cuts a clean passage through the fibers of the wood for the following of the body of the nail, instead of "stunting " and mutilating the fibers, as the blunt pointed nails do.
The common cut nails will not usually clinch, even when he clinch is turned in the direction of the grain of the wood; but they may be considerably toughened by heating to a red, and gradual cooling. A hardware establishment was burned a few years ago, and among the stores were ncarly a bundred kegs of cut nails of various sizes. The remains from the fire were sold to another dealer, and as soon as the value of the burned nails became known he could sell no others until they were gone.

Money in Sunflowers.

Much has been written during the past few years about the value of sunflower seed for feeding to fowls and sheep. The value of the leaves of the plant for feeding to horses has also been favorably noticed. A correspondent of the Toronto Globe calls attention to the value of the seed for making oil. In his communication he writes:
Care should be exercised in selecting sunflower seeds, as there is a very great difference in the number of flowers, and consequently in the number of seeds produced, at least so I have proved in my own garden, some varieties ranging from one to three flowers, while others will produce as many as fifty, sixty, and seventy flowers on one stalk. When the obect is to provide feed for cattle and fowl, the last variety mentioned will doubtless be found the best paying; when the purpose is to secure oil, only the best oil seed variety should be selected; and, as I have not experimented in this line for oil, I am at a loss which variety to recommend. Experienced farmers and gardeners already know that the plant will readily grow in almost every soil, but prefers light, calcareous land, unshaded in every respect. The quantity of seed required for an acre is from four to six pounds. In some cases the seed is drilled into lines eighteen inches apart, and the plants are subsequently tbinned out to thirty inches apart in rows, thus giving about eleven thousand plants to an acre, and each plant produces about one thousand seeds-the better sorts would probably produce many more. In England it is recommended that the sunflower be earthed up when about one foot high, but it will require no further attention. It is said the yield is much increased by the use of a fertilizer, and old mortar is regarded as one of the best. The sunflower has long been grown for its oil seeds in India and Russia, and more recently its cultivation bas been taken up in Italy and Germany. In China and Tartary it is produced in immense quantities, and why not equal quantities, as cheap feed for cattle and in henneries, if for nothing else. In Russia, where the production of seed is very large, the oil is expressed on the spot, and is largely employed for adulterating oil, while the purified oil is considered equal to olive and almond oil for table use. In India one acre of land is stated to yield $11 / 2$ hundredweight of seed, which in the press gives out forty-five gallons of oil, and is there compared with ground nut and applied to the same uses. I think Canada, including the Northwest, can produce oil in this way quite as well as India or Russia. I also find that experimental culture in France gave 1,778 pounds of seed, yielding 15 per cent of oil (275 pounds) and 80 per cent of cake; but the product (according to the French report) varies considerably according to soil, climate, and cultivation, and that the average may be roundly stated at fifty bushels of seed from an acre, and one gallon of oil from one bushel of seed; also, that the percentage of oil to seed ranges from 16 to 28 , and that of busk to kernel from 41 to 60 ; but this may be in some measure attributable to the varieties used, though none of the reports speak of the varieties grown.

Electric lights have been introduced into a gunpowder manufactory in England. The buildings are scattered over hree miles of territory, and the wires are carried above ground from a dynamo near the center of the inclosure.

Death of Cyrus H. NeCormick.

This well known inventor, whose name will always be associated with improved harvesting machinery, died in Chicago, May 13,75 years of age. He was born in Virginia, his father being a farmer of mechanical bent, and the inventor of several machines, one of which was a reaper that was not found practicable. Young McCormick experimented on a farm given him by his father, and, after baving invented a hand cradle and a hillside plow, experimented on the reaper, for which he obtained patents in 1834. It was flrst placed upon the market in 1840 . In 1845 he moved to Cincinnati, and in the same year secured patents upon several important improvements in the machine. In 1847 he moved to Chicago, where he bas since lived, and where he erected large works for the manufacture of his reapers. Up to 1848 he had not made the machines himself, but had had them manufactured by a firm at Brockport, N. Y. In 1848 he began building them himself, and made seven hundred the first year. For some years past now the annual sales of the machines have ranged between forty and fifty thousand. His famous invention brought great wealth to Mr. McCormick, and many honors as well. Gold medals and grand prizes were showered upon him at expositions, and Napoleon III. gave him the Grand Cross of the Legion of Honor. His wealth he used wiselyand well. In 1859 be founded and liberally endowed the Theological Seminary of the Northwest, at Chicago. He also endowed a chair in Washington and Lee University, Virginia, and gave to the University of Virginia a fine 26 inch refracting telescope. He was a member of the Presbyterian Church.

Death of Charles O'Conor

Charles O'Conor was born in this city in 1804, of Irish parents. He received only a common school education and lessons in French and Latin, his father being unable to give him the benefit of an extended course of instruction. He studied law, and was admitted to the bar in 1824. A wonderfully accurate memory, complete fearlessness, and indomitable perseverance enabled him to overcome all diffi culties, and, his abilities being recognized, he rose rapidly in his profession, and for balf a century ranked among the foremost lawyers at the American bar. He maintained this position because of bis strict integrity and impartiality, his vast learning, his knowledge of the law, and his intimate acquaintance with all its intricacies. He was connected with many of the most celebrated cases that bave been before the courts during the past fifty years. He was good authority on the interpretation of constitutional law.
Mr. O'Conor died at his home in Nantucket, Mass., on the 12 th inst., at the age of 80 years.

The Conductivity of Copper.

The true nature of electrical resistance is by no means well known; and the only light which the induction balance af Professor Hughes has as yet shed upon it has not revealed its true nature. An interesting observation recent ly made by Mr. W. Groves, the well known practical electrician of Bolsover Street, W., deserves to be more widely known. Mr. Groves took thin disks of brass and coated them by electro deposition with a thick layer of pure crystalline copper. He then cut similar disks of copper from the deposit, and tested them in the induction balance. The scale gave 200 as their induction value. The same disks, after being melted in a founder's furnace, only gave 100 on the scale, and after a second melting their induction value had fallen to nearly that of ordinary sheet copper, namely from 50° to 80°. If, as many believe, the induction value represents the conductivity of the copper, there is here a great falling off, and it might be valuable, not only in a theoretical but a practical sense, to find out the true cause. Dr Mathiessen found that copper lost in conductivity by ab sorption of oxygen, and the pure copper being fused in an ordinary founder's furnace may have lost its electric conducting power by absorption of this impurity. Should that prove to be the case, there is much to be gained by fusing copper in presence of hydrogen, which uniting with the oxygen would form water, and leave the copper in its pure con dition.

New Sodium Battery.

The Bulletin of the Societe Internationale des Telephones has recently announced the formation in Paris of a syndicate with a capital of $12,000 l$. for working the sodium battery lately invented by M. P. Jablochkoff. Whether such an organization has been, or is to be, established, says $E n$ gineering, we do not know, but space may well be devoted to a short notice of the battery referred to. In designing it M. Jablochkoff's object was to obtain an element having a much higher electromotive force than any other hitherto de vised, and for this purpose he has made use of pure sodium
This metal is used in thin plates, and is coupled with com This metal is used in thin plates, and is coupled with com-
pressed carbon, such as is employed in other batteries, or the plates may be placed in a metal capsule, in the midst of broken carbon. Under such conditions, and subjected only to the humidity of the air, the battery yields the relatively high electromotive force of four volts, which may be raised to six volts by impregnating the carbon with certain metalloid solutions.
This latter fact, however, has no practical value, because the price of such solutions, and the difficulty of using them, make the arrangement quite impracticable. With a couple of sodium and copper, the electromotive force falls to three volts. Such a battery, which may be of value in some
cases, is made up of a thin plate of sodium, and a piece of red copper gauze. It will be seen that the force of this bat. tery is considerably in excess of others now in use. So far as we know, there is not yet sufficient information as to the
durability and the internal resistance of the sodium battery, to establish any useful comparisons with ordinary types On account of the avidity with which sodium decompose water, and absorbs oxygen, it is necessary to shield the battery from exposure when it is not in use, and for this reason it should be kept, except when active, in a bath of naphtha, or at all events in a hermetically sealed vessel. M. Jablochkoff asserts that the waste of the sodium, that is to say, its combustion, beyond what is converted into useful energy, is extremely small. One of the objections, which naturally present themselves to this battery, is the great precaution which must be taken in using it, on account of the explosions which occur when sodium is brought into con tact wilh water. With proper precautions, however, such danger is not great, although more than one serious acci dent has happened from this cause.

The Liquefaction of Hydrogen.

M. Olszewski recently stated, in the Comptes Rendus, that he has liquefied hydrogen by the aid of liquid nitrogen; his previous use of liquid oxygen .being unsatisfactory. The nitrogen was compressed to 60 atmospberes, and cooled in glass tube to $-142^{\circ} \mathrm{C}$., for a considerable time by the aid of ethylene evaporating in a vacuum; and in this way was liquefied. The pressure being diminished to 35 atmospheres, the nitrogen began to boil with such rapidity that it seemed white and opaque in the upper portions of the tube contain ing it. If the pressure was maintained at this point, the nitrogen ceased to boil; wholly clarified itself; and showed very pronounced meniscus. The liquid nitrogen, amount ng to from 3 to 4 cubic centimeters in volume, preserved this condition for a considerable time, slowly evaporating, and producing an increase of pressure in the apparatus. At length its meniscus became less and less distinct; and it finshed by completely vanishing when the pressure gauge stood at $39 \cdot 2$ atmospheres; which is, therefore, the critical pressure of nitrogen. When the liquid nitrogen was re duced to the pressure of one atmosphere, it at first rapidly evaporated; but afterward, when scarcely half of it was left, the evaporation slackened, but the liquid itself remained completely transparent, without freeziug. The nitrogen did not freeze, even when evaporated under a vacuum; but it was very different when hydrogen contained in a glass tube
of about 4.5 millimeters internal diameter was plunged in of about 4.5 millimeters internal diameter was pluoged in
the liquid. While the nitrogen evaporated in the vacuum, and the pressure of the hydrogen fell from 160 to 40 atmo spheres, the hydrogen was observed to condense into a color less transparent liquid, running down the sides of the tube. A moment later, the exterior surface of the tube was covered with an opaque white coating of the portion surrounded by the gaseous nitrogen, and with a semi-transparent ice on the portion dipping in the liquid nitrogen. This ice and
the white coating were evidently due to the nitrogen, which the white coating were evidently due to the nitrogen, which
thus solidified upon the sides of the tube, prodigiously cooled by the ebullition of the contained hydrogen. The insufficient quantity of liquid nitrogen has not hitherto permitted M. Olszewski to observe the meniscus and critical pressure of liquid hydrogen; but he is convinced that nitrogen, in considerable quantity, boiling in a vacuum, will furnish the only rieans of liquefying hydrogen to its static condition.

Petroleum as Fuel in Rolling Mills.

Among the many ways in which efforts are being made o economically employ petroleum as a fuel, one lately tried at the Union Rolling Mill at Cleveland, Ohio, is said to have been a pronounced success. The apparatus is described as quite simple, and easily attached to an ordinary puddling furnace. What may be styled shallow pans, or receivers, are set upon the floor of the furnace, and in these pans are heavy, closely fitting perforated cast iron plates, lying upon shelves but half an inch raised from the bottom; leading to the centers of these receivers, from beneath, are oil pipes connecting without with a tank or barrel sufficiently elevated to give the oil a good head; intercepting the oil pipes near the furnace is a small cylinder in which is an automatic valve, which can be set at any position to automatically regulate the flow of oil. Auxiliary, are pipes for carrying exbaust steam for blast, a bridge wall back of the receivers to detain the flame, and a water-lined arch to proect the burners.
In operation, the automatic valve being set, the oil is allowed to flow into the receivers; a bandful of cotton waste, ignited, starts the fire; the plates become heated, and the oil, forcing its way up under the plates, is instantly atemized, and rushes up through all the perforations-gases, hydrocarbons, and all-into a brilliant flame, leaving no residuum whatever beneath. The first fire was lighted about 9:30 A.M., but the full heat was not let on until about 11. At 12:10 P.M. the furnace was charged, and at 1:22 P.Mexactly one hour and twelve minutes-the first heat was concluded. The pig iron melted rapidly, the balling was performed without difficulty, and the ball went through the squeezer in excellent shape. Necessarily there were some drawbacks. The steam used for blast was scarcely dry enough, the pressure being only 70 pounds at most; there was a slight escape of smoke from the rear of the furnace when the draught was open, and a high wind at the time did not conduce to the most favorable test; nevertheless the
results made a favo
witnessed this trial.
This mode of burning petroleum is the plan of a Cleveand lady, and seems not unlike, in principle, the proposed way of buruing petroleum in locomotives contemplated under the Holland patents.

decisions relating to patents.

United States Circuit Court.-Southern District

of New York.

Mundy vs. Lidgerwood Manufacturing Company.
When an inventor merely brings an old element into his machine, he makes no invention; but where he does moredispenses with certain parts, duplicates others, rearranges and simplifies the machine-he must be held to have made an invention.
When a patent is for a combination, one element of which is a gear wheel with a cone supported in a peculiar manner, and the defendant uses the gear wheel with the cone, but the latter is supported differently, though the elements employed by the defendant are the equivalents of those of the complainant in the patented combination, Held that the defendant takes the complainant's combination and infringes his patent.

The New York Produce Exchange.

The dimensions of this great building, which was illustrated in the Scientific American for May 10, are as folows: Length on Broad way and Whitehall Street, $3071 / 2$ feet; on Beave: Street, 150 feet; and on Stone Street, 149 feet; the tower being 40 by 70 feet, and 200 feet high. The aggregate floor surface in the building is $71 / 2$ acres, and the Board Rnom proper is 220 by 140 feet, 60 feet high in the center, and lighted by 23 windows, each 31 feet high, and a skylight ver the center. The cost of the site and the pile foundaions was $\$ 1,000,000$, and the total cost of building and site bout $\$ 3,000,000$.
In this great building, by the aid of the cable, the telegraph, and the telephone, the principal commercial emporiums of two continents are brought into instantanenus commercial intercourse. Substantially all the agricultural productions exported from New York are bought and sold on the floor of the Exchange, and how large this business is may be estimated from the fact that in 1880 there was received t New York $59,000,000$ bushels of wheat, $61,000,000$ bushels of corn, and $5,000,000$ barrels of flour; and in addition to these articles the transactions in beef and pork and their related products are always on an immense scale.

New Stone Saw.

A new sort of saw for cutting stone is described in $L a$ Semaine des Constructeurs, which seems to have advantages over those now commonly in use, and is easily and cheaply made and operated. In place of the ordinary long steel blades, supplied with sand to enable them to grind their way nto the stone, the new machine presents only a slender endless cord, composed of three steel wires twisted together, which is stretched over pulleys in such a way as to bring he lower portion horizontally over the stone to be cut. The frame carrying the pulleys is movable, so that the cord can be brought into contact with the stone, or lifted away from it, at pleasure, and the whole is kept in rapid motion, while water falling in drops from a reservoir above serves to moisten the stone. The three wires which form the saw differ from the ordinary kind in being square in section, and by twisting into a cord they are so turned as to present a succession of oblique cutting edges, which act, when set in motion, in nearly the same way as so many small chisels, while the rapidity with which the blows follow each other probably adds to the effect.

American Institute of Electrical Engineers.

At the call of a number of prominent electricians a meeting was held on the 13th of May, in the rooms of American Society of Civil Engineers, New York, and the organization of the above named society was effected.
The first of its kind in this country, it bids fair to have a prosperous career, and will undoubtedly tend to promote the interests of all those engaged in electrical pursuits. That the society is a representative one, will be seen by the ist of officers elected which is as follows:
President: Dr. Norvin Green.
Vice-Presidents: A. Graham Bell, Charles T. Cross, Thomas A. Edison, George A. Hamilton, Cbarles H. Haskins, Frank L. Pope.
Managers: Charles F. Brush, William H. Eckert, Stephen D. Field, Elisha Gray, Edwin J. Houston, C. L. Hillings, Frank W. Jones, George B. Prescott, W. W. Smith, W. P. Trowbridge, Theodore N. Vail, Edward Weston.
Treasurer: Rowland R. Hazard; Secretary: Nathaniel S Keith.

Incorporation of a Bridge Building Company.
The firm of Clarke, Reeves \& Co., proprietors of the Phœnixville (Pa.) Bridge Works, has been merged in a corporation under the style of the Phœnixville Bridge Company. The works of the company have a capacity of thirty to thirtyfive thousand tons a year, and among their productions have been the Kinzua Viaduct, numerous new bridges for the West Shore Railway, and the structures of the Second and Ninth Avenue elevated railways of New York city. Mr. David Reeves is president of the company, and Mr. Adolphus Bonzano is vice-president and chief engineer.

The Articicial Light of the Euture

In his "Science Notes," in the current number of the Gentleman's Magazine, Professor Mattieu Williams says: "My note on this subject last July* was preceded by one on the researches of Professor Radziszewski. I now learn that he has actually separated the luminous matter of the Pelagia noctiluca, one of the multitude of species of marine animals that appear like little lumps of jelly, and produce the phosphorescence of the sea. He evaporated to dryness 180 specimens; and from the residue he dissolved out (by means of ether) a peculiar kind of fat, which, mixed with potassa, gives out, when shaken, phosphorescent flashes. This is exactly what happens to the living animal. When quiescent it is not luminous; but if shaken or rubbed, it flashes. I have collected and examined a great variety of these animals at different times; the most remarkable occasion being one morning after a magnificent display of marine luminosity in the Mediterranean, a few miles off the shore of Algiers. The surface of the sea was incrusted, I might almost say, with countless millions of small jelly-like creatures, of spherical, ovoid, oblong, dumb-bell, and other shapes, varying in size from a mustard seed to a pea. A bucketful of water taken over the ship's side appeared like sago broth. They were all internally dotted with a multitude of what I suppose to be germs, that would be liberated on the death and decay of the parent. The practical importance which I attach to the study of the luminosity of these creatures is the fact that they supply light without heat. The costliness of all our present methods of artificial illumination is due to the fact that we waste a largely disproportionate amount of energy in producing heat as well as light. This wastefulness may be illustrated by supposing that we obtain a pound of the phosphorescent fat of the noctiluca, and divide it into two equal halves; making one-half into candles to burn in the ordinary manner, and using the other half to give out its light by cold phosphorescence. I am not able to give precise figures, but believe that I am well within the truth in estimating that the candle would dissipate 95 per cent of the potential energy of the fat in the form of heat; giving but 5 per cent of the amount of light that the other balf pound would emitas cool phosphorescence. Let us, then, hope that Professor Radziszewski will continue his researches, and discover the whole secret of both the analysis and synthesis of this fat; and that of the glow-worms, the fire-flies, etc. Now that we can supply the confectioner with the flavors of almonds, raspberries, jargonelle pears, nectarines, etc., and imitate the perfumes and the richest colors of nature's sweetest and brightest flowers, all by the chemical manipulation of coal tar, we need not despair of solving the chemical problem of transforming mutton suct, or palm oil, or vaseline into glowworm or noctilucafat, to be used for illuminating purposes." -Journal of Gas Lighting.

GRAVIMOTOR.

The engraving represents a small vehicle which is fastened to the foot, and is so constructed that when the weight is thrown upon the foot-rest the wheels are revolved, carrying the operator forward, and when the weight is removed the foot-rest is raised to its normal position by a spring. The rest is supported by a rod which has a strap attached to its lower end, the other end of the strap being secured to a wheel mounted on the same shaft with a cog wheel, from which motion is transmitted to the shafts of the driving which motion is transmitted to the shafts of the driving
wheels. Clutch disks engage when the rest is depressed, and the driving wheels are revolved. This brings a spring in tension, and when the weight is removed the rest is lifted. As a motor is fastened to each foot, it is only necessary to bring the weight of the body on each foot alternately. The

HALL'S GRAVIMOTOR.

motor may be constructed with two driving wheels forward, with a single rear wheel journaled on a fork to a spring arm of the frame, above which a tongue projects to act as a brake. The foot rest is carried by a rack engaging with a cog wheel which is connected by suitable means with the shatt of the driving wheels.
This invention bas been patented by Messrs. T. P. and J. B. Hall, and additional particulars can be obtained from the latter, whose address is School of Science, Toronto, Canada.

FOLDING STAIRCASE.

An automatically folding staircase or ladder that can be used as a tire escape, for boarding vessels, etc., has recently been patented by Mr. Charles H. Chase, P. O. box 2,035, New Orleans, La. Our engraving shows the device attached to the side of a vessel. Two longitudinally grooved side bars, united by a series of transverse pieces, are binged to the side of the vessel. Sliding in the grooves and united by cross pieces are two bars, to which is attached a chain, the upper end of which passes through an opening in the side of the ship, and is secured to a shaft placed directly before the opening. A brace rod connects the side bars with the

CHASE'S FOLDING staircase.

vessel. Pivoted to the upper edges of the side bars are steps whose upper edges are pivoted to rods having their lower ends connected by chains to the ends of the sliding bars. To the outer surfaces of the side bars are pivoted the lower ends of bars whose upper ends are pivoted to hand rails having their lower ends connected by chains to the lower ends of the sliding bars. Chains, which are fastened to the hand rails and to the rods to which the outer edges of the steps are pivoted, pass through boles in the ship's side and have weights on their inner ends. On one end of the shaft is rigidly mounted a grooved pulley, over which passes an endless chain that also passes over a pulley secured to the outer surface of the ship. A jointed locking plate is binged to the outside, and is adapted to be swung over the lower part of the staircase.
When the staircase is to be swung outward for use, the shaft is so turned as to unwind the chain to allow the sliding bars to move downward. The weight of these bars carries downward and outward the outer end of the brace, thereby swinging the lower end of the staircase outward. At the same time the hand rails are raised and the steps swung into position. The shaft can be turned by means of a crank handle or by the endless rope from the outside. To fold the staircase the chain is wound upon the shaft, the sliding rods are drawn up, and the apparatus swung against the side of the vessel. The staircase can be made of any suitable length or width.

Plans for a New Harlem River Bridge.

Three plans for a new bridge over the Harlem River at One hundred and eighty-first Street, this city, have been laid hefore the Park Commissioners. The design of A. P. Boller, C.E., is for an iron cantilever bridge, 125 feet high, 100 feet wide, and having a central span 580 feet, to cost $\$ 1,500,000$. The design of George McNulty, C.E., is for an arched iron bridge 132 feet high, 90 feet wide, and having a span of 543 feet ; the approaches to be built of arched masonry; cost, $\$ 3,564,000$. J. M. Wilson, C.E., presents plans for an iron cantilever bridge, 100 feet high, 80 feet wide, and having a span of 450 feet. There are two designs presented by Mr. Wilson, one contemplating stone piers and estimated to cost
$\$ 1,193,347$; the other with iron piers to cost $\$ 1,062,954$.

A Couple of our Contemporaries, Opinions.
Referring to the removal of the Scientific American offices to 361 Broadway, the American Garden says, and we take pride in quoting their words, that as an "exponent of American progress the Scientific American stands unrivaled; and, combined with a high moral tone throughout, its educational value as a family paper cannot well be overestimated. We are glad," adds the editor, " to perceive the marked popularity and success which have compelled the publishers to remove to more spacious quarters. The new offices are beautifully lighted, airy apartments, more than fifty feet wide and one bundred and sixty feet long, and furnished with everything needful for the prompt and efficient execution of business.
'The Scientific American is not, as might be supposed from its name, devoted strictly to scientific matters only, but presents in a clear, practical manner the entire progress and development of our age: Science, art, literature, mechanics, industrial interests, inventions and discoveries of every kind, natural history, agriculture, horticulture, and many other topics of interest to every intelligent person."
The Christian Intelligencer has the following good word for us: "A great deal can be and ought to be said to commend the Scientific American to those who wish a popular sci entific and mechanical journal of the highest character and greatest utility, edited with special ability disciplined by a long experience. It is possible that a few really valuable labor-saving inventions or important mechanical achievements in this country escape the vigilant editors of this weekly paper, but the number must be small. Besides being clearly described, many of such inventions and achievements are illustrated in pictures of unsurpassed excellence. Interesting and important scientific discoveries and facts are recorded by the hundred in the course of twelve months. At the beginning of the year we said that at least one copy should be in circulation in every school district in the United States. We still hold that opinion."

A Hot Region,

One of the hottest regions of the earth is along the Persian Gulf, where little or no rain falls. At Babrin the arid shore has no fresh water, yet a comparatively numerous population contrives to live there, thanks to the copious springs which burst forth from the bottom of the sea. The fresh water is got by diving. The diver, sitting in his boat, winds a great goatskin bag around his left arm, the hand grasping its mouth; then he takes in his hand a heavy stone, to which is attached a strong line, and, thus equipped, he plunges in and quickly reaches the bottom. Instantly opening the bag over the strong jet of fresh water, he springs up the ascending current, at the same time closing the bag, and is helped on board. The stone is then hauled up, and the diver, after taking breath, plunges in again. The source of these copious submarine springs is thought to be in the green hills of Osman, some 500 or 600 miles distant.

IMPROVED LIFTING JACK.

The screw jack herewith illustrated is arranged to shift the boisting screw after the load is raised, to move the load while supported on the screw. The bed frame consists of two parallel side sills connected by cross pieces which are a little lower than the sides. The nut for the hoisting screw rests upon four legs, which, together with a broad base plate, are cast in one piece. The base plate rests upon the sides of the bed frame, upon which it can be shifted.
A strong screw nut is bolted to the bottom of the base plate. Fitted in bearings in the cross pieces and in the nut is a working screw, which is located directly under the

QVARNSTROM'S IMPROVED LIFTING JACK.

hoisting screw and the center of the base plate, so that with a plate of considerable length, to prevent turning so as to cramp between the sides, one screw is sufficient to shift the hoisting screw. By placing the cross pieces a little lower than the sides the base plate can be shifted along over them. The base plate is made with a hole under the hoisting screw in order that the screw may be made longer and have a greater range.
This invention has been patented by Mr. E. J. Qvarnstrom, and further information may be obtained from Mr. J. E. Hagey, of Vulcan, Mich.

Making Artificial Ivory
The Chronique Industrielle gives the following description of a new process for making artificial ivory from the bones of sheep and goats and the waste of white skins, such as kid, deer, etc. The bones are macerated for ten or fifteen hours in a solution of chloride of lime, and afterward washed in clean water and allowed to dry. Then they are put with all the scraps of hide, etc., into a specially constructed boiler, dissolved by steam so as to form a fluid mass, to which is added $21 / 2$ per cent of alum.

The foam is skimmed off as it rises, until the mass is clear and transparent. Any convenient coloring material is then added, and while the mass is still warm it is strained through cloth of appropriate coarseness and received in a cooler, and allowed to cool until it has acquired a certain consistency, so that it can be spread out on the canvas without passing through it. It is dried on frames in the air, and forms slieets of convenient thickness. It is then necessary to harden it, which is accomplished by keeping it for eight or ten hours in an alum bath that has been used before.

The quantity of alum necessary for this operation amounts to 50 per cent by weight of the gelatine sheets. When they have acquired sufficient hardness, they are washed in cold water and let dry on frames, as at first.
This material works more easily and take as fine a polisb as real ivory.

ZSCHIESCHE'S HYDRAULIC MOTOR.

The utilization of the motive power developed by water courses has given rise to a large number of apparatus, such as turbines, overshot and undershot wheels, etc., that bave in recent times reached a bigh degree of perfection, and leave but little to be desired as regards performance, strength, and ease of keeping in repair.
These apparatus possess but one inconvenience, and that is that they require a fall of water that is not every where met with, thus subordinating the selection of the mill site to the configuration of the water course. Mr. Zschiesche's new hydraulic motor, represented in the accompanying cut, requires no fall for operating it, but may be set up at any point whatever along a river that bas sufficient velocity. The apparatus undoubtedly offers the inconvenience of being quite cumbersome, and of requiring the use of a motive wheel so much the larger in proportion as the velocity of the current is less, but, as the figure shows, it is mounted very simply upon a float, and can be towed from one point to another of a water course. The system consists of a wooden framework that supports two iron wheels of different diameters. The larger of these wheels is the motive one.

Its axle, which rests in bearings, can be raised or lowered by means of a windlass, and the same is the case with the smaller wheel. It will be seen that it is thus very easy to cause the wheels to plunge sufficiently deep into the current to secure a proper working of the appara tus, whatever be the level of the water.

The spokes of the wheels terminate in hooks, which serve to carry the wheels along by means of two endless chains connected by paddles. The latter are each hinged upon an axis mounted upon the chains, and can be in clined at will in such a way that, whatever be the depth that the lower part of the motive wheel reaches, the paddles will always be perpendicular to the level of the water. The paddles are held in place by mears of pins that may be transposed upon a quarter circle of iron.
The lower, movable part, which consists of two chains and paddles, dips entirely under water and is carried along by the current, the result being the revolution of the wheels that support the chains. The upper part is sustained by a roller.
The axle of the smaller of the two wheels is provided with a pulley that serves to communicate motion to the machines and apparatus of the building, partially shown in the foreground in our engraving. The problem in regard to the utilization of the motive power of water courses is greatly attracting the attention of engineers. Now especially, that dynamo electric machines have entered the domain of industrial practice, experiments of the kind that we have here noted are multiplying upon every side,-La Nature.

ZSCHIESCHE'S HYDRAULIC MOTOR.

Tain't everybody can run a locomotive, either, though I s'pose it's like running a daily newspaper, which I've heard tell everybody can do. Now, a nervous man bas no business in a cab; no more has a careless one, or a stupid cuss. To run an engine a man must feel his responsibility, and keep his bead level. I don't believe half the people know what it is to run an engine. Now, there's the machine; that's the first thing, and it has to be in good order, and stay so A locomotive has to stand wear and tear and weather that'd knock a stationary engine into smithereens. And no matter what emergency rises-freezing of pipes, or starting of flues, what emergency rises-freezing of pipes, or starting of flues,
a loosening of packing, or heating of journals-we've got to
know just what to do, and do it right quick, too; then when we're running there's the time cards and pretty often a new one; and the train orders-they are a life and death and reputation to us, and to read 'em correct and live up to 'em gives us no end of anxiety.
"Bet I've read a train order over a dozen times an hour-I am always so afraid of making a mistake or forgetting. You know the consequence of even a little mistake, sometimes. Then there's the signals to watch, the conductor's gong overhead, steam to keep up, time to make, whistle posts and crossings to look out for, bad spots in the road to be careful on, and along with all this there's the track ahead of ye which your eyes mustn' leave for more'n five seconds. There's the brakes, too-one is always worrying about them. I don't s'pose everybody knows, either, that we have to be mighty careful when we come to the top of a grade. You see in going up she labors hard, and as soon as she begins to descend she makes a rush, and there's the danger of breaking your train when the rear cars are still dragging on the up grade. This danger is especially great on freights, but no good engineer fails to shut off some of his steam when his engine reaches a summit. It isn't every fool can run a locomotive."

Ethylene.

Before the Chemical Society on the 17th of April, Dr. P. F. Frankland read a paper on the influence of incombustible diluents on the illuminating power of ethylene. The present communication forms a sequel to a paper read by the author on the illuminating power of ethyleue when burnt with combustible non uminous diluents (Chem. Soc. Jour., Jan., 1884). In all cases the gases were consumed from a Referee's burner. Great care was taken to insure the purity of the etbylene and the diluents-carbonic anhydride, nitrogen, oxygen, and atmospheric air-employed. The author records his observations in a series of tables and curves. He sums up the principal results as follows: Mixtures of ethylene with the incombustible diluents carbonic anbydride, nitrogen, aqueous vapor, and atsomething new and good in the form of musical keyed in- mospheric air, possess a lower illuminating power than pure struments. We are tired of the present sterentyped shapes of our pianos and organs. Will not somebody strike out in a new direction? A suitable design of so novel and popular a character that people must have it would be worth many thousands of dollars to the mannfacturer who secured it.

The Fun of Running an Engine.

A reporter on the Cbicago Herald bad the following in erview with a locomotive engineer:
"Lots of chaps think it would be fun to run an engine," said the driver, as he stuck his head, a flaming torch, and a long-necked oil can in under his machine, "but if the most thylene. In all mixtures of ethylene with either carbonic nhydride nitrogen, or aqueous vapor, the intrinsic lumin osity of the ethylene is reduced. In mixtures of ethylene with atmospheric air, the intrinsic luminosity of ethylene remains unimpaired until the air forms about 50 per cent of the mixture.
Mixtures of ethylene with oxygen in insufficient quantity to form an explosive mixture possess a greater illuminating power than pure ethylene, the intrinsic luminosity of the ethylene being greatly increased. The disilluminating effects of carbonic anhydride, nitrogen, and water vapor are due partly to dilution and partly to refrigeration, . i.e., the cooling occasioned by the introduction of inert gas into the flame; this refrigeration is proportional to the specific heats of the gases, but in the case of the carbonic anhydride and aqueous vapor it is augmented by the absorption of heat which takes place in the dissociation of the aqueous vapor and in the reduction of the carbonic anhydride to carbonic oxide. Of the four diluents, carbonic anhydride, nitrogen, aqueous vapor, and atmospheric air, the first is the most and the last is the least prejudicial to the illuminating power ; nitrogen and atmospheric air, however, become more equalized in their effects as the proportion in which they are present increases, complete disillumination of the etbylene being effected by the same proportion of each.

Bartholdi's Statue of Liberty.
A representation of this statue, as it will appear in place on its pedestal in New York barbor, has been published, as large colored lithograph, by Messrs. Root \& Tinker, of this city. The picture showing the proportion of the statue to the pedestal, with some view of the surroundings, gives good idea of the whole as a work of art. The pedestal will be 177 feet 9 inches high, and the statue is 151 feet 2 inches, making the top of the torch 328 feet 11 inches above high water level.

The latest novelty in advertising is a patent medicine manufacturer advertising for bald men who are willing to have advertisements painted on the tops of their heads, "r cor a high pecuniary recompense."

The Doctrine of Evolution.
The Ohemist and Druggist (London) gives the annexed extracts from a paper read recently before the Oldham Chemists' Assistants' and Apprentices' Association by _Mr. W. Buckley:

After defining the term evolution, the essayist remarked that it was generally confounded with the Darwinian theory, and gave an extract on the meaning of evolution from Dr. Hooker. He then proceeded to describe the various forms of animal life, beginning with the gregorina, and treating of the other forms to the vertebrata.
Gregorina is an animal found as a parasite of the cockroach, which takes in its food in any part of its surface. This is the lowest form of animal life.
Amœba was then described as seizing its food, which is forced through the mass of protoplasm and excreted anywhere.
Infusoria is a step higher, being distinguished by the posession of a definite mouth and œsophagus and egestive region.
Waterweed hydra, sea anemone, entozoa, earthworm, leech, insect, vertebrata, were described in order of superiuntil the highest point of animal life was reached in the case of the vertebrata.
The lecturer then explained the evolution of reproduction, describing the mode of reproduction, first, of the gregorina, by incystation-that is, the animal surrounds itself by a mass of gelatinous matter, and then splits up, each part becoming a fresh animal.
Infusoria are reproduced by splitting into two equal parts, and also by budding, a portion becoming attached to the animal, and after some time becoming free and having the powers of its predecessor.
In alluding to the descent of man, Mr. Buckley showed the similarity of the structure of the human being to that of some monkeys, especially the chimpanzee and gorilla, explained the arguments from the useless musces of the human body, and indicated the reasons for regarding them as useless.

An Antique Roman Mosaic from Carthage.
by G. H. heap, esq., consul-general at tunis.
Many who visited the Centennial Exbibition will remember seeing in the Tunisian section the large and beautifully executedj mosaic representing a Numidian lion seizing an antelope. This admirable work, which probably dates from 100 to 50 years before the Christian era, is of Roman workmanship, and was discovered at Carthage in 1873. It formed a very small part of the vault floor of a temple dedicated to Astarte (Aphrodite), the tutelary deity of the Carthaginians. The Romans, who assimilated the gods of the people they conquered as easily as they absorbed their territories, erected a temple to the Goddess of Cartbage, and adorned it with great splendor. It was situated on a commanding hill facing the sea, near the citadel and other public buildings.*
The Tunisian Government a short time since enacted a law prohibiting private search for antiquities, but granted this privilege to the son of the prime minister at that time in power. The finder of treasures or antique works of art was required, under severe penalties, to give immediate information to this official. The Arabs, however, in spite of imprisonment, bastinado, or fire, not unfrequently appropriated whatever fragments of sculpture, inscriptions, or mosaics, and especially funeral lamps and vases and coins, mosaics, and especially funeral lamps and vases and coins,
they might tind, and sold them secretly to travelers and they might
strangers.
Thus it came to pass, one day, that an old Arab sheik informed the British agent and consul-general, with a great sbow of secrecy and mystery, that he had discovered a wonderful mosaic floor, a portion of which he offered to take up and deliver for a consideration. He described the floor, which, even with due allowance for the imagination of the Bedouin, was evidently one of the most beautiful and complete works of the kind that had ever been discovered at Carthage. The sheik refused to tell where it was, but promised to bring the piece he had taken up to Sir Richard Wood's country seat, at Carthage, at night. He had recently "eaten stick," or received the bastinado, for having sold some antiquities to a tourist, and had reason to be cautious. A few nights later, however, he came with some eight or ten Arabs who bore the mosaic on their sboulders. A bargain was made, and the precious fragment was deposited in a magazine, where it remained until shipped to Pbiladelphia in 1875.
The floor of the temple from which it was taken has since been examined. It is of vast extent, and the designs were all life size. From the Arab's description it appears that the center figure represented a female, probably the goddess Astarte, driving a chariot drawn by stags, and around this central design were grouped animals of various kinds-lions, tigers, leopards, stags, antelopes, giraffes, hoars, hares, even hippopotami, crocodiles, snakes, and fishes. The only part of the floor that the Arabs succeeded in removing besides the " mosaic lion" was the principal design, representing Astarte in the chariot. This was on its way to Sir Richard Wood's, when unfortunately one of the bearers slipped and

* The remains of some of these edifices are still visible, although now Philippe, King of the French, and dedicated to the memory of his ancestor, Lonis IX., sarnamed "the Saint," on the spot where tradition says he died of the plague in 1270 while besieging Tunis.
fell, and the others fearing to be crusbed under it-for it labor in an effort to get down to the bottom facts while the was even larger and more ponderous than the lion-allowed bills are pending. it to fall to the ground, where it was broken into fragments. The few disinterested persons who give their assent to The only portion, therefore, of this magnificent pavement these proposed changes probably persuade themselves that that now exists is that in the National Museum; the rest a new mechanical idea really is not "property" in the was broken in the hasty and ciumsy efforts of the Arabs to detacb it in sections from its bed.
The "mosaic lion," as it came to be named at the Philadelphia Exhibition, is the largest and most perfect ancient mosaic in America, and it is quite unlikely that anytbing equal to it will ever find its way to the United States hereafter.
When the Vandals invaded Africa they destroyed all works of art, and to them are due the many headless, armless, and noseless statues found in Barbary. In destroying the temple of Astarte their iconoclastic frenzy was probably more immediately directed against the statuary and other sculptures and in overthrowing them, together with the walls of the edifice. The floor was covered with debris, upon which, in the course of centuries, a deep layer of dust was deposited, which protected the mosaic from the corroding effects of wind and rain, and to this we may attribute its perfect state of preservation.-Proceedings Nat. Museum.

The Menace to the Patent Laws.

The British Government lately recognized the fact that it patent laws were not sufficiently liberal in their treatment of inventors, and accordingly it has subjected them to thorough revision, upon the very just theory that encouragement and protection of the inventive talent of a country is of direct advantage to the whole body of the people. Just as England has completed this reform, certain members of the American Congress have organized an assault upon our patent system, with an intent to make our patent laws far more unjust and far more discouraging to inventors than the British laws have ever been in modern times.
More than twenty bills, authorizing changes in the patent laws, have been introduced to Congress during the present sessions and while nearly all of them inflict injustice upon inventors, some of them are positively iniquitous. We cannot summarize all of them, but some of the propositions contained in them are as follows: That any man may use any patent without regard to the owner's wisbes or prices, by summoning a jury to fix a license fee; that no patent shall be granted for a longer period than five years; that a man who uses an infringement upon a patent can escape all penalties simply by pleading ignorance, the easiest plea that can be made ; that the owner of a patent shall pay all costs of suing an infringer, even the fees of the infringer's attorneys, though the plaintiff may win his suits that the owner of a patent in such a suit shall give bonds for the payment of costs, no matter how often the courts may have declared his claim valid.
These are but a few samples of the kind of legislation which is now threatened by the men who have been selected to make laws for this country. Respecting the whole mass of bills, we may say this: They represent simply a scheme to legalize the robbery of a class of men who have probably done more for this American nation than any other single class among our population. It was because the inventive genius of our people has had strong stimulation from the best set of patent laws now in existence, that we have been able to compensate for the scarcity and high price of labor in many portions of our country by the use of ingenious mechanical contrivances.
The man who will try to imagine what American farming, for example, would have been had not the farmer had at his command cheap labor-saving appliances, invented by Amcricans, may possibly form some kind of a dim idea of what this country has gained from its inventors and from the wisely ordered patent system which has inspired them to labor in all directions. The so-called patent reformers not only refuse to recognize that great obligation, but they propose to destroy the system which has achieved so much and to violate the standing contracts made by the Govern ment with the inventors, and for which the inventors have paid their money.
We do not hesitate to say that no Congress that ever sat in Washington ever offered a greater menace to the general public interest; and we may assert, furtber, that if this Congress supplements its ruinous agitation of the tariff question with these outrageous patent laws, it will be remembered with execration as a public enemy.

The plea made in behalf of the new bills is that innocent purchasers of patented contrivauces have suffered under the present laws. No doubt there have been many instances of hardship of this kind, but the cases are comparatively few in number, and it is monstrous to replace a good law, which works occasional harm to the few, with a bad law which will work continual harm to the many. Innocent men have been put in prison, but that is not an argument for the abolishment of prisons. The right thing to do, if anything must be done, is to make more severe the penalties against the man who infringes a patent and sells it, and to give the innocent victim swift justice upon the man who has swindled him. But the trutb, we suspect, is that the demand for a change does not come from unsophisticated countrymen who have been deluded by sellers of sewing machines and hay rakes. More probably it comes from rich corporations, who want to steal and use for nothing inventions upon which they are now compelled to pay royalties. The
indications are strongly in this direction, and it will be well indications are strongly in this direction, and it will be well
worth while for leading inventors to combine money and
right sense of the word. They understand how a man can own a horse and sell it, but they do not comprehend how a man can own and sell an idea. This is just the kind of obtuseness that we expect to find in a savage, who has no conception of intellectual things; but it is amazing to find it among civilized and intelligent men. The truth, of course, is, that ideas, expressed in mechanical forms, have exerted such power as to transform the methods of civilized society. Every convenience in modern dwellings, every railroad, every steam engine, every labor-saving machine of every kind, is simply the embodiment of men's ideas; and the mental stimulus which was necessary to give such ideas expression and force was obtained, in nearly all cases, from the promise of money reward. A man who has got a good mechanical idea in his head, has something that is worth far more than any single piece of real estate; for it is sometbing which may serve millions of people at one and the same time; while the real estate can serve only a single owner. The idea is property ; and the government which forbids it to have any value when it is once made public, simply gives its sanction to a very bad form of robbery.-The Textile Record.

The Dancing Bird.

A recent issue of the Proceedings of the U. S. National Museum contains an account, edited by Mr. E. Ridgeway, of the collection of birds from Nicaragua, made last year for the Smithsonian Institution by Cbas. C. Nutting. The dancer bird is thus described:
'Fam. Pipridæ. Chiroxiphia linearis Bp.
"Abundant. Spanish name 'Toledo' (pronounced 'Tolay'do') on account of a fancied likeness to their whistling note. The natives also call this bird 'Bailador' or 'Dancer.' It was not until I had been in the region for some time that I understood why it was given this name. One day, while hunting through the dense forest, the profound silence was suddenly broken by the regularly repeated note of ' El Bailador,' and softly making my way toward the spot whence the sound proceeded, I witnessed one of the most remarka ble performances it has ever been my lot to see.
'Upon a bare twig which overhung the trail at a distance of about four feet from the ground, two male 'Bailadors were engaged in a 'song and dance' act that simply as tounded me. The two birds were about a foot and a half apart, and were alternately jumping about two feet into the air and alighting exactly upon the spot whence they jumped. The time was as regular as clockwork, one bird jumping up the instant the other alighted, each bird accompanying him self to the tune of 'to-le-do-to-le-do-to-le-do," sounding the syllable ' $t o$ ' as be crouched to spring, ' $l e$ ' while in the air and ' $d o$ ' as he alighted.
'This performance was kept up witbout intermission for more than a minute, when the birds suddenly discovered that they had an audience, and made off.
"With a little practice one can learn to call the birds very readily. I could have secured a very large number in this manner, had I been so disposed. Twelve specimens.'

Shoe Making by Machinery.

The Shoe and Leather Reporter justly remarks that the in roduction of labor-saving machinery has been the mos potent cause of the changes that have been wrought in the shoe manufacture within a decade. The genius of inventors has devised implements for doing pretty much all the work that is required from the cutting to the finishing of a shoe and doing it so neatly that the inexperienced cannot distin guish hand work from machine work, and the experienced know perfectly well that the latter is for all practical pur poses as good as the former. The instruments first contrived for sewing leather were crude and imperfect; there were so many little defects about them that they were not regarded with favor, and did not do satisfactory service. But by de grees the faults have been so completely remedied that they do their work admirably, until now three-quarters of the handsomest shoes sold in the country are put together by machinery. In the factories the bands are distributed into "teams," each team constructing a particular part of a shoe, many men contributing in their several ways to its configuration. Of course the closest attention has to be given to all the details; it is essential that the materials should be selected with discriminating judgment; that the cutting should be so skillfully done that there may be no waste of stock on the one hand, and no inferior materia used on the other.

Refuge Pits in Wind Storms.

A Georgia correspondent writes us that storm pits are made in his section about 8×10 feet and 6 feet deep, with roof on a level with or just above the surface of the ground, being usually ventilated by means of pieces of stove pipe inserted in the roof. Our correspondent says it has been suggested that, there being sometimes ten or twelve persons in these pits, the moist, warm air rising through the pipes makes a good conductor of electricity, and so would render such locations dangerous during an electrical storm, although his own inference is that they cannot certainly be more dangerous than crowded churches or railway cars, which ar seldom struck by lightning.

Cuxraipundemte

Maple Tree Insect To the Editor of the Scientific American:

My attention was called to the number of insects on our village maples, which indicated that they were dying. I at once cut a stick and inclose it to you, to ask, if it be worthy your notice, to give it a description in your paper, and what, if anything known, is a remedy for the pest, for pest it mos assuredly is.
Some of the maples are covered with them just as is the small piece of twig I send, and some of the trees are dying. Can we get rid of the pest? I remain, respectfully,
P. H. Cutler.

Louisa Court House, Va., May, 1884.
[The twig accompanying the above letter was covered with he males of the common cottony bark louse of the maple Pulvinuria innumerabilis Rathvon). This species is common all over the country on maple, sycamore, and osage orange. A closely allied species is found on the grape, which may possibly be identical with this. A very complete paper on this species was written by the late J. Duncan Putnam, and published in the first volume of the Proceedings of the Davenport Academy of Sciences. A short account with figgures will be found in the Annual Report of the Department of Agriculture for 1880. As to remedies, nothing better can be recommended tban the kerosene emulsion, the formula for which has already been given in the columns of the Scr entific Amertcan. It should be well diluted and thrown over the tree in as fine a spray as possible.-C. V. Riley.]

A Mysterious Explosion.
 To the Editor of the Scientific American:

As an old subscriber I would like to inquire of you whether I have discovered sometbing new, or what I did make. While experimenting to make a poisonless silver wash, I mixed the following articles: One part chloride of silver, twelve parts of lye of potash (which was the result of common, only dissolved by air), and the same amount (by measure) of aqua ammonia. I left that mixture stand for eight days, and then, by stirring the mixture, an awtul explosion took place, and where the matter spread about, after becoming dry, and some time after, through brushing or rubbing of the spots it produced a noise like an electric spark.
J. E. F.

Washington, D. C., May 5, 1884.
[J. E. F. has rediscovered Berthollet's fulminate of silver, which bas been described in the larger treatises on chemistry for about a century. It is one of the most violent and intractable of explosives; when dry, the gentlest friction of a feather may set it off. No practical use bas been found for it, and many distressing accidents have resulted from bandling it. It is produced by digesting precipitated oxide of silver with ammonia. In J. E. F.'s case the oxide of silver was a product of the action of the lye on the chloride of silver.-Ed. S. A.]

Cure of Wens by Ether.

M. Vidal cures wens by injecting them with ether. Used for this purpose, ether acts as a caustic-but much more mildly than is generally the case-by setting up inflammation of the cystic contents, and finally inducing suppuration of the cyst itself. This it effects without producing any of the panful sensations or constitutional symptoms which are caused by throwing it into the circulation as a stimulant of the system at large. Its action is entirely confined to the structure operated upon, in which it gives rise to nothing more than a feeling of tension, if the injection be made too forcily.
The ether employed should be as pure as possible; that at sixiy-five degrees, such as is usually sold in the drug stores, answers very well. It is injected with an ordinary subcutaneous syringe, without the necessity of those precautions which have to be observed in the application of caustic so-lutions-since it does not corrode the metallic fittings of the instrument, or cause the formation of any deposit which can clog its piston.
As to the number of injections required and the quantity of ether to be introduced at each of them, M. Vidal has found that, for wens of the face or forehead, which are not larger than a hazelnut, no more than five or six drops need be injected at a time. Larger tumors on the scalp may require ten drops, part of which, owing to want of elasticity in the cyst walls, is liable to escape on the witbdrawal of the syringe. As a rule, the injections should be suspended so soon as the cyst begins to suppurate.
The number of injections is of greater importance than the quantity introduced. Speaking generally, a wen the size of a hazelnut will require two or three injections of five drops; if as large as a walnut, ten drops must be injected four or five times. The mode of treatment in every other respect will depend entirely upon circumstances as they arise. The little operation is performed as follows: The tumor is grasped by the left hand, so as to put its integument on the stretch, thereby bringing plainly into view the glandular orifices it contains; into the most dilated of these, which is often distinguishable by a fatty scab, the needle of the is often distinguishable by a fatty scab, the needle of the
syringe is inserted perpendicularly. It is then, before making the injection, moved about within the cyst cavity, so as to break up its sebaceous contents, and prepare them for the complete reception of the ether; at the same time, the walls
of the cyst are scraped and here and there lacerated with the needle point, with the object of promoting their final elimination. T'he succeeding injections are made in the same way and at the same opening. They are stopped as soon as the wen begins to enlarge, becomes reddened and softer, and is the seat of a slightly painful sensation of throbbing or heaviness, which, however, never amounts to a headache. The tumor is now punctured at its base, from which issues a jet :of purulent fluid; next, the contents of the cyst are discharged in the form of a whitish mass, resembling vermicelli, and mingled with the shreddy detritus of its walls. When the wen is of average size, this part of the process When the wen is of average size, this part of the process
will be completed in six or eight days. During the ensuing days the integument of the cyst proceeds to suppuration, and is discharged through the same puncture, together with remnants of the internal membrane. As the tumor dwindles, the skin surrounding it gradually contracts, and soon it is represented by a mere core of conjunctival infiltration, which, when the last drop of pus and the last fragment of cyst wall have made their exit, shrinks into a small indurated lump covered with healthy skin, and without any sign of the orifice by which the former mass has been evacuated. This consummation is generally reached between the fifteenth and twentieth days.
The efficacy of M. Vidal's procedure was strikingly exhibited in the case of a man of intemperate habits and debilitated constitution who came under his care in the Hospital St. Louis for an eruptive disease, and who had also been troubled, for five years, with au enormous wen which prevented him from wearing a hat or cap, and from lying on his back or on his left side at night. The incumbrance was completely removed by ten injections of ether. During the treatment the patient suffered no pain; he took no care of himself, often exposing his tumor to the cold, without protective dressing, and in the ward which he occupied there were four erysipelatous patients. Yet nothing untoward occurred; the region operated on is now perfectly smooth and level with the rest of the scalp, and not the slightest trace of a cicatrix is left to mark the site of the excrescence. -Lermoyez, Bull. Gen. de Therapeutique.

Teaching Animals to Converse.

Sir John Lubbock in a note to Nature says: I take the opportunity of stating the progress which my dog "Van" has made, although, owing greatly no doubt to my frequent absences from home, and the little time I can devote to him, this has not been so rapid as I doubt not would otherwise have been the case. Perbaps I may just repeat that the essence of $m y$ idea was to have various words, such as " food," "bone," "water," " out," etc., printed on pieces of cardboard, and after some preliminary training, to give the dog anything for which he asked by bringing a card.

I use pieces of cardboard about ten inches long and thre inches high, placing a number of them on the floor side by side, so that the dog has several cards to select from, each bearing a different word.
One correspondent has suggested that it would be better to use variously colored cards. This might no doubt render the first steps rather more easy, but, on the other hand, any temporary advantage gained would be at the expense of subsequent difficulty, since the pupil would very likely begin by associating the object with the color rather than with the letters; he would, therefore, as is too often the case with our own children, have the unnecessary labor of unlearning some of his first lessons. At the same time the experiment would have an interest as a test of the condition of the color sense in dogs. Another suggestion has been that, instead of words, pictorial representations should be placed on the cards. This, however, could only be done with material objects, such as " food," " bone," " water," etc., and would not be applicable to such words as "out," "pet me," etc.;
nor even as regards the former class do I see that it would nor even as regards the former clas
Again, it has been suggested tbat "Van" is led by scent rather than by sight. He has no doubt an excellent nose, but in this case he is certainly guided by the eve. The cards are all haudled by us, and must emit very nearly the same odor. I do not, however, rely on this, but have in use a number of cards bearing the same word. When, for instance, he has brought a card with "food" on it, we do not put down the same identical card, hut another with the same word; when he has brought that, a third is put down, and so on. For a single meal, therefore, eight or ten cards will have been used, and it seems clea:, therefore, that in selecting them " Van" must be guided by the letters.
When I last wrote I had satisfied myself that he bad he could distinguish a card with the word "food" on it from a plain one, while I believed that he could distinguish between a card with "food" on it and one with "out" on it. I bave no doubt that he can distinguish between different words. For instance, when be is hungry he will bring a "food" card time after time until he has had enough, and then he lies down quietly for a nap. Again, when I am going for a walk and invite him to come, he gladly responds by picking up the "out" card and running triumphantly with it before me to the front door. In the same way he knows the "bone" card quite well. As regards water (which I spell phonetically so as not to confuse him unnecessarily) I keep a card always on the floor in my dressing room, and whenever be is thirsty he goes off there, withou any suggestion from me, and brings the card with perfect
gravity. At the same time he is fond of a game, and it
he is playful or excited will occasionally run about with any card. If through inadvertence he brings a card for something he does not want, when the corresponding object is shown him he seizes the card, takes it back again, and fetches the right one.
No one who has seen him look along a row of cards and select the right one can, I think, doubt that in bringing a card he feels that he is making a request, and that he can not only perfectly distinguish between one word and another, but also associate the word and the object.
I do not for a moment say that "Van" thus shows more intelligence than has been recorded in the case of other dogs, that is not my point; but it does seem to me that this method of instruction opens out a means by which dogs and other animals may be enabled to communicate with us more satisfactorily than hitherto.
I am still continuing my observations, and am now considering the best mode of testing bim in very simple arithmetic, but I wish I could induce others to co-operate, for I feel satisfied that the system would well repay more time and attention than I am myself able to give.

speed of Thought.

Many people have noticed the remarkable quickness of hought in dreaming, how a long story, with many details and extending over a great period of time, will flash through the mind in a few minutes, but they seldom have any means of even approximately measuring the quickness with which they sometimes dream. There is now going the rounds of the press a story purporting to tell the dream of a railway engineer, which, if true, affords a means of measurement, and the story itself has every appearance of being a genuine relation of experience. The engineer had been without sleep and on duty for many hours, and at last fell asleep on his post. Then he dreamed quite an elaborate story of an accident resulting from a confusion of train orders; how he studied over the words of the dispatch, tryng to make out their meaning, and then how, his train coming into collision with another, he was thrown into the air and dropped back into his seat in the cab with his hand on the throttle. At that instant consciousness returned, and he found that. it was all a dream, and that although bis train was traveling at the rate of 45 miles an hour, it had gone only 250 feet while the dream was passing through bis mind, this distance being fixed by the position of the train with respect to signal lights on the line. Tbis is the interesting part of the story, for if these measurements are approximately correct, the dream occupied less than four seconds of time.-Ledger.

The Bite of a Mad Dog not always Fatal.

The bite of a mad dog, it would appear, is not so fatal as s generally supposed. A report upon the subject for the Department of the Seine, issued by the Paris Prefecture of Police for the past three years, shows that of one hundred and fifty-six persons bitten by rabid dogs in 1881 eighty died; in 1882, nine out of sixty-seven bitten died; and in 1883, five only out of forty-five. With regard to the treatment of the bite of a rabid animal, the experience of the French doctors shows that the only remedy which can be depended upon to destroy the virus is the prompt application to the wound of cautery by red hot iron. Twenty persons died of bydrophobia in the Department of the Seine in 1881, nine in 1882, and four in 1883, as far as the official returns show. The decreasing number of deaths from this cause is attributed to the stricter measures adopted with regard to ownerless dogs. During the three years mentioned 11,564 stray dogs were captured in Paris and the department, and destroyed.-St. James Gazette.

Turpentine as a Preventive in Infectious Diseases.
The Medical Record tells us that H. Vilandt writes in the Ugeskriftfur Laeger, vol. viii., No. 8, 1883, concerning the value of the oil of turpentine in the treatment and propbylaxis of diphtheria and the exanthematous diseases. He states that he has never seen any of these diseases spread from a sick child to other members of the family when this remedy was employed. In many of his cases no isolation could be attempted, as the mother was the only female in the family, and was obliged to take care of both the sick and the well, continually passing back and forth from one to the other. His method was to pour from twenty to forty drops of a mixture of equal parts of turpentine and carbolic acid into a kettle of water, which was kept simmering over a slow fire, so that the air of the sick room wass kept constantly impregnated with the odor of these two substances. He claims also that by this means a favorable influence is exerted upon the exudation in diphtheria, although it is by no means curative of the disease, and should never be relied upon to the exclusion of other remedies.

The Maya Civilization.

With this issue we conclude the series of illustrations and nformation thereon concerning the ancient Maya civilization of Yucatan, furnished us by Dr. Le Plongeon from his recent explorations in that region. These interesting pictures, showing something of the life of a people living in Central America many centuries ago, and of whose very existense even the world was so long ignorant, have attracted wide attention, and will no doubt contribute materially to stimulating that spirit of investigation which is so prominent a characteristic of the age. Our representations are faithful copies of photographs taken on the spot.

a new cable railway system.

(Continued from first page.)
be propelled at a rate of 4 miles or 8 miles an hour at the will of the grip attendant. This feature is especially valuable for roads which run into the suburbs, where a high rate of speed is not objectionable, and it also affords a means of "making up lost time," when the road is accidentally blocked.
The cleaning of streets through which these roads run is greatly facilitated by attaching sweepers to the cables, and in winter the snow could be cleared for traffic as fast as it in winter the snow could be cleared for traffic as fast as it

THOMPSON'S BLEACHING PROCESS.

When any marked advance is made either in applied science or the industrial arts, it is by no means wholly unprofitable or devoid of interest to take a retrospective glance at the history of the matter at issue. On the contrary, it may prove very profitable, as showing the various landmarks in progress which have been reached and passed, and highly interesting as indicating the degree of proximity in which present development stands in relation to ultimate perfection. It is in this connection that we here revert to the early days of bleaching, in order to bring out to the full the important advances recently made in that useful art by

It would fulfill no useful purpose were we here to follow the various improvements which contributed to reduce the period required for bleaching from months to weeks and from weeks to days. We, therefore, pass on to describe briefly the process as we find it carried out in ordinary at the present time. Although great advances have been made, bleaching is still a comparatively slow process, and any recent attempts to hasten it have been carried out at the expense of damage to the fabric. In the ordinary process the goods to be bleached are first boiled with lime in a large circular boiler, or "keir," as it is termed. The boiling is circular boiler, or "keir," as it is termed. The boiling is
continued for about seven hours, after which the goods are

A NEW CABLE RAILWAY.--ISOMETRICAL VIEW, SHOWING MANNER OF CONSTRUCTION
snow blockade is impossible, since, the wheels being below \mid Mr. Jacob Baynes Thompson, the practical working of whose ground, the one-half inch standards would pass through the invention we have recently had the satisfaction of witnesssnow with very little resistance. The floor and platforms of ing. The early days of bleaching stand a long way off from the cars, as the engraviag shows, are close to the surface of the street, the platform requiring no steps-a great convenience for all, especially ladies and cbildren.

This proposed system contemplates the building of a large main tunnel in the center of the street and two smaller ones directly under the chairs. The former will be of ample size to take in all necessary pipes and electric light wires, while the latter may be used exclusively for telegraph and telephone purposes. All the tunnels will be constructed of concrete, so that when once built they will last indefinitely. The increasing number of overbead wires and subterranean conduits makes it highly important that some system be adopted which will do away with both evils at the same time, and this proposed railway system, devised by Messrs. Orel D. Orvis and Nelson B. Adams, has this end in view.

The Orvis and Adams system, which presents many novel and interesting features, is controlled by the United States Cable Road and Subway Company, of No. 261 Broadway, New York, and those interested in city passenger traffic, as well as all city authorities and electric companies, are asked to examine into its merits.

Idle Steamers.

Already about one-fifth of the total number of merchant steamers registered at northeastern ports bas been laid up by the owners in consequence of their inability to obtain remunerative freights. The shipping trade is actually becoming. worse instead of better, and the question of a remedy is beginning to strongly exercise the minds of the underwriters. Notices convening special meetings of the convening special meetings of the
Mutual Insurance clubs in the Hartlepools, clubs which have an aggregate capital of over four millions sterling, have been issued, and it is the intention of the clubs to consider the advisability of increasing the return premiums for steamers detained in port by 50 per cent during the period from April to September. This is done with the intention of offering a premium to owners to lay up their ships, so as to produce a strengthening effect upon the freight market. The remedy seems a curious one, though at the same time it is no more out of place than the resolution of ironmasters to subsidize those who agree to put their furnaces out of blast in order to increase pig iron prices.-The Engineer.

A LINE of railway cars, to be drawn by camels, will shortly constitute one of the peculiar features of travel and transportation in Central Asia

THOMPSON'S BLEACHING PROCESS. In course of time an improvement upon this method of gas holder, C the vessel containing the bleaching solution, D bleaching, which was known as the Dutch method, was the carbonic acid gas generator, E the wash bottle containeffected by substituting dilute sulphuric acid for sour milk ing water for the purpose of cieansing the carbonic acid gas in the souring process. This was a grand step in advance, for it reduced the time required for bleaching from eight months to four. But the year 1785 saw a marked improve ment introduced by Berthollet, who suggested the application of chlorine to bleaching. Watt took up the question in the following year, and in course of time the chlorine process was adopted in bleach works, and chlorine forms the basis of the process as now carried out

A represents the bleaching keir, \mathbf{B} the
washed in clear water, and are then submitted to the souring process. This consists in steeping the goods for four or five hours in water made sour by means of bydrochloric acid. The goods are then washed again, boiled for nine hours in a soda lye, washed again, and then submitted to the "chemicking" process. This consists in steeping the material in a dilute solution of chloride of lime for about four hours. These processes, with the exception of the four hours. These processes, with the exception of the
lime boiling, are repeated over and over again until the lime boiling, are repeated o
There are ing all some sixteen distinct operations for ordi nary cotton goods, the time occupied usually being from five to eight days. This condition of matters would now appear to be greatly changed by Mr. Thompson's ingenious process, which has now further reduced the time required for bleaching from days to hours. The main feature in this process consists in the peculiar and original methods of chemicking and souring, these two operations being performed at one and the same time. The bleaching liquid used is a very dilute solution of cbloride of lime, of about specific gravity $1 \cdot 0006$, or less than a degree Twaddell. The decomposing or souring agent is carbonic anhydride, commonly known as carbonic acid gas.
There is another original feature in this process, viz., the use of a solution of triethylrosaniline and oxalic acid, through which the fabric is passed, the object being to remove the faint, natural yellow tinge of the cotton.
In carrying out the Thompson process, says Iron, to which we are indebted for our illustration, the goods are first boiled in an alkaline solution, and washed. They are then placed in an air-tight keir connected on the one band with a vessel containing the bleaching solution, and on the other with a gas holder containing the carbonic acid gas.
In the annexed engraving we illus trate the apparatus by means of which the success of the process was practically demonstrated on a working scale, and which is capable of treating 100 yards of cloth in our engraving 100 yards of cloth. In our s generated, F the gas pipe leading from the holder to the keir, G the pipe through which the chlorine solution is pumped into the keir, H the force pump, K the siphon pipe through which the chlorine solution is run from the keir back into its tank, and which-prevents the escape of the carbonic acid gas with which the keir is filled after the chlorine solution has been drawn off. The mode of working the apparatus is as follows: After the material to be bleached
has been boiled or "bowked" in the ordinary way, and DR. LE PLONGEON'S LATEST AND MOST IMPORTANT DIS washed, it is piled in the bleaching keir precisely as it piled in the chemicking vat in the ordinary process. The cover is then secured and the keir made air-tight, the valve on the pipe, F, being closed. An air tap in the cover is opened, and the bleaching solution is forced into the keir until it is quite full, thus expelling the air. The air tap is then closed, and the valve on the pipe, F , opened.
After the bleaching solution has remained long enough in the keir to enable the material to be thoroughly soaked, and which is about five minutes, the liquor is drawn off through the pipe, K , into the vessel, C , and the valve at J being open, the gas under pressure of the water in the upper part of the gas holder follows the retreating liquor. The gas remains in contact with the moistened material for forty-five minutes, by the end of which time it will have decomposed the whole of the chloride of lime in the bleaching solution on the fiber of the cloth. The bleaching liquor is again run in upon the material in the keir, thus forcing the carbonic acid gas back into the gas holder; but which again returns when the liquor is run out. This alternating of bleaching liquor and gas is repeated till the material is of sufficient whiteness. For a medium grade of cloth, provided it has been boiled three hours, it will take about eight hours to bleach, but if the cloth bas not been boiled the bleaching will require a longer time. When the bleaching in the keir is finished, the material is thoroughly washed, after which it is slowly passed through the solution of triethylrosaniline and again washed, when the process is complete. The total time occupied ranges from eight to twelve hours, according to the nature of the fabric under treatment.
From what we have stated it will be clear to the practical mind that the great value of the process arises from the cir cumstance that the two operations of chemicking and souring, which have hitherto been carried on separately, are bere performed simultaneously. The value and importance of the invention are, moreover, further enhanced by the fact that a great reduction in the wear and tear of the fabric under trealment is secured. Of the results of Mr. Thompson's invention we may write with confidence, for it has passed the experimental stage, and has entered the region of practice. It has been proved on a practical scale at the Halli well Bleach Works of Messrs. R. Ainsworth, Son \& Co near Bolton, England. Respecting the theory upon which the process is based there uever has been any question, namely, that by the reaction of carbonic acid on chloride of lime vegetable fiber is readily bleached. The point to be settled, however, was whether the carbonic acid gas could he made to penetrate to the center of a large body of cloth, that is, whether it would penetrate to the center of an ordinary keirful of cloth, say abont 30 cwt . piled or laid in the usual manner. This Messrs. Ainsworth find is really done, even under disadvantageous circumstances in connection with the first apparatus erected at their works, and which proved slightly defective, but which defects are being remedied in the permanent plant now being laid down. Messrs. Ainsworth state that the carbonic acid gas does penetrate to the center of the goods in the keir, so that the entire contents are perfectly bleached. This point regarding penetration having been satisfactorily settled, we have now only to consider those respecting the saving of time and expense. The question of time we have already dealt with, while with that of cost we leave Messrs. Ainsworth to deal. They state from experience that the cost of bleaching one ton of cloth by the Thompson process is under 30 s. for chemicals, labor, and coal. Although there is some little difficulty in arriving at a precise estimate of the cost of bleaching by the ordinary process, our practical readers will agree with us in placing it at from $£ 4$ to $£ 6$ per ton. The saving will, therefore, be seen to be at the worst very considerable, and at the best 75 per cent. If we place it at 50 per cent, we believe we shall be well with-
in the mark. Without doubt Mr. Thompson deserves credit for so ingenious an invention, and Messrs. Ainsworth for the spirited manner in which they have given it its initial start in practice. They have shown it to be a thorough success, and there is every reason to believe that it will prove of incalculable benefit to the bleaching trade.
from eighty centimeters to 1 meter 25 centimeters On a level with the pillars were twelve serpent heads, with feathers and many designs exquisitely sculptured all over them. Two large ones, and two small, looked toward
The stones and mortar having been cleared away, it was
found that the statue bad rested on conoidal stone pillars,
the east, northeast, and southeast. Three on the west side found that the statue bad rested on conoidal stone pillars, the east, northeast, and southeast. Three on the west side of the excavation looked west, and three on
the south looked south, and two others south east. From the top of each head rises a kind of plume or perhaps flame; and on each side of the front of the head perpendicular ornaments, like horns, that we have discovered represent the opening pod of the Deiba tree, sacred to the Mayas. Their ideal heaven was to rest beneath the shade of the Yaxche (Cebba), eating sweet things, and enjoying the happy do-nothing. The opening pod of that tree, with the silky filament coming forth, served as models for the scepters and badges of autbority seen in the hands of the chiefs whose stone likenesses adorn the buildings.
The feathers carved all over the upper par of the body of the stone $£$ rpents are painted green ; the scales of the belly, well defined, are yeliow, as also the edge of the jaws. The inside of the mouth and forked, projecting tongue are red, like the gums, though the teeth and fangs are white. Blue paint is round the eyes and over the brow. The whites of the eyes were made of shell, that had a round hole where the pupil should be. Perhaps the pupils were made of some brilliant stones that were removed when the stones were interred, for nothing that might have served such purpose has come to light. The horn-like ornaments on the front of the head are painted green and tipped with red, which is the color of the feather on the top. The largest head measures fifty centimeters in

DISCOVERY OF TWELVE SERPENTS' HEADS.

 five from top to lower jaw, and twenty-five placed horizontally side by side. Some were painted blue, length, thirty thickest diameter: blue, by the bye, was the color of mour

THE SERPENTS' HEADS AND ROUND URN.

PIECE OF JADE.
ing amory the Mayas, and was also a color much used a Egyptian funerals in ancient times, according to Sir Gardne
Wilkinson.

The pillars on which the statue rested were not the only nes; they extended over a space of about eight square meters, and in some places were three and four deep, the total number being 182, half the number of the days in our year, less half a day Two-thirds of the pillars are painted blue, and one-third red; they vary in height hood. more or less broken; they are of soft limestone, but we alsc found the pieces, so they could be mended; they were undoubtedly broken at the time of making the mausoleum.
On the south side of the excavation, at the feet of the statue, but lower down, was a round, white stone urn that measures outside 80 centimeters in diameter and 70 in depth, with the lid that is 17 centimeters thick. The diameter of the interior is 55 centimeters, and the depth 28. With difficulty four men were able to slide off the lid. Then, at first sight, the urn seemed empty, except a little red earth in the bottom, but feeling among it, we found a trapezoidal piece of green jade, 6 centimeters long, 4 wide, and 1 centimeter thick. The jade stone was beld in great esteem by the Mayas, as it is to-day by the Japanese. On one side of the piece found in the urn there is a human face -full face-and letters round it; it is well carved and highly polished. Besides this, we found in the urn a ube-shaped jade ornament, nearly 3 inches long, one end of which broke to pieces when we touched it. Also two pieces of the same stone, that look like halves of pierced ornaments, and a ball of white glass nearly an inch in diameter. We took all the dust that was in the urn, and witb some trouble separated from"it many small pieces of shell or bone, and some seem to be enamel, painted red and green, and cut in various shapes, having served to form mosaic work. The ball of white glass is very interesting, proving that those people were acquainted with glass, and probably knew how to make it, At the time of the Spanish conquest looking glasses were in use among the Mayas, for the historians inform us that only the men used them. When the glass ball was taken from the urir, the Indian workmen said: "Holo! zazteen!" ("Here, the transparent stoue.")
Effectively, even to-day, there are people among the Indians of Yucatan who call themselves H-men (m) and X-men (f). The letter H before the word men is a contraction of the masculine article $A h$, and the X a contraction of the feminine arti cle $1 x$, which is pronounced ish; and as the i in Maya is like the English e, it is the feminine article she reversed. The H-men and X-men (wise men and women) use stones like the glass ball found, and in them pretend to see hidden things and coming events; so we may presume that clairvoyance was known among the Mayas; and Bishop Landa, in his work on Yucatan, tells us that soothsayers, who pretended to read futurity, formed part of the priest-

After the serpent heads and urn were removed from the
mound, with all the loose mortar and stones, we stand on a level floor, sixty centimeters below which was a small pile of bones, with one smoke-colored obsidian arrow head, twelve centimeters long, on earh side of it. Also fragments of fine pottery, some painted blue inside, the others with vestiges of a design in white.
Though the bones had been completely protected from the air, they were so rotten that we had to handle them with care for them not to fall to dust. They seem to bave belonged to a small animal with long and pointed jaws and very pointed teetb. We wrapped each bone in a separate paper, so that later some qualified person might examine them. Forty centimeters below these bones and arrowheads was a concrete floor beautifully leveled and painted bright red, which extended throughout the mound. Below this floor were loose stones without mortar to a depth of forty centimeters; then another floor painted yellow, making the seventh floor from the summit, though the upper floors were not polished like those beneath. Under the seventh floor there were more loose stones, sixty centimeters deep; then solid rock and Mother Earth. We next had the men to open further into the west or rather southwest part of the mound, in which direction the arrowheads had pointed, and after three days, reached a very solid block of masonry. Within it, about a meter and a half west of the center of the mound, was a stone seventy-five centimeters long and sixty-five wide, standing upright, its surface facing east.
The stone is deeply carved with signs that had their meaning among the Maya priesthood, and painted blue, yellow, red, and green. Further south, two other similar stones were found face downward, on the red concrete floor; they were stood up, together, and a photograph made of them. There, also, was another stone with a fish sculptured on it, the fish being surrounded by a fold of a serpent's body. No other object was found in this mausoleum, pent's body. No other object was found in this mausoleum,
that seems to have been erected to the memory of a certain that seems to have been erected to the memory of a certain
priest or wise man, called Cay Canchi, and also to conceal the remnants of some sacred temple that may bave been destroyed by a great cataclysm; in which case we may presume that the apish figure was a principal and much respected object in that temple, and the property of the pontiff, since he inscribed his name (Cay Canchi) on the heel of the sandal; for we are not very ready to admit that the figure found is a likeness of a sage and philosopber-a learned man of the highest class, a nobleman among the Mayas.
The great statue that was thrown from the top of the mound and broken may have been a picture of Cay Canchi; we cannot now tell; but no image of him was within the mound. We have found an exquisite stone bust of that individual in Uxmal, but have left it concealed where found, because in Mexico no oue would know how to appreciate it, and we are not allowed to carry any stone from the country out of Mexico. Even though we give them being by bringing them to light from the bowels of Mother Earth, we cannot call them ours, neither will the government pay us one ceat. for our discoveries, that is well able to make its museums the richest, in American antiquities, that exist in any country; but it seized the statue of Chaacmol, and refused to defray the expenses incurred in the discovery. Even the Congress at Washington refused to aid Dr. Le Plongeon in the recovery of his expenses, when Hon. George Hoar appealed for protection to the Senate in a paper marked, "Confidential. 45th Congress, 2d session. Executive B. May 7, 1878." It seems that in America people who dedicate themselves to science, unless happy enough to be rich, run a good chance of starving, so far as the governments are concerned.

Your most obedient,
Alice D. Le Plongeon.
Ruins of Chichen Itza, Yucatan, January 12, 1884.

The Corinth Canal.

The work of making a ship canal across tie Isthmus of Corinth, to connect the Gulf of Corinth with the Bay of Ægina, is now well under way, although, short as will be the route, it is expected that four or five years will be required for the completion of the undertaking. The total length will be 6,400 meters, or about four miles, and the route is on a line where a canal was once projected, and the excavation even begun, by the Roman Emperor Nero. The canal will be the same in section as the Suez Canal, 22 meters in width at the bottom, and 8 meters in depth at low tide, but the total amount of material to be removed is placed at $10,000,000$ cubic meters.
A correspondent sends us an opinion as to the benefits this canal will confer upon navigators of that portion of the Mediterranean, and estimates that the tonnage of vessels likely to use the canal will be at least six and a balf million tons yearly, yielding a revenue, on moderate cbarges, of about $\$ 900,000$ a year above cbarges for running expenses and maintenance. Full details of the work, showing plan and birdseye view of the route, with sectional elevations, may be found in Scientific American Supplement, No. 425.

John E. Wootten, General Manager of the Philadelphia and Reading Railroad Company, who is the patentee of the Wootten dirt burning locomotive, has sold his rights in the patent for a sum estimated between $\$ 250,000$ and $\$ 300,000$. The purchase was made by an association of railroad capitalists, who formed a company, of which Mr. Jos. Wharton, president of the Wharton Switch Company, is the leading man.

BOILER FLUE CLEANER.

Keeping the flues clean is one of the most important duties connected with a boiler; when properly performed, it results in a decrease in the expenditure for both fuel and repairs and an increase in efficiency. One of the best tools for doing this work is the cleaner shown in the accompanying engraving, and which is manufactured by the Crescent Manufacturing Company, of Cleveland, Ohio. The form of the cleaner is shown in the cut. A hose connectsthe cleaner with a pipe that leads to the dome of the boiler, in order to obtain dry steam. The conical shaped head of the cleaner adjusts itself to the ends of the tubes, excluding the air, thereby preventing condensation and insuring a dry current of steam. The steam passes through the auger-shaped passage, which is without obstruction from the induction end to the outlet, and is delivered directly against the face of the tubes in an unbroken sheet, continuing through the entire

lengtb in a whirling motion, and thoroughly removing all ashes and other foreign matter. The cleaner need be held against the end of each tube only for a few seconds, so that every tube in the boiler can be cleaned in a short time. There are no parts needing attention, and the apparatus is ready for use at all times. For these reasons the tubes can be more frequently cleaned, thereby preventing the formation of scales, improving the draught, and permitting the use of a poorer grade of fuel.
The above mentioned firm also manufactures the " Cresscale and preventing its formation.

IMPROVED FORM OF BELL.
An improved construction of farm, factory, church, and other bells, whereby greater vibration is secured for the upper portion of the bell, a more powerful tone is obtained,

BOWERS' IMPROVED FORM OF BELL.

and the bell is less liable to break from strain of metal in casting, has been patented by Mr. M. M. Bowers, of 29 Camden Street, Baltimore, Md. The body of the shell is in the form of a truncated cone whose height from 3 to 4 H is equal to half its base, and its top also equals half its base. The head portion is one-fourth the height of the cone. The base line of the cone is divided into six equal parts, and from 1 and 5 are drawn upwardly converging lines to and through the top circle. This gives the proper slope of the head. The exact form of the upper part of the head is clearly shown in the engraving. The whole height of the sheil of the bell is divided into five equal parts as shown by the dotted lines, 1 H to 5 H . The hammer swell is made wholly within the shell, and its length is limited by the first of the five spaces. By concaving the top of the head,

COOPER'S NEW SHIP CLEANER.

greater ease is secured for the vibrations of the shell, and there is less strain of the metal in casting. The form of the hammer swell and its arrangement withip the shell, instead of outside, have a greatly improved effect.

Canned Goods arnd Adulterations.

A bill was recently proposed in the New York Legislature requiring all canned goods sold in the State to be stamped with the date of packing. The proposition was vigorously opposed by those interested in the canning interest, and did not become law. The annual production in this line in the United States-in fruit, meat, fish, and vegetables-is placed at $500,000,000$ tins, or about ten for every man, woman, and child in the country, and such a law, it was claimed by the manufacturers and dealers, would seriously check if not destroy a now prosperous business.
It is not strange, however, considering the many forms of adulteration and sophistication in articles of food which have grown up in a few years past, that people are very open to suspicion, and sometimes propose severe remedies. A great deal of glucose was sold in sugar and sirup and as honey before people suspected it, and the war between oleomargarine and butterine and dairy butter seems now to be further than ever from a settlement, on account of the passage by the Legislature of a law generally deemed unconstitutional. The latest of these most conspicuous adulterations has been found in the recently discovered adulteration of green coffee by New York and Brooklyn dealers. The cheap Maracaibo and Guatemala coffees differ in appearance from the more valuable Java-and some other varieties, the former being of a dull greenish hue and without luster, as compared with a glossy yellow color in the Java. Thence was started a practice of treating the cheaper coffees by rolling the former in heated cylinders and sprinkling with gum arabic water, to polish the beans and give them more the appearance of Java. After this came the use of other coloring matters, and the officers of the Sanitary Bureau state that now both arsenic and lead are used for this purpose, as well as chrome yellow, Prussian blue, yellow ocher, umber, Venetian red, and lampblack. The coffee dealers say the injurious articles are used in quantities so infinitesimal that no harm can possibly come of their employment, but this is a statement of which the public may well be highly incredulous; the coloring matters have been used simply and only as a means of palming off a cheaper article for a better, and the health officers have concluded that every cup of coffee made from the colored beans contains one-sixtieth of a grain of arsenious acid, a virulent poison. In buying coffee and many other articles of consumption the consumer will do.well to be on his guard.

Brass Driving Boxes.

The practice of the Baltimore \& Ohio road in the matter of solid brass driving boxes presents some advantages, a knowledge of which may be useful to other roads that have brass foundries and make their own brass castings. These boxes are charged upon this road at 16 cents a pound, which is the ordinary rate for all brass work, and the old brass is received back by the foundry and credited at 11 cents per pound. The boxes can be finished up at about half the cost of finishing cast iron boxes, and being solid no labor is expended in fitting a brass into the box. It has been found that these boxes, when made of the right mixture, will wear as long as combination boxes. When an acwill wear as long as combination boxes. When an ac-
curate system of accounts is kept, with a knowledge of every source of waste in the foundry, there are many parts of an engine which can be made from solid brass more economically than from a combination of brass and iron. The loss in remelting being known, together with the cost of the raw material and of the labor expended in the process of making and turning out, it is easy to determine what iron castings can be economically replaced with brass. But if the attempt is made to substitute brass for iron without an accurate knowledge of the details of expense, it is easy to make mistakes that will be wasteful instead of the contrary.

A NEW SHIP CLEANER.

The construction of the ship cleaner recently patented by Mr. J. L. Cooper will be plainly understood from the accompaning engraving. A steel brush, whose shaft is journaled on a movable frame, H, which is pivoted in blocks projecting from the main frame, is made to revolve by means of two ropes wound in contrary directions upon the ends of its shaft. These ropes may be operated from any convenient station-either from the deck, the dock, or a float. From the sides of the main frame project four arms, each of which is furnished with two wheels, between which pass the tightly drawn guide ropes. These ropes can be carried down one side of the ship, under the bottom, and up the other side. The frame is kept a short distance from the surface to be cleaned by rollers. The apparatus can be readily raised or lowered, or moved sidewise, so as to bring the brush against any part of the ship's surface. By the aid of a rope attached to the upper cross bar of the movable frame the pressure of the brush against the ship can be regulated. With this device the sides and bottom of a vessel can be quickly gone over, and barnacles, rust, paint, etc., removed.
Further particulars concerning this useful invention can be obtained by addressing Mr. James O. Cooper, No. 165 Fourth Street, Portland, Oregon.

On his way to the Cape, Captain Gordon landed at the Seychelles Islands. There is a curious grove of palms there which grow in pairs, side by side. If one is cut down, the other dies. Gordon at once indicted an official dispatch to say that he had discovered the original Garden of Eden, and that trees of good and evil were still flourishing in it.

Inhalations of Oxygen.

For several years past numerous experiments carried out with the view of ascertaining the influence of various gases on the system have occupied many distinguished physicians. Baths of compressed air for asthmatic patients are now quite fashionable in certain French and German towns.
The most important investigation of this kind, which has come to light quite recently, is that of Dr. Albrecht, of Neuchatel, the object of which is to determine the exact value of methodic inhalations of oxygen gas in phthisis, or tubercular consumption.
The observations made in this direction are certainly encouraging, to say the least, and no one can say to what beneficial results they may not lead before long.

The author is medical tutor at the Children's Hospital at Bern (the Children's Clinic at the University), and he has already devoted some time to noting the influence of pure oxygen upon nutrition, and especially upon the formation of the red blood corpuscles. In the work Dr. Albrecht gives an account of his experiments made both on men and animals, with the view of ascertaining the effects of methodic inhalations of oxygen gas upon the development of phthisis. He wished to prove whether by increasing the rate of organic combustion by this means the bacterium of consumption (Koch's bacillus) would not be destroyed aud eliminated from the system.

In experimenting upon the human subject, Dr. Albrecht submitted his patients to the inhalations of oxygen; they were tuberculous patients, in whose expectoration the bacterium of phthisis had been discovered with certainty on several occasions. Before this treatment was put into operation the patients were submitted to an appropriate highly nutritious diet, such as would not require to be changed during the course of the experiment. The diet consisted of milk and peptone. Twice in the course of a week they were weighed with the greatest care, and the smallest variation in the weight of the body was noted.
One of the first things observed was that as soon as the patients had begun the oxygen inhalations the loss of weight which the body was undergoing day by day was checked, and sometimes the patient's weight was found to have increased. At the same time it was noticed, though not so constantly, that dyspnœa diminished, and the number of constantly, that dyspnœa diminished, and the number
bacteria seen under the microscope appeared smaller.
It was quite evident that the improvement noticed in the
tate of the patient was due to the oxygen inhalations; for state of the patient was due to the oxygen inhalations; for no sonner were these suppressed than the suffering and
dyspnœa recommenced, even when the body still kept up the weight it had acquired during the previous treatment.

Successful Experiment in Draining Swamps.

In a letter from Atlanta, Ga., to the N. Y. Sun, a correspondent relates the result of some experiments recently made by Col. John P. Fort, on the draining of swamp lands in the southwestern portion of Georgia.
The great drawback of Florida, Louisiana, the rice sections of South Carolina, and Georgia has been the fact that white men could not live there on account of brackish drinking water and malaria, inseparable from floods and swamps. Several years since, Col. Fort, who owns much
property of this description, conceived the idea of sinking property of this description, conceived the idea of sinking
artesian wells, holding that when a certain stratum was reached pure water could be obtained in abundance. His efforts were crowned with such success that every town in southern Georgia is sinking artesian wells. The water is perfectly clear, sweet, and pure as the best to be found in the highlands. This success led Col. Fort to try the experthe highlands. This success led Col. Fort to try the exper-
iment of draining stagnant ponds by running them off through subterranean passages that are known to exist at a distance of from 70 to 100 feet below the surface.
Col. Fort's experiment was made on his hickory level plantation, in Dougherty County, and the pond upon which he experimented is situated about 200 yards from his pioneer artesian well. The pond covered an area of about two acres, with a depth of 10 feet in the center. To drain it thorougbly an outlet must be made in the deepest part. To accomplish this, Col. Fort bound four substantial pieces of timber together, floated them over the center of the pond, and upon this foundation built his raft or pen, which sank as it was added to. When the raft had been built, the foundation resting on the bottom of the pond, the platform
was placed across the top, and on this platform a derrick was set up. To this derrick boring apparatus was attached. was set up. To thisderrick boring apparatus was attached.
At first a pile driver was used, but when the pipe had been driven down through the bottom of the pond to a depth of 30 feet, it rested on solid rock, and then the work of drilling and boring was begun.
At a depth of 50 feet below the bottom of the pond the drill struck an opening, and at once the water commenced to sink with a roar through the big pipe, the top of which was only a few inches under water. The drill pipe was drawn out, and the pond commenced to empty itself as fast
as the orifice that the drill had made througb the rocks as the orifice that the drill had made througb the rocks
would permit the water to flow. When the water in the pond was level with the top of the pipe, a reamer was attached to the drill pipe and sent down to open the way for the big pipe to be sunk deeper. In this way the pipe was sunk until a joint of two sections was almost level with the sunk until a joint of two sections was almost le
bottom of the pond, and there it was unjointed.
Col. Ford will have a square pit dug around the pipe, and the pipe will then be driven down to a level with the bottom of this pit. The top of the pipe will be covered with wire to keep trash out, and the pit will be filled with rocks, and
thus the drain will be kept open. This strange scene of emptying the pond into subterranean channels has been witnessed by hundreds of people, who see in it the reclamation of the millions of acres of swamp lands in the South. Thus, within 200 feet of each other were two pipes-that of the artesian well throwing up the purest of drinking water, and that in the middle of the pond sucking stagnant water into the bowels of the earth and carrying it a way.
The experiment cost only $\$ 75$, while there was gained from The experiment cost only $\$ 75$, while there was gained from it over 2,000 tons of compost soil.

The Progress of Pisciculture.

Of late years, no feature of fisbery economy bas excited more attention than the progress we have been making in what is called "pisciculture." Fish eggs are now a common article of commerce-the sales of which, and the prices ed as any other kind of goods. This is a fact which, a century ago, might have been looked upon by our forefatbers tury ago, might have been looked upon by our forefathers
as something more than wonderful. Such commerce in all as something more than wonderful. Such commerce in all
probability would have been stigmatized as impious, as a something "flying in the face of Providence."
But in another country there was buying and selling of fish eggs more than a thousand years ago. The ingenious Chinese people had discovered the philosophy which underlies fish culture, as well as the best modes of increasing their supplies of fish, long before any European nation had dreamt of taking action in the matter. A few years ago, a party of fisher folks from the Celestial Empire, on a visit to Europe, were exceedingly astonished at the prices they had to pay for the fish they were so fond of eating. They explained
that in China avy person might purchase for a very small that in China avy person might purchase for a very small sum as much as might serve a family for a week's food. They also mentioned that some fisbes which we reject, such as the octopus, were much esteemed by the Chinese, who cooked them carefully, and partook of them with great relish. The capture of the octopus, indeed, forms one of the clief fishing industries of China, these sea monsters being taken in enornous numbers at some of the Chinese fishing stations, notably at Swatow. They are preserved by bethey are distributed to the consuming centers of the country. In the inland districts of China there are also to be found numerous fish ponds, where supplies of the more popular sorts of fish are kept, and fed for the market. These are grown from ova generally bought from dealers, who
procure supplies of eggs from some of the large rivers of the country. The infant fish, it may be mentioned, are as carefully tended and fed as if they were a flock of turkeys in the yard of a Norfolk farmer. In the opinion of the Chinese fishermen, who were interviewed by the industrious Frank Buckland, hundreds of thousands of fish annually
die of starvation; and if means could be adopted for the feeding of tender fry, fish of all kinds would become more plentiful than at present, and we would obtain them at a cheaper rate. In China, the yolks of hens' eggs are thrown into the rivers and ponds, that kind of food being greedily devoured by the young fisb.
It has long been known to those interested in the economy of our fisheries, that only a very small percentage of the ova of our chief food fishes comes to maturity, while of the fish actually hatched a very small percentage reaches our tables for food uses; hence the desire which has arisen to augment the supplies by means of pisciculture. In the case of a fish like the salmon, every individual of that species (Salmo salar) which can be brought to market is certain, even when prices are low, of a ready sale at something like a shilling per pound weight; and it is not, therefore, to be wondered at that the proprietor of a stretch of salmon water should be zealous about the increase of his stock of fish.
It may prove interesting to state the prices which are charged usually for ova and young fish. A sample lot of eyed ova of the American brook trout, to the extent of one thousand, may be obtained for thirty shillings; and for ten shillings less, a thousand eggs of the Loch Leven trout, or
the common trout of the country, may be purchased. For stock supplies, a box containing fifteen thousand partially eyed ova of S. fontinalis (American) may be had for ten pounds. The other varieties mentioned are cheaper by fifty shillings for the same number. Fry of the same, in lots of not fewer than five thousand, range from seven pounds ten shillings to five pounds. Yearlings are of course dearer, and cost from fifteen and ten pounds respectively per thousand. Ten millions of trout ova are now hatched every year at the
Howietoun fistery Howietoun fisbery.
The fecundity of all kinds of fish is enormous. A very small trout will be found to contain one thousand eggs; a female salmon will yield on the average eight hundred ova for each pound of her weight; and if even a fifth part of the eggs of our food fishes were destined to arrive at maturity, there would be no necessity for resorting to pisciculture in order to augment our fish commissariat. But even in America where most kinds of fish were at one period almost over abundant, artificial breeding is now necessary in order to keep up the supplies. In the United States fish culture has been resorted to on a gigantic scale, not only as regards the salmon, but also in connection with various sea fishes, many hundred millions of eggs of which are annually coilected and hatched; the young fry being forwarded to waters which require to be restocked. Apparatus for a proper de-
scription for the hatching of sea fish has been constructed, and is found to work admirably. Some of these inventions were shown last year, in the A merican department of the

International Fishery Exhibition, where they were much admired by persons who feel interested in the proper development of our fishery resources. In the United States, the art of pisciculture has been studied with rare patience and industry, the fish breeders thinking it no out-of-the-way feat to transplant three or four millions of young salmon in the course of a season. In dealing with the shad, the United States Commission of Fish and Fisheries have been able to distribute the young of that fish by tens of millions per annum; the loss in the batching of eggsand in the transmission of the animal being very small.
Some writers and lecturers on the natural and economic history of our food fishes have asserted that no possible demand can lead to their extermination or to any permanent falling off in the supplies; but the economy of the American fisheries tends to disprove that theory. In the seas which surround the United States, certain fisheries would soon become very scarce, were the supplies not augmented each season by the aid of the pisciculturists. The fruitfulness of the cod is the aid of the pisciculturists. The fruitfulness of the cod is
really wonderful, individuals of that family having been taken with from five to nine millions of eggs in their ovaries. The fecundity of the common herring, too, has often proved a theme of wonder. That an animal only weighing a few ounces should be able to perpetuate its kind at the rate of thirty thousand, is indeed remarkable. But fruitful in reproductive power as these and other fishes undoubtedly are, it has been prophesied by cautious writers, that by over fishing the supplies may in time become so exhausted as to require the aid of the pisciculturist. If so, we believe the mode of action which has been found to work so well in the American seas will be the best to follow. No plan of inclosed sea ponds, however large they might be, will meet the case; the iish eggs will require to be hatched in floating cylinders specially constructed for the purpose, so as to admit of the eggs being always under the influence of the sea water, and at the same time exposed to the eye of skilled watchers. It is beiieved by persons well qualified to judge, that the eggs of our more valuable sea fishes may in the way indicated be dealt with in almost incredible numbers. We have only to remember that twenty females of the cod family will yield at least one one hundred millions of eggs, to see that the possibilities of pisciculture might extend far beyond anything indicated in the foregoing remarks.
In resuscitating their exhausted oyster beds, the French people have during the last twenty years worked wonders; they have been able to reproduce their favorite shell fish year after year in quantities that would appear fabulous if they could be enumerated in figures. Pisciculture was understood in France long before it was thought of as a means of aiding natural production in America; but our children of the States-to use a favorite phrase of their own-now "lick all creation" in the ways and means of replenishing "lick all creation" in the ways and means of replenishing
iver and sea with their finny denizens.-Chamber's Journal.

New Method of Producing Steel Plates.

Dr. Henry Muirhead, President of the Physiological So ciety of Glasgow, has recently brought before that body some particulars of a method of manufacturing steel plates for shipbuilding and boile:making purposes which is of much interest, although its leading feature is not a novel one. It is the invention of Mr. Joseph Whitely, of Leeds, who has erected works for prosecuting the manufacture Briefly describing the process, Dr. Muirhead said, a hollow metal cylinder, lined with ganister or other brick, revolves at high speed, the axis being borizontal. A gutter or rhone perforated with holes passes into the interior, along its whole length. Into this gutter is poured molten mild steel, which, escaping through the holes, is carried round by the swiftly revolving case, and is formed into an inner cylinder of steel of an inch or more in thickness. This cylinder, while still hot, is drawn, cut across by means of a saw, put into a rolling mill, and rolled to the length and thickness required. In his communication to Dr. Muirbead on the subject, Mr. Whitely wrote as follows: "Suppose I wish a plate for shipbuilding; then, given a mould 5 feet in diameter and 5 feet long, in it I cast a cylinder an inch thick. This when taken out and cut is fully 15 feet long and 5 feet broad. It is then rolled down to balf an inch in thickness. Such a plate is then 30 feet long and 5 feet broad. The present mould is 9 feet long and 5 feet in diameter. With it, yesterday (Friday, 7th March) I successfully cast a mild steel shell weighing about 30 cwt ."

A New Gelatin Mass for Hectographs.
'The French Ministry of Public Works publishes a fcrmula for a hectograph or gelatine pad which is said to produce very satisfactory results. The composition consists of 100 parts of good, ordinary glue, 500 parts of gly cerine, 25 parts of finely powdered baric sulphate, or the same amount of kaolin, and 375 parts of water. For the copying ink a concentrated solution of Paris violet aniline is recommended To remove the old copy from the pad, a little muriatic acid is added to the water, washing it gently with this liquid by means of a soft rag, afterward using blotting paper for removing superfluous moisture.-New Remedies.

To Destroy Red Ants.

Grease a plate with lard, and set it where ants congregate; place a few bits of wood so the ants can climb on the plate easily; they will forsake any food for lard; when the plate is well covered with them, turn it over a hot fire of coals;
they will drop into the fire, and you can then reset the plate they will drop into the fire, and you can then reset the plate
for another catch. A few repetitions will clean them out.

engineering inventions.

A propelling apparatus for vessels has been patented by Mr. Alonzo Cardoso de los Rios, of New Orieans, La. This invention relates to screw propeller for vessels, the propellers being made with a compara-
tively long axis and spiral leaves, and being either cylindrical or conical; a special description of forefront of the vessel is also provided for.
A railway switch signal has been patented by Messrs. Joseph W. Alexander, of Frazerville, Que-
bec. and Marshall Wheelhouse, of Campbellton, Newbec, and Marsball Wheethouse, of Campbellton, New-
Brunswick, Canada. This invention covers improved means for carrying and operating threeethrow switches
by one lever with interlocking devices, which autoby one lever with interlocking devices, which auto-
matically lock the signals in position and unlock them for shifting.
A steering gear for traction engines has been patented by Mr. Albert P. Broomell, of York, Pa.
This invention consists in certain combinations of This invention consists in certain combinations of
bevel gears and friction driving devices connected with the motor shaft and the reversing shaft, by which motion is transmitted to the stering devices, whereby tion is transmitted to the steering devices, whereby
great efficiency and smoothness of action is obtained,
and the machinery is free from much or all liability to and the m
breakage.
A steam engine has been patented by Mr. William Golding, of New Orleans, La. The invention consists mainly in grouping engines into pairs, connect-
ed with progressively arranged crauks on two independed with progressively arranged cranks on two independent shafts geared with and rotating a main driving or
combined engine sbaft, so the initial and diministing pressures of the steam, working expansively, are made to produce a uniform effect from the order in which
the greater and lesser pressures follow each other in the se veral cylinders.

MECHANICAL INVENTIONS

A locomotive frame forging die has been patented by Mr. Thomas Morris, of Dunkirk, N. Y.
This invention relates to a holding die or bed adapted This invention relates to a holding die or bed adapted
to hold the leg and brace forgings of locomotive frames while welding upon said forgings the top connecting
bar. A saw mill feed mechanism has been patented by Mr. Edwin T. Gardner, of Rocky Mount, N. C. This invention covers a peculiar construction and
arrangement of parts to facilitate running the saw log carriage back and forth, and for regulating its speed at will.

AGRICULTURAL INVENTIONS.

A fertilizer pulverizer and distributer has been patented by Mr. Charles F. Dinkle, of Carlisle, Pa. It is designed to attach the pulverizer to machines
used for planting seeds, the attachment to be so made that the fertilizer will pass from the pulverizer in and go with the seed discharged from the planter. A fertilizer distributer has been patented by Mr. Benjamin F. Archer, of Marietta, Miss. This invention covers a novel construction of wheeled distri-
buters, the axle carrying a distributing toothed roller the hopper having ${ }^{\text {two }}$ compartments, there being a hinged grating in the upper one, and there heing also spring. scraper, with other novel features.
A check row corn planter las been patented by Messrs. Valentine Weber and John Fritedman, of
Princeville, Till. The wheels and axle and the seed dropping slide are connected by a trip wheel with arms and rollers operaing a vibraing ouble cam, wit check row.

miscellaneous inventions.

An improved gate has been patented by Mr. Adelbert D. Mack, of Franklin, O. The invention gate, in which the weight of the gate can be taken from
the swinging crane when the gate is open or closed. the swinging crane when the gate is open or closed. Harvey W. Peace, of Brooklyn, N. Y. The invention provides for such a form of making saws that the blade can be readily detached from
ing the interchange of blades.
A holder for ornamental and fly paper ha been patented by Mr. Vurlin G. Tansey, of Looisville,
Neb. The invention consists in a frame, with a series of spring frames, and with a series of cords extending from the outer rod of the frame to the inner plate,
A collar button has been patented by Mr.
George Erementz, of Newark, N. J. The invention George Krementz, of Newark, N. J. The invention and stem, and formed and shaped out of a continuous plate of sheet metal, being simple in construction, platre of sheet mete.
atrong, and durable.
A soda water apparatus has been patented by Mr. Achille Bertelli, of San Francisco, Cal. The
invention consists in an apparatus for generating carinvention consists in an apparatus for generating car-
bonic acid gas adapted to be placed directly on Ω fountain, or that can be conpled with a series of fountains
for charging them. for charging them.
A miter box has been patented by Mr. Joseph Cashin, of Washington, D. C. This miter box
is so constructed that with a hand saw, without the adis so constructed that with a hand saw, without the ad-
dition of an extra back, it may be used for cutting any depth desired, and the device may be adjusted to any
thickness of saw
An adjustable keel block has been patented by Messrs. Frederick C. Lang and John F. Tietjen, of
Rondout. N. Y. The invention covers a peculiar arRondout. N. Y. The invention covers a peculiar ar-
rangement of inclines or wedges, so that vessels may be more firmly supported in dry docks, whether or not be more irmly supported in dry docks, whetine
the ieelis of vessels are more or less out of line.
An automatic electric circuit closing device has been patented by Mr. Charles T . Ross, of New York
city. The device is more especially intended for use in connection with frire elarms, and is arranged for nor-
mally breaking the circuit, but adapted to close the cir mally breaking the circuit, bur adapted to cl
nuit automatically, at a given temperature.

A sash cord fastener has been patented by Mr. S. Howland Russell, of New York city. This in vention covers a cord fastening with a plate perforated to receive the fastening screw, and with two or mor
points having inclined inner sides, so the cord may be compressed
A holder for use in carving meat has been patented by Messrs. Louis Chevalier and Leon Graillot, of Paris. France. The holder is composed of a sheath a a suitabie handele, with jaws grooved on their inne cutlet, or meat in other form, may be grasped and reld when removing the meat therefrom.
A bottling 'machine has been patented by Mr. John C. Blair, of Louisville, Miss. The invention covers special peculiarities of construction, by means of
which a very simple and eflicient machine is obtained the precise amount of liguid for each bottle being easi y gauged, and the filled botiles removed with great acility.
An eraser case has been patented by Mr. Louis Krob, of Zanesville, O. The case has two
slides, on one of which is an eraser, and the other has slides, on one of which is an eraser, and the other has
an abrading surface for cleaning the eraser; when used an abrading surface for cleaning the eraser; when used
the slide is withdrawn from the casing, and is reversed nd passe
A screen frame has been patented by Mr. George Phillips, of Tilford, Ill. The end bars of the combined with which are side bars, with hook plates or clips on the ends, the hooks passing into the grooves
in the end bars, the whole making a rame which can e readily adjusted in height and width.
A deodorizing and antiseptic water closet over has been patented by Mr. Frederick H. Hubard, of Brooklyn, , N. Y. The cover is made in hox
form, with a non corrosive interior vessel having fine erforations, so the liquid coutents of the interior ves el will be allowed to drip when the co
A tile machine has been paten
(Warner Lewis, of Stone Bluffs, Ind. The invention
covers a special construction and arrangement of cylinders, case, die plates, and core, alike applicable for the se of plungers or pistons instead of augers for forcing of two streams of clay on the sides of the forming core greatly facilitated.
A picture case for tombstones has been patented by Messrs. Harvey A. Holloman and William R. Green, of Kingston, Texas. The invention relates
to the general construction of the case, and the method to the general construction of the case, and the method
of securing it in the tombstone, the outer surface of of securing it in the tombstone, the outer surface of
the case stauding flueh with the outer surface of the stone, and so t.
ing the stone.
An impro
An improved gate has been patented by $\mathbf{M r}$. Mark W. Foster, of Minneapolis, Minn. It is so contrived that a carriage wheel, coming in contact witt
the end of a horizontally swinging lever, and pusbing it along the ground, is made to raise and swing the gate on a lever, or cause it to roll back along a track, the
gate being suspended at the middle from the said lever or track.

Busimess aud extronal.

The Chargefor Insertion under this head is One Dollar
a line for each insertion ; about eight words to a a line for each insertion ; about eight words to a line
Advertisements must be received at publication office Adeavly as Thursday morning to appear in next issue.

Engineer experienced in introducing machinery abroad Engineer experienced in introducing machinery abroad
wishes to represent American manufacturer in Europe. 3041 Dauphin, Philadelphia, Pa.
Renshaw's Ratchet Drills. No. 1, \$10; No. 3, \$15.
Cash with order. Pratt \& Whitney Co., Hartford, Conn. All Scientific Books cheap. School Electricity, N. Y. If you want the best cushioned Helve Hammer in the Steam to Bradey a Compan, Syacse, N. Y. Steam Gauge making-vacuum, low pressure, and
ydraulic ; repairing all kinds of makers' gauges. P. \mathbf{O} box 50, Paterson, N. J.
60 Lathes, new and secondi-hand, $12 \prime \prime$ and $14^{\prime \prime}$ swing,
lain and serew wutting. J. Birkenhead, Mansfeld, Mass, plain and screw cutting. J. Birkenhead, Mansfield, Mass. every description. Send for circulars. Newell UniverWanted street, N. Y
Wand introduce. Lexington Mfg. Co., Lex manafacBrush Electric Arc Lights and Storage Batteries Brush Electric Arc Lights and storage Bateries.
Twenty thousand Arc Lights already sold. Our largest Twenty thousand Arc Lights already sold. Our largest
machine gives 65 Arc Lights with 45 horse power. Our
Storage Battery is the only practical one in the market. Storage Battery is the only pract
Brush Electric Co., Cleveland, \mathbf{o}.
Cyclone Steam Flue Cleaner. The best in the world.
rescent Mrg. Co., levelana,
For Freight and Passenger Elevators send to L. S.
Graves \& Son. Rochester. N.Y., or 46 Cortlandt St Sewing machine, water closet, \& other light castings
"How to Keep Boilers Clean." Book sent free by
Stationary, Marine, Portable, and Locomotive Boilers
specialty. Lake Erie Boiler Woriss, Buffalo, N. Y.
Railway and Machine Shop Equipment
Send for Monthly Machinery List
Send for Monthly Machinery List
to the George Place Machinery Company,
121 Chambers and 103 Reade Streets, New York.
The Hyatt filters and methods guaranteed to render
all kinds 0^{f} turbid water pure and sparkling, at economi-
col ${ }^{\text {cost. }}$ The Newark Fitering Co., Newark, N.J.
"The Sweetland Chuck." See ad. p. 316.
Steam Boilers, Rotary Bleachers, Wrought Iron Turn
Tables, Plate Iron Work. Tippett \& Wood, Easton, Pa. Iron Planer, Lathe, Drill, and other machine tools of modern design. New Haven Mfg. Co., New Haven, Conn.
Pumps-Hand \& Power, Boiler Pumps. The Goulds Mfg. Co., Seneca Falls. N. Y.., \& 15 Park Place, New York.
For Fower \& Economy, Alcott's Turbine, Mt.Holly, N. J.

If an invention has not been patented in the United States for more than one year, it may still be patented in Canada. Cost for Canadian patent, \$40. Various other address Munn \& Co., Scientific American Patent agency, 361 Broadway, New York.
Guild \&Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping Machinery of every descripPresses \& Dies. Ferracute Mach. Co., Bridgeton; N. J. Supplement Catalogue.-Persons in pursuit of information on any special engineering. mechanical, or scien-
tific subject. can have catalogue of contents of the tific subject, can have catalogue of contents of the Sci-
ENTIFIC AMILICAN SUPPLEMIGNT sent to them free. The Suppiement contains lengthy articles embracing the whole range of engineering, mechanics, and physi-
cal science. Address Munn \& Co .. Publishers, New York. Machinery for Light Manufacturing, on band and
built to order. e. E. Garvin \& Co., 139 Center St., N. Y. Nickel Plating--Sole manufacturers cast nickel a odes, pure nickel salts, polishing compositions, etc. Com-
plete outfit for plating, etc. Hanson \& Van Winkle plete outflt for plating, etc. Hanson \& Van Win
Newark, N. J., and 92 and 94 Liberty St., New York.
Curtis Pressure Regulatorand Steam Trap. See p. 286. Woodwork'g Mach'y. Rollstone Mach. Co. Adr., p. 286. C. B. Rogers \& Co.. Norwich, Conn., Wood Working Machinery of every kind. see adv., page 286.
Drop Forgings. Billings \& Spencer - o., Hartford, Conn. Mineral Lands Prospected, Artesian Wells Bored, by
Pa. Diamond Drill Co. Box a. Diamond Drill Co. Box . Pottsville. Pa. See p. 301.
Stephen's Vises. Special size for amateurs. See p. 301. Brass \& Copper in sheets, wire \& blanks. See ad.p. 318 . The Chester Steel Castings Co., office 407 Library St., Philadelphia, Pa.. can prove 20,000 Crank Shafts and 15,000 Gear Wheels. now in use, the superiority of their
Castings over all others. Circular and price list free. The Improved Hydraulic Jacks. Punches, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York.
Hoisting Engines. D. Frisbie \& Co., Philadelphia, Pa. Hoisting Engines. D.
Tight and Slack Barrel Machinery a specialty. John Tight and Slack Barrel Machinery a specialty. John Munson's Improved Portable Mills, Utica, N. Y.

HINTS TO CORRESPONDENTS.
No attention will be paid to communcations unless
ccompanied with the full name and address of the writer.
Names and addresses of correspondents will not be
Wen to inquirers.
We renew our request that correspondents, in referring former answers or articles, will be kind enough ame the date of

the question.

 lished, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely of a personal character, and not of general interest,
snould remit from $\$ 1$ to $\$ 5$, according to the subject, snould remit from $\$ 1$ to $\$ 5$, according to the subject,
as we cannol, be expected to spend time and labor to as we cannol be expected to spend time and
obtain such information without remuneration. obtain such numbers of the Scientific American SoppleAENT referred to in these co
office. Price 10 cents each.
Correspondents sending samples of minerals, etc. for examination, stould be careful to distinctly mark or label their specimens so as to avoid error in their identi-
fication.
(1) R. P. C. asks if there is any process by which iron and glass plates may be firmly welde together, that is, the two flat surfaces; for example:
could a glass surface or plate be placed upon a plow could a glass surface or plate be placed upon a plow
shovel, or laid upon any iron surface in that manner? shovel, or laid upon any iron surface in that manner?
A. Plow shares or any iron surfaces can be faced with glass or enamel by pulverizing the material and mixing with water and a little clay or borax to make it adhere. Then heat in a furnace until the glass is melted and adheres to the iron. A thin coat would stick. Plates of glass could be warped to the shape of the plow
share and melted upon it. The difference in contraction between the iron and the glass upon cooling would crack the glass off from the iron and destroy its value We cannot see any advantage of gla
steel, considering its brittle nature
(2) W. S. B.-We can add little to what you are doing, except to arrange your stuff to bend as hot as possible. A jet of steam upon the piece while
bending will help, where you are taxing the bending bending will help, where you are t.
qualities of the wood to its utmost.
(3) F. P. asks: Would it rèquire more power to run an engine placed 400 feet from the boiler, than one within 10 feet? A. The loss by placing the
engine 400 feet from the boiler, would be that of con densation in the steam pipe, which bould depen upon the protection of the pipe. The power of the en gine in either case would be the same if the pressure maintained at the engine is the same.
(4) C. A. P.-We suggest you exbaust into pump with a non-return valve. This will cause a back pressure on the steam piston, which will require a littl higher pressure of steam to do the work; or if you add an air pump to take off the water of condensation, it (J) J. D.
(5) J. D. B. writes: I have a small eugine and boiler. Cylinder has 2 inches bore, 3 inches stroke. Is itstrong enough to drive a boat 18 feet long, about with five paddles in each; boiler pressure, 60 pounds. A. No; your engine would be useless to drive side wheels. It could be applied to a screw propeller to
better advantage if you have sufficient boiler; but even then the speed of the boat would be slow.
(6) L. P. B. asks how to get the essence of
of canella. A. The scarcely ripe fruit of the sweet va riety of orange is made to yield an oil from the rind by means of the "sponge" process, which is the same as
used in extracting the oil from lemon, and is practi cally nothing but expression. The varieties of appara tus used differ somewhat in varioue places. An essen tial oil erroneously called "white cinnamon" is obtained by the aqueous distillation of the bark of
canella alba. These articles may be procured through canella alba. These articles may be procured through
any wholesale druggist. Information regardiug the details of the processes may be obtained by consult ing Spons' Encyclopædia of the Industrial Arts, or els either Piesse's or Christiani's works on perfumery.
(7) M. E. B. H. writes: 1 In a bale of my stove pipe iron, I find from three to five sheets nicely
polished on one side while the rest of it is rough; why are they there, and js it polished on purpose? A. Ther are several grades of stove pipe iron, and the inference is that some of the better quality has become mixed in (possibly to make up the proper amount) with that of an inferior quality. 2. How is candy made with ob jects formed in the center in bright colors, such as
flags or letters? A. The figure inside is first formed flags or letters? A. The figure inside is first formed of suitable design and in appropriate colors, and the whole mass then covered with i transparent coating
of some saccharine compound. 3. What is the process of brazing, and how is lead pipe formed? A. Brazing of brazing, and how is lead pipe formed? A. Brazing
is synonymous with hard brazing, the alloy used generally consisting of equal parts of copper and zinc, and the flux used is borax. The manufacture of lead pipe is described in the Scientific AmericanSupplement No. 416. 4. How is calico printed or stamped so as no to blur the different lines? A. By means of stenci plates. 5. What process do tinners use to remove fin-
ger marks from tinware and give it a bright, clean look ger marks from tinware and give it a bright, clean loo ter finishing? A. By immersion in acid
(8) F. W. C. writes: I want a formula for making and using the composition which is used to which will be from an undercut object say in plaster, sulphate of copper. A. We believe the following about what you want: 12 pounds of glue are steeped
for several hours in as much water as will moisten it for several hours in as much water as will moisten
thoroughly; this is put into a metallic vessel, which is thoroughly; this is put into a metallic vessel, which is
placed in hot bath of boiling water. When the glue falls into a duid state, 3 pounds of molasses are added, and the whole is well mixed by stirring. The article sufficiently deep, so that it is an inch or so higher than the object. The inside of this vessel is then oiled, and a piece of stout paper is pasted in the bottom of the object to prevent the fluid from going inside, and if it is composed of plaster, sand is put inside to prevent it from floating. It is next completely drenched in oi and placed upright in the vessel. This done, the melted mixtureof glue and molasses is poured in tijl
the article is submerged to the depth of an inch. The whole must sland for at least twenty-four hours till it is perfectly cool throughout. The-original is then re moved. A mixture of wax and resin with occasionally a little suet is melted and allowed to stand till it is on the point of settling, when it is poured into the
mould and left to cool. In order to prevent its dissolving in the battery mixture the copper must be dispersed ing in the battery mixture the copper must be dispersed action of the solution.
(9) W. H. P. writes: Quite a controversy has arisen on the placing of two 60 inch return tubula boilers. They are to be placed side by side divided by
a wall, thus making separate furnaces under each, etc. The blow off pipes are separate, no mud drum being used. They are connected on top from 36 inch by 3 cr domes, by $51 / 2$ inch pipe leading to a T near cen danger of these boilers robbing each other of And if so, will you kindly give me the best and most effective remedy for the same? Will all boilers, large or small, or both, be affected in same way when similarly placed? A. In setting gang boilers the only pre caution necessary to prevent unequal water level by or with one mud drum. The old style of connecting ang boilers with a common mud drum and a common steam drum was considered good practice when the
steam connections were very large between the boiler and the steam drum, with the steam pipe taken from the drum, so that the pressure in each boiler wa shell of one boiler into inch pipe leading from shell of the other hav any effect? And if so, what? Would they not rob a quickly through this with unequal fire, if not more so as without it? A. A 3 inch direct connection be tween steam spaces of each boiler independent of the steam outlet might equalize the war level, but we do trivance. Make the feed pipe to each boiler from the main feed pipe to contan a valve anda chect valve and use this valve to regulate the feed of the boilers. It is not always necessary to feed one at a time; you may hat half a dozen, shutting down the valves on those ach boilen separated bys. Also keep the blow ofl for he main blow off pipe. It is good practice to put valve upon each side side of the check valve, for ob vious reasons.
(10) S. C. M. writes: 1. I want a receipt or coloring wood purple and black, for small rollers. A. Pour 2 quarts boiling water over 1 ounce powdered with this decoction, and when dry give a coat of pear ash solution 1 drachm to a quart: lay it on evenly, and the result will be a purple color. For black: wash with concentrated aqueous solution of extract of logwood 14° Baume, which is repeated until a deep black is produced. 2. I also want a process by which hard maple can be filled with something harder than itself, that will make it wear well. A. Try a filling composed of equal parts by weight of whiting, plaster of Paris, pumice stone, and litharge, to which may be
added a little French yellow asphaltum, Vandyke brown, and terra di Sienna. Mix with 1 part japan, 2

Lay the filling on with a brush, rub it in well, let it set
20 minutes, tlien rub off clean. Let it harden some 20 minutes, then rub off clean. Let it itharden some
time, rub smoth, and if required repeat the process. time, rub smooth, and if required repeat the process.
Wen the filing is all right, finish with linseed oil, plying with a brush, wipe ofr, and rub to a polish with process for giving wood rollers a high polish gickly, process for giving wood roliers a high polish, quickly,
while in the lathe.. A. Dissolve sandarac 1 ounce in spirit of wine $1 / 2$ pint; next shave beeswax 1 ounce and dissolve it in sufficient quantity of spirits of turpentine to make it into a paste; add the former mixture by degrees to it, then with a woolen cloth apply it to the work while it is in motion in the lathe, and with a soft
linen rag polish it. It will appear as if highly varlinen rag polish it. It will appear as if highly var
nished.
(11) J. C. R. writes: 1. I am building a
steam launch 40 feet long by 12 feet beam; what desteam launch 40 feet long by 12 feet beam; what de-
scription of boiler for strength,durability, and economy, and would take up the least room, is the most advisa ble for me to put into her, and what may it cost? A two return tubes above and alongside of the furnace 2. What is the best description of engine and propelle (say two or four blades) to give her say a speed of 12 knots per hour, and correspond with the boiler in al particulars, as well as taking up the least room, also its cost? A. The ordinary vertical inverted engine, non-
condensing, if economy of fuel is not much object; if it is, then use a surface condensing engine, either sim ple or compound. A twin screw, three blades, will be best. You must have ample power and a good, easy
model to get 12 knots per hour. Price of engine and ap model to get 12 knots per hour. Price
purtenances, about $\$ 850$. Of engine and boiler, pro
peller and shaft, with all appurtenances and connec tions, about $\$ 1,800$.
(12) O. H. McK. asks: 1. How can I polish small Norway iron hooks about 1 inch in length? A
You can polish small hooks by tumbling in a keg reYou can polish small hooks by tumbling in a keg re-
volving upon a shaft. Use sharp sand mixed with the hooks, and finish with saw dust. 2. I have severa thousand very soft cast iron tubes about 8 inches in
length, $3 / 4$ inch hole, and closed at one end $;$ they have length, $3 /$ inch hole, and closed at one end; they have grease in them, and I want to know how to get them
perfectly clean. Can you tell me of some wash or other means to clean them without rusting them? Would a wash of sal soda and water rust them? A
Boil the pieces in water with a little soda and lime, say Boil the pieces in water with a little soda and lime, say one ounce of each to a pail of water. Take the work
from the water boiling hot, and dry immediately by placing upon a hot plate or in a warm place. 3. How can I caseharden small Norway iron rivets about $3 / /$ inch long and $1 / 1 /$ inch diameter? A. Caseharden the
rivets by packing in an iron box (sheet iron will do) rivets by packing in an iron box (sheet iron will do)
with charcoal and powdered prussiate of potash, or bone charcoal or scraps of leather cut fine. Heat for an hour at a full red, and pour out rivets and dust into a tub of water. You cannot wait to separate the rivets
from the packing. They will cool too fast, and interfrom the packing. The
fere with the hardening.
(13) S. J. W. writes: I see by your issue of March 21, my question (51) was not satisfactory in regard to power of screw. The lever will be 12 inches;
power applied at end of lever, 75 pounds; screw oneeighth pitch, point tapered to angle of 30 degrees working betwéen two pins to suit angle of screw point. What pressure would they exert in separatiung any amount of
weight, in other words, what weight will they lift? think the power is equivalent to a screw 32 to the inch
in the way it is applied, if the rule holds good in all in the way it is applied, if the rule holds good in all
cases. Am I right? With a traveler of 75 inches for cases. Am I right? With a traveler of 75 inches for
lever, the pins only move one thirty-second. The rule I power applied to weight raised. A. Your rule is right. Multiply weight or pressure applied to the end of the levers by the distance traveled in one revolution of the lever, and divide by the pitch of the screw, distances and pitch of screw to be in inches or fraction of an inch, duction must be made for friction, say 35 to 40 per
(14) E. S. B. asks: If by electrical action 1 deposit all the lead from a solution of the plumbate of potash, will the remaining potash solution still retain the power of disintegrating, and through use of a
continued current of electricity again deposit the new continued current of electricity again deposit the new
lead ingredient added to constitute the plumbate of lead ingredient added to constitute the plumbate of
potash? A. ${ }^{\text {The }}$ potash is not affected under the cirpotash? A. ${ }^{\text {The potash is not affected und }}$ cumstances; potassium hydroxide is formed.
(15) J. W. P. asks the formula usually used in America for calculating the power of stationary and marine boilers, and also the safe working pressure
of $]$ the same, for iron and steel plates. A. There is no generally received rule. From 12 to 16 feet of heating surface is usually allowed per horse power. The portioned boiler. The only accepted standard is 30
(16) P. F. Manufacturing Co. asks the best , ing the wire through a hole or slot in a piece of iron pushed under the surface of the varnish, also a scraper or brush to draw off excess of varnish or make the varnish thin enough to just cover the wire in quantity.
Hang the wirein an oven heated to 250°, supposing the Hang the wirein an oven heated to 250°, supposing the
wire may be 1 foot or 10 feet long, as you give no wire may be 1 foot or 10 feet long, as you give no
detail of what you wish to do, or as to what is the etail of what you
(17) F. A. L. asks how he should construct a rain water cistern in gravelly soil. A. Build the cis-
tern with hard burned bricks and Portland cement, tern with hard burned bricks and Portland cement,
backed with a grout of Portland cement and clean sand. Plaster the inside with a thin coat of clear Portland
(18) C. K. asks the theory of the working of an inspirator, and why does it refuse to work in
very cold water; and have you a receipt for marking bags and bales? A. Inspirators work by the transfer of the hign velocity of the steam to its equivalent weight in water by its instantaneous condensation in
contact with water. The water inducing the condensacontact with water. The water inducing the condensa-
tion partaking of the velocity of the steam re-enters the tion partaking of the velocity of the steam re-enters the
boiler not only against its own pressure, but will feed a boiler of much higher pressure. We do not know
that it will not work in very cold water. It may re-
quire a different adjustment for extremes of temperature in the feed water. Lampblack and turpentine is enerally used for marking bales and boxes.
(19) J. McF. writes: 1. In Supplement, No. 247, you give bacteria process of vinegar making; re sufficient for 200 liter vat. A. The air holes are for he purpose of promoting the acetification, which is the commend you to use quite a number, and preferably a large number of small ones, rather than fewer larger ones. 2. Will the mixture of alcohol, water, etc., acetify If not, how 0 ermaceti first being sow for the first mixture? A. No. The mycoderma are obtained from fermented vinegar. 3. What is the vaporizing process of vinegar making, in which alcohol is vaporized in such a way as to produce a superior article of vinegar quickly? A. The vaporizing process consists in treating the alcohol with a standard liquor and allowing it
to flow over shavings, while the air coming in contact with the vinegar hastens the operation. 4. What is water lac? A. We presume reference is made to the water lac varnish, which is a mixture of 5 ounces of pale shellac, borax 1 ounce, water 1 pint. Digest at nearly the boiling point until dissolved, then strain. 5 . Is there any method of taking a positive picture which
is entirely complete directly in the photo camera either ontirely complete directly in the photo camera either
on paper, glass, or other surface? If not, what is the Mrickest method of securing positive pictures? A. See entific American Supplement, No. 293.
(20) S. R. C. asks what he can use to clean wood type, where the black and colored inks have beBenzine or turpentine has no effect on the hard dry Benzine or turpentine has no effect on the hard ary
ink. A. Wood type should be cleaned as soon as the forms come from the press. When the forms are move the ink. We sometimes use oil to soften the in and then remove it with benzine or turpentine.
(21) J. R. S. asks how to make pewter ookike silver by a wash. A. The best thing to do in poons. This is accomplished by dipping, and the process is fully described under the head of Electro Metallurgy, in Scientific American Supplement, No. 310 . We think that yon can silver the articles by mixing one part silver chloride with 3 parts pearl ash, $11 / 2$ parts common salt, and 1 part whiting. Rub this mixture on the surface of the metal by means of a piece of soft
leather or cork, moistened with water and dipped into the powder. It is likewise possible to coat certain metals with nickel by first boiling the article in a solution of zinc chloride containing metallic zinc, and then adding a soluble nickel salt.
(22) J. D. asks: How can the length of wire used in a cable, having for data the number of twists per unit of measure of each, be obtained? Forthe length of a wire in a strand, add to a given length asmany times the circumference of the strand as there are twists in the given length, for the outside wires; and proportionately for the inner row. The center wire is supposed to be straight. Proceed in the same way for the strands. The excess of wire in each
strand added to the excess of the strands length of the cable will give the whole length of wire
(23) J. W. C.-The aurora has been made special study by physicists and spectroscopists fo several years. Its true solution has not yet been
reached, owing to the variable and complex spectra reached, owing to the variable and complex spectra
caused by the interference of the atmosphere and its moisture. Its primary element, however, is supposed to beelectricity. The floating cobwebs in the air are spiders, although there is room for observation as their fungoid origin. The fine ashy dust may have a
volcanic origin, and beconnected with the phenomena of the red sunsets during the past season. It has been sathered in other places.
(24) W. G. B. asks: (1). What power en gine should it require to raise one ton 40 feet high \rceil in one minute on ordinary platform elevator, making rea ronable allowance for friction and power consumed in running winding machine? Weight of elevator plat hundred pounds. Winder is of the common worm gear type, run by belt from counter shaft, with 32 inch winding drum. A short counter shaft with two pulleys on it, one to receive belt direct from engine, the other to match winder pulleys, is all the gearing thereis between
engine and winder. A. For unbalanced weight of 2,440 pounds, 40 feet per minute, 3 horse power, making allowance for friction, etc., of the arrangement you hoscribe; we advise to double this power, or say
power. 2. With the above rig, what weight 40 feet high in arse power engine be expect whoist same height in a minute aud three-quarters, what weight in two minutes, making reasonable allowance as before ng gear? A. An actual 4 horse power engine should raise, allowing as before one-half for friction, etc., 40 feet in $11 / 4 \min .=32$ feet per minute, 2,091 pounds. For
any other velocity the weight will be decreased as speed is increased; say 64 feet 'per minute (double velocity) (25) F J F wites: 1 In
(25) F. J. F. writes: 1. In answering correspondent a few weeks since, how to remove im-
purities from lead, you mention substances rich in oxy gen. Now, in my business I use antalloy-stereotyper, gen. Now, in my business I use antalloy-stereotyper's
metal-but it is too granular, too hard. Now, will the antimony, etc., liberated by the nitrates, etc., be in a
condition to be recovered, so as to use again, should condition to be recovered, so as to use again, should
my metal get too soft? In what quantity must the nitrates, etc., be added? A. The process referred to is not suitable for alloys. The stereotype metal, having
the composition of tin 1 part, antimony 1 part, lead parts, is recommended by Spon. 2 Also, please inform parts, is recommended by Spon. 2. Also, please inform
me how to make a strong, quick drying glue size? For a quick drying size, we would recommend you to
use a good glue and add alcohol to the preparation resulting from having dissolved small pieces of glue in
water. Cork tight, and set aside for several days, and when completely in solution it will be found a mos acellent article.
(26) F. A. L. asks for a work published on the manufacture of perfumes. A. A Comprehensive Treatise on Perfumery, with Thorough Practical In-
structions, and Careful Formula, by R. S. Christiani, 8vo, 1878, price $\$ 5.00$. Art of Perfumery and the Method of Obtaining the Odors of Plants; the Growth Herbs, with Instructions for the Manufucture of Per fumes, Scented Powders, etc., 4th London edition, 8vo 1875 , cost $\$ 5.50$. The above are the two most importan
(27) M. McI. asks how patent leather can prevented from cracking, especially patent leathe diots. A. To prevent patent leather from cracking,
always heat the leather over the flame of a candle before inserting the foot in the shoe. Heat renders
patent leather soft and pliable, so it is advisable to patent leather soft and pliable, so it is advisable to weather. There is also an excellent cream paste sold in London,and called Metropolitan.varnish, which keeps
patent leather in excellent condition. We believe it patent leather in excellent condition. W
(28) D. S. F. writes: There is a traveling man here purporting to nickel plate spoons, knive forks, etc. He has a gasoline lamp, and above the
lamp he has a cylindrical tube about $2 \neq 2$ inches diameter and about 10 inches deep; in this tube he has his dipping metal, which is kept fused by the heat of th muriate of the then in oil, and also in water. Will you tell me the metal or metals he uses in his tube, or
what kind of metal or amalgams will answer in this way for coating the spoons, etc., or any other simple process without the use of a battery? A. We presum you refer to Stolba's process, which is as follows: Int ferably of copper-is placed a concentrated solution of zinc chloride, which is then diluted with from one to two volumes of water, and heated to boiling. If any recipitate separates, it is to be redissolved by adding inc as can be taken on the point of a knife is thrown in, by which the vessel becomes covered internally with coating of zinc. The nickel salt, either the chloride the sulphate, is then added unit the liquid is dis horoughly cleaned, are introduced, together with some inc fragments. The boiliug is continued for fifteen minutes, wheu the coating of nickel is completed, and the process is finished. The articles are well washed
(29) N. F. W. writes: I am going to make steam tricycle, and would like to ask, through the means of your valuable paper, if an engine with two
cylinders, 1 inch bore and 2 inches stroke, with from 80 to 100 pounds of steam and making 700 revolutions a minute, be sufficient to obtain a speed of from six to eight miles? A. Engine 1 为 inches by 3 inches preferred It has the most power, and will have less weight in pro portion to power. 2. Would one cylinder $11 / 2$ inches
bore and 3 inches stroke be better? A. On smooth level oads should make eight miles per hour if the power is and how large the wheels? Boiler should have 30 to 35 feet heating surface.
(30) C. G. L. asks: 1. In the Sctentific AmERICAN of December 9, 1882, you gave a cut of a miles an hour? A. Not by the power of one man. 2 Is it any harder work to run one than to row? A. Yes.
3. Can greaier speed be obtained with a screw than an armed propeller, 1 foot in diameter, with four arms, rew 1 foot long? A. Yes.
(31) C. H. L. writes: 1. I have a self-feed ng (of coal) steam boiler for heating, with a 30 inch cir
ular grate. To obtain the benefit of the addition of mall supply of obtain the benefit of the addicion it put a single jet close under the grate in the center,
fear only a small portion of coal will be benefited; I fear only a small portion of coal will be benefited;
and if I put in a dozen jets, economy will not be atand if I put in a dozen jets, economy will not be at-
tained. A. We fear the jet could not be safely applied in your case. To get the benefit of the gas jet, the grate hould be entirely free of asbes and clisers, wheraly un for many hours without clearing out ashes. hould not the gas be mixed with air before it escapes from the burner? A. The jet will get its supply of air
without any special provision. 3. If I should let the as into the ash pit, about 6 inches below the grate, in 30 inch ring, pierced with 4 holes, would not an ex made with great care; any collection of gas in the ash it, occasioned by a "clogged" grate or insufficient draught, would be likely to lead to an explosion.
(32) J. M. M. asks how to make or mix the cid used to etch on steel plates for printing. Also, what is meali ons $1 / 2$ drachm, water 4 ounces. Digest till the iron is dissolved, or else, pyroligneous acid 4 parts by measure, alcohol 1 part. Mix, and add 1 part
ouble nitric acid (sp . grav. $1 \cdot 28$). Apply it from 11 to 15 minutes. Dilute nitric acid is frequently all that used; $15^{\circ} \mathrm{B}$. means 15° on the Baume scale of hy-
(33). B. T. S. asks: What is "flexible sandstone"? Too bard to cut with a knife, yet pliable b
ween finger and thumb, same as piece of rubber. ween finger and thumb, same as piece of rubber. is composition is expressed in the term flexible sandtone. The quality of flexibility is due to the arrange-
(34) G. J. Van D. writes: 1. In the Scienific American, April 5, arswer 43, you say: "Add
 y this addition? A. The mercury salt is added in y this addition? A. The mercury salt is added in
order to keep the zincs thoroughy amalgamated. By its use a surplus of mercury is always provided for By

What is the best alloy to cast small figures, etc., for electrotyping, to make bronze ornaments? One that erature i mend the use of type metal as suitable for your pur-
(35) C. C. B.-In order to prepare carmine, pound of cochineal is boiled with 4 drachms of potasminutes. Remove from the fire, stir in 8 drachms powered alum, and allow to settle for twenty to thirty inutes. Pour the lquid into another vessel, and mix of water; when a skin has formed uponglass in 1 pint move from the fire, stir rapidly, and allow to settle for ne-half hour, when the deposited carmine is carefully ollected, drained, and dried.
(36) P. J. N.-'The following is a crimson tain that is frequently used for musical instruments: Ground Brazil wood 1 pound, water 3 quarts, cochineal ounce; boil the Brazil wood with water for an hour,
train, add the cochineal, boil gently for half an hour, When it will be fit for use. This is first applied, and then the varnish, consisting of rectified spirits of wine, $1 / 2$ gallon; add 6 ounces gum sandarac, 3 ounces gum mastic, and 2 an the store, frequently shaking till well disolved; strain, and keep for use. If you find it harder號 you wish, thin with more turpentine varnish.

Minerals, etc.-Specimens have been reeived from the following correspondents, and xamined, with the results stated:
D. W.-1. Pyrite, or iron sulphide. 2. Calcite, crys3. Is a compact sandstone.
here is no stillbite or chabazite among the speciThere is no st.

INDEX OF INVENTIONS
For which Letters Patent of the United tates were Granted

May 6, 1884,

AND EACH BEARING THAT DATEE.

-

 Alarm. See Burglar alarm.Alarm lock, R. G. Vassar.. 298,2
Annunciator, electric, P. Seiler.............

Bag. See Traveling
Ball. See:Base ball.
Barber's shears, guard for, E. Bateman............. 297,964
Base ball, T. P. Taylor........................... 298,041
Base bal, T. P. Taylor..............................
Basin, enameled iron wash, Cochran \& Milligan.
Battery. See Galvantc battery
Battery. See Galvanic battery.
Bearing for shafts, spindles, etc., s. J. Howell
Bedstead, wardrobe, E. Nash..............
Beer cooling apparatus, H. E. Deckebach..
Beer cooling apparatus, H. E. Deckebach.....
Bell and annunciator, electric, J. D. Gilchrist
Bellows, J. S. Williams..
Belt fastener, J. A. Roberts
Belt gearing for machinery, J. H. Cromie Belt holder, machine, w. R. Santley Berth, ship's, Milligan \& Killion. 298,041
297,287 Bicy, ship's, Milligan \& Killion. G. F.
Barwood....................
Billiard cue and walking cane, combined,
 Bookrack, J. Swartz.......
Books with wire staples, machine for stitching
E. Preusse...............................
E. Preusse...
Boot and shoe heel blanks, machine for concav
ing, W. Y. Ober........................... Boot crimp, F. M. Bratton.. Boot or shoe insole, T. Bolton
Bottle holder, E. R. Richards. Bottle stoper, E. R. R. Richardsent.
lee...........

Bottling machini...............................
Bracket. See Pulley bracket.
Brake shoe, C. F. Brigham
Breast and skirt supporter and shoulder brace
combined, M. Clarke combined, M. Clarke Bung, A. G. Anderson...
Burglar alarm, R Burglar alarm, R. G. Vassa
Burner. See Gas burner.
Button, J. F. Atwood
Button, N. B. Hale
Button, collar, G. Krementz
Button fastener, R. Sanford
Button feeding apparatus, Hawkins \& Woo................

ward... Buttonhole, E. G. Harris

Buttonn, separabele, Robinsonon \& Lallement.
Button setting instrument, J. F. Atwood Button setting instrument, J. F. Atwood
Button setting machine, Hawkins \& Woodward.
Cables, gripping and crossing, R. Ramsden Cables, gripping and crossing, R. Ramsden........
Can. See Oil can. Paint can.
Can. w. Harris...
 Canister and mill, combined coffee, E. Norton... Car coupling, E. M. Bates.
Car coupling, A.fB. Fiske.
Car coupling, J. P. Lancaste
Car coupling, F. F. Lutz Car coupling, s. B. Mayield. Car coupling, N. J. Skaggs..
Car coupling, G. W. Sowles.
Car
Car coupling, L. \& G. P. Stebbins
Car coupling, S. B. Zimmerman.. Cars, detachable compartment for, E. S. Henr Card or ticket C. Beebe
Card or tlcket holder, H. Willson...
Carpet stretcher, Dunnell \& Smith
Carriage top, Buchholz \& Morris.
Carriage wind
S. Parker.
98,136

297,287
298,207 298,207
298,112
298,071
2981

298,080 298,261 298,120

298,120 298,291 298,238

 298,012297,991 298,111
2991170
298,124

298,117

 298,113298,167 298,167
$.298,278$
$.298,233$
298,273

Cart, road, C. H. Straight............................
Carving meat, holder for use in, Chevalier \&
 Centrifugal separator, J. J. Hendrickson..........
Chain link blanks, machine for making, L. McGilChair. See Folding chair.
Check and draft, bank, J. K. Clears Chuck, lathe, W. A. Montgome Churn dasher, s. M. Tilson.
Clasp. See Garment clasp. Clock and watch stop mechanism, P. G. Russell: Clocks, circuit closer for electric, v. Himmer.. Coal bucket, C. Cook....
Cock, stop. J. H. Blessing
Cocoanut sheller, J. G. Webb
Collar, horse, C. A. Pettie
Compasses, W. Stromberg.
Condenser for steam and smoke, J. M. Carver
Cooler. See Water cooler. $\quad 293,2 \pi 4$ to
Copying and engraving machine, automatic elec
tric, A. Schmid..................
Cotton press, J. D. O'Daniel.
Coupling. See Car coupling. Hose coupling. Shaft coupling.
Cross -head, G. H. Corliss.
Cuff holder. Stafford $\&$ Henderson
ead centers and for converting motion, device
for overcoming, I. L. Hawking.
for overcoming, I. L. Hawkins
H. Hubbard..
Derrick, C. T. Da

Distilling petroleum, apparatus.................... Ditchin
Drawers, J. M. Cox.
Drawers, J. Grinacey.
,
Egg case, folding, W. G. Ruge. Ross.
Electric \mathbf{c}
lectric ciruit
Electric wires, laying underground, J. H. Page..
 Elevator, C. J. M. Dobso Embroidery, M. H. Pulask idery, velvet and plu
ngine. See steam engine.
Engraving machines, ring and of, D. Renshaw... ment for, A. E. Francis
Excelsior machine cutter knife, c. L. Knight...
Feed water heater, C. H. Magoon.
Feed water heater, 'T. Marshall.
Fence, metallic, D. A. Roach....
berger.....................
ences, warning plate for wire, s. Forrester......................... facture of wire, O. P. Briggs ertilizer distributer, B. F. Archer Filing-papers, device for, J. C. Lang, C. F. Dink f. Brigham

Firearm sight, w. Lyman.
ire escape, C. B. Andersion
Fire escape, C. R. S. Curtis
Fire escape and water conductor, v . w. Blanc
Flanging machine, T. R. Morgan, $s r$
O'Friel................................
Flooring, D. Ham.
Folding chair, L. Bush, Jr Day
Folding chair, L. Bush, Jr
Brennan........................
Forging machine, R. H. Beach.
Fork. G. Pickhardt..
rame. See Screen frame. Furnace grate, Jewell \& Mathisen....
Galvanic battery, C. L. Clarke
ame, R. B. B. Foot
Gangway for ships, T. I. Knight.
Gas, apparatus for manufacturing illuminatin
Gas burner, A. B. Lipsey
as burner, cut-off, A. C. Austin
Gate, M. W. Foster
Gate, A. D. Mack
Generator. See Gas generator.
Glass, flatting and annealing oven for, T. zellers.
Glove fastening, W. F. Foster
Grain drill, J. L. A. Ashurst......
Griudstone shaft, A. F. Weaver
Guard. See Saw guard.
Guard. See Saw
Halter strap fastening, J. Gibbons
Harness pad, T. A. Simmons.....
Harness pad, \boldsymbol{T}. A. Simmons.
Dun, swing loop iron iron ior, Mackay
Harrow, rotary, D. Manuel.
Harvesting machine, grain, Barnhard \& Thom Hat roll pressing machine,
Heater. See Feed water heater.
Holdback hook, C. L. Crowell Holder. See Bottle holder. Lamp holder. Pape Hook. See Holdback
Hoop splitting machine, I. Walborn.
Hose coupling, A. Zoller
Hose, flre, G. A. Stuck
Hose, fire, G. A. Stuck..
Hydraulic jack, R. H. Dudgeon
Hydraulic motor, R. Leu
Ice plow, J. H. Knowles
298,254
 298,329
$.298,072$
-
 Krippendorff \& Marsh ..
Shelling and grinding machine, wilcox \& Bots-
fording, adjustable, H. F. Stocking.
Ship's hull and pr
Shirt, S . Conde...
shoe uppers, gauge for goring, w. B. Kinsley.
Show case, T. F. Curley.............
Sickle grinder, C. W. Claybourne..
Signal. See Rail Way switch signal.
Skate, róler, C. F. Morse...........
Skate, roller, C. F. Morse......
Slate, school, W. D. Heyer
Slotting machines, tool oscillating device for,

Soda, obtaining, J. Townsend..
Soldering machine, Hausheer \& Meyenberg.
Spark arrester, J. S. Park..
Spinning frame spinale bolster, A. Aldrich..
pring. See Vehicle spring.
pration indicator, H. E. Bissell.
Steam apparatus, rotating joint mechanism fo
Steam engine, w. Golding...
Steam generating apparatus, W. A. Pentecost....
Steel melting furnace, open hearth, C. M. Ryder Stone and marble, manufacture of artificial, H . A. Daniels....................... ... Store service apparatus, automatic, J. H. Good-
298,189
298,160
felow....
tus for mashing, A. Fesca....................
Suspender end, Marcus \& Anisz...................
Suspension jack for removing journal boxes
witch . M. Garverick.
Tap wrench, N. Sawyer
Telephone exchange
Telephonic transmitter, H. Clal, G. F. Shaver.. 298,243

'Tile mould, drain, C. B. Hewitt...
Tin cans, utilizing, B. F. Mechling
Tin cans, utilizing, B. F. Mechling............
Tobacco caddy, sheet metal, E. H. Striker
obacco transporting rack, W. Sternberg ..
Toothpick device, J, Hoffman.
Toy, J. A. Crandall............... Track cleaner, car, Holden Traction engines, steering gear for, A. P. Broom
en......
Travee Sewe trap.
trag, C. A. Zinkand
Traveling bag, C. A. Zinkand
Tread power, E. Kilbourn...
Trunk or box fastener, E. W. Brettell.
Umbrella tip cup, J. Matzenbacher.
Valve, J. M. Goldsmith
Valve, balanced rotary, J. L. Bogert.................
Valve gear, steam engine, O. F. Howar
Valve, puppet, H. F. Frisble.
Vehtcle, side bar, c. w. Saladee.
Velocipede, W. A. Lorenz....
Velocipede treadle, P. Gendron............
kins.
essels, attachment of lips and spouts to, Milliessels, attachm
\& Milligan.
ise, bench, w. H. Northall.
Vise jaws, die for making, J. Cain.
Wagon running gear P. Gendron
Wagon, spring board, H. L. Sherwood
Watch case, Harman \& Skidmore.
Watch case center, J. C. Dueber...
Watch case center, J. C. Dueber
Water closet, C. F. Pike ...
water cooler, J. E. Welling
Water, purification of, A. R. Leeds.
Wheel. See Locomotive whee
Whiffletree, E. R. Annable...
Whip, S. Baker
Window screen, J. K.
Wire barbing machine, D. C. Stove
Wire cloth, labeled, C. Swinscoe....
Jr., et al
Wire cutting machine, W. H. Savage
Wrench. See Pipe wrench. Tap wrench.
Wrench, N. W. Vandegrift...
DESIGNS.
Burial casket, 1. G. Hatcher.......
Card, back of game, L. L. Smith.
Card, Christmas, , Snelder..
Coffin tablet, O. McCarthy....
cultivator knife, I. A. Packard
Envelope, R. Sneider...
Stationery case, J. F. Tannatt..
TRADE MARKS.
Bats. Indian clubs, etc., base ball, A. J. Reach
$\&$ Co...................................
Bats. Indian clubs, etc., base ball, A. G. Spalding
\& Bros...
Copies of writings, drawing, and other delinea-
tions, apparatus for producing facsimile, W.
tions, apparatus for producing facsimile, W .
F. B. Massey-Mainwaring..................
elts used for homeyers and action parts in pianos and organs, A. Dolge.
Medicine, certain proprietary, A. C. Meyer......... 11, Steel bars and plates, Detroit Steel and Spring

Tobacco, all kinds of manufactured, F. W. Felg-
ner \& Son...

PERIN BEINDEEATEDEADES,

NEW BOOKS.

E. \& F. N. SPON, 35 MURRAY ST, NEW YORI. CraUDIERE BRIDGE, OTTAWA.-DE-

Siquor Fortgae Salliaylatus

Valuable Boolns PAINTERS NARNISHERS.

ELECTRICAL BOOKS.

 WATTER-GAS.-A PAPER EXPLAINIGG

(1) P/JTM Morthine Habit Curd in 10

NERVOUS DEBILITY in HEEN

266th EDITION. PRICE ONLY \$I

A Great Medical Work on Manhood

PATENTS.

lication of the scrimptrict Andricas, continue to exfor Inventors. years experience, and now have ennequuled facclitites fo the prosecution of Applications for Parectints in the the
United States, Canada, and Forign Countries. Messrs Muni \& Co. also attend to the preparation of Caveats,
Cepryights for Books, Labels, Reisules, Assignments, and Reports on Infringements of Patents. All business
intrusted to them is done with special care and prompt-

ness, on very reasonable terms. A pamphilet sent free of charge, on application, con.

 taining full information about Patents and how to pro Designs, Patents, Appeals, Reissues, Infringements, As gignments, Rejected Cases, Hints on the Sale of Pa-tents, etc.

Patent Laws, showing the cost and method of securi patents in all the principal countries of the world.

 IMUNN deCO., Sollieitors or Patents, branch office.-Corner of F and 7 th Streets,[^0]

HANSON VANWINKLE \& Co. SOLE AGENTS NEWARK, N. J.

 DEODORIZATION OF IMPURE SPIRITS

THE COMPLETE HOME. Agenta wantoo

THE NEW YORI Bride..-A summary of the dominant features of this

CHIPPENDALE FURNITURE--ILLUS

CHEMISTRY OF BUILDING MATE-

Telegraph and Electrical SUPPRIES

EXPERIMENTS IN ACOUSTICS. - A

HIGH RALLWAY SPEEEDS. - BY W

GENTS can make 83 to 15 per day introducing

PATENT FOR SALE. Elastic or Yijelding

50

NEWSPAPER FILE

 IRON REVOLVERS, PERFECTLY BALANCEU, P. H. \& F. M. ROOTS, Manufacturers,
 SEND FOR PRICEDCATALOGUE.
WATER SUPPLY OF SMALL TOWNS.-

FIRELESS LOCOMOTIVES FOR TRAM-

THE "UNIVERSAL" GAS ENGINE.-

PHOTOMICROGRAPHY.-A PAPER OF Interest to amareurs, showing how, by means of a sim-
ple contrivance which any one can make for himself.
milaropotogranh may be take without the use of a

$\$ 5$ to $\$ 20 \begin{gathered}\text { per day at home. Samples worth } 85 \text { free. }\end{gathered}$

FOREIGN PATENTS.
Their Cost Reduced.
The expenses attending the procuring of patents in most foreign countries having been considerabty re-
duced, the obstace of cost is no longer in the way of large proportion of our inventors patenting their inven-
CA MADA.-The cost of a patent in canada is even
less than the cost of a United States patent less than the cost of a United States patent. and the
former includestbe Provinces of ontario Quebec, New
Rrunswick, Nova Scotio, British Columbia, and ManiThe number of our patentees who avail themselves of ec cheap and easy method now offered for obtaining
patents in Canada is very large, and is steadilis inereass-
$\underset{\text { ENGLAND.-The new English law, which went into }}{\text { ing }}$ torce on Jan. Ast. enabies parrate terms. A British pa-
Great Britain on very moderate
tent includes England, Scotland, Wales, Ireland, and the financial and commercial center of the world, and her
goods are sent to every quarter of the globe. A good in England as his United States patent produces for him at home, and the emall cost now renders it possible
foralmost every patentee in this country to secure a pro-
tent in Great Britain, where his rights are as well pro-
tected an in the United states.
OTHER COUNTIRIES. - Patents are also obtained on very reasonabie e erms in Franee. Belgium, Germany Austria, Russia. Italy, spain (the Iatter includes Cuba
and all he other spanish Colonies), Brazill, British India An experience of THIRTY-wicht years has enabled competent and trustworthy yanencies in all the erraninisal
foreign countries, and it has al ways been their aim to ave the business of their clients promptly and properA pamphlet ocontainiug a synopsisis of the eqient laws
of ail countries, including the cost for each, and othe information useful to persons contemplating the pro-
curing of patents abroad may be had on anplication to this office.
 any information reiative to patens, or the regist y oir
trade-marks, in tuis cunnry or aroood to all at their
offices, 361 Broad way. Examination of inventions, consultation, and advice free. A member of the frm is
almaysin antendance between the hours of to'clock A.
M. and 5 occlock P.M. Inquiries by mail promptly anwered. $\underset{\text { Pubishers and Patent Solicitors, }}{\text { MUN }}$ Branch Offce, cor. Fand 7 th Streets, opposite Patent
Office, Washington, D. C

2durtisments.

Engravings may head advertisements at the same rate
per line, by measurement at the letter pres per line ,y measurement, as the letter press. Adver
tisements nust bereceived at publication office as early
as Thursday morning to appear in next issue.詥:

GASENMINES. One horse power will pump 1.000 gallons of water 100 feet
high per hinur with 35 teet ofgas. One-half) horse power
will pump 500 gallons 100 feet high with 25 feet of gas. POWER DETERMMNED BY ACTUAL, TESTT. THE CONTINENTAL GAS ENGINE CO.

WITHERBY, RUGGi R RICHARDSON. Manufacturer

BIG PAY to enel oni Rumber Printung stamps. Sample:

HW.JOHIS As8 Eives

 MIQUID PAINTIE: ROOFING,Steam Pipe and Boiler Coverings, Steam Pack, Mire-proof Coatings, Cement, de.
H. W. JOHNS M'F'G CO., 87 Maiden Lane, New York.
170 N. 4th St., Phila. 45 Franklin St., Chicago.

F. Brown's Patent

FRICTION
CLUTCH.
Send for Mllustrated Cata-
logue and Discount Sheet

Bitns

HARRIS-CORLISS ENCINE

BLAKE'S CHALLENGE" ROCK BREAKER.

BARNES'

UVATERE.

Cities, Towns, and Manufactories PATENT Tupe avd gang well ststen.
Wm. D. Andrews \& Bro, 233 Broadway, N. I.

Double Screw, Parallel, Leg Vises Madeand WARRATEDD frrmeg than any other Vise
 BARREL,KEG,
Hocshead, Stave Machinery.
$=$
E. \& B. HOLMES: Buffalo, N. Y.

soctheark foondry a machine company, Engineers \& Machinists,

ICE MACHINES

Of an sizes from
10 $\begin{gathered}\text { Ib } \\ 50 \text { Tons } \\ \text { per ur to }\end{gathered}$ Binary Absontrion System. simpie, reliabile.
Delamater Iron Works,

Cornell University.

Electrical Engiueering,
Mechanical Engineering, Civil Engineering and Architecture. Entrance Examinations Begin at 9
16 and Sept. 161884.
For the UNIVERSITY REGISTER, containing full
statements
regarding
requirements
for admission,

-
ROSES
The onl establishment making a SPECIAL
BUSINESAROSES GO ARCE HOUSES
for ROSESaiono. We GIVEAWAY, in Premi-

 SPEakiNg TELEPHONES. THE AMERICAN BELL TELEPIONE CONIPANY President. W. Treasurer. Gen. Manager.
 the voice of the speaker causes electric undulations
corresponding to the words spoken. and which articula hav commissioner of Patents and the UU. S. Cir cuitcolour junctions and tinal deerees lave leen obtained on them.
jlis company alto own and controls all the other
telephonic inventions of Bell, Edison, Berliner, Gray,

 its authorized licensees. are infrinements, and
makers. selers, and users will be proceded against
Information furnsher whin arotication.
Adress all communications tothe

ondspzew

Scientifir Anmerican

The Most Popular Scientitic Paper in the World. Only $\$ 3.20$ a Year, inclucling postage. Weekly. This widely circulated and splendidly illustrated een pages of useful information, and a large number o original engravings of new inventions and discoveries representing Engineering works, Steam Machinery,
New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity, Telegraphy. Photography, Architecture. Agriculture, Horticulture, Natural History, etc.
All Classes of lieaders find in the ScIEviIfIO popular resume of the best scientific into present it in an attractive form, avoiding as much as possible abstruse terms. To every intelligent mind,
his journal affords a constant supply of instructive eading. It is promotive of knowledge and progress in
very community where it circulates. Termin of Subscribition.-One copy of the Scien-
tric Ambican will be sent for one year- 52 numberspostage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars and Iwenty cents by the
months, 81.00 .
Clubs.-One extra copy of the Scientific Amiri-
CAN will be supplied gratis for every clubof five subscriber $\$ 3.20$ each; additional copies at same proportionate
rate. One copy of the ScIentific American and one copy
of the Scievtific American Supplement will be sent for one year, postage prepaid, to any subscriber in the
United States or Canada, on receipt of seven dollars by United States
the publishers.
The safest way to remit is by Postal Order. Draft, in Express. Money carefully placed inside of envelopes,
securely sealed, and correctly addressed, seldom goes
astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to

MITJNIV \& CO.,
361 Broadway, New York. To Woreign Subscribers--Under the facilities of
the Postal Union.the ScIEvTIFIC AMERICAN is now sent by post direct from New York, with regularity, to subscribers in Great Britain. India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany Russia, and all other European States ; Japan. Brazil, Terms, when sent to foreign countries, Canada excepted 4, gold, for ScIENTIFIC Ambrican, one year; ;9, gold
for both Scientific american and SUPPLEment for one year. This includes postage, which we pay. Remit
by postal order or draft to order of

PRINTING INKS:

[^0]: Washingroon. D.

