Iron and Steel Drop Forgings or every de
R. A. Belden \& Co., Danbury, Ct. Iron Planer, Lathe, Drill, and other machine tools of
moderndesign. New Haven Mfg. Co., New Haven, Conn. Pumps--Hand \& Power, Boiler Pumps. The Goulds Mitg. Co., Seneca Falls, N. . .. \& 15 Park Place, New York.
For Freight and Passenger Eievators send to \mathbf{L}. s . Graves \& Son, Rochester, N. Y.
Best Squaring Shears, Tinners', and Canners' Tools at Niagara stamping and Tool Company, Buffilo, N. Y. Lathes 14 in. swing, with and without back gears and
screw. J. Birkenhead, Mansfeld, Mass If an invention has not been,
If an invention has not been patented in the United
tates for more than one year, it may still be patented in States for more than oneyeerar it mayy still be eatetnted in
Canada. Cost for Canadian pitent, \$40. Various other toreign patents mayalso be obtained. For instructions address Munn \& Co., SoliEviritic
Agency, 261 Broadway, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn, N. Y. Steam Pumping
tion. Send for catalogue.
tion. Send for catalogue.
For Power \& Economy, Alcott's Turbine, Mt. Holly, N. J. Presses \& Dies. Ferracute Mach. Co., Bridgeton, N.J. Supplement Catalogue.-Persons in pursuit of infor-
mation on any special engineering. mechanical, or scienmation on any special engineering. mechanical. or scien-
tific subject. can bave catalogue of contents of the Scttifc subject. can bave catalogue of contents of the Scr--
ENTIFIC AMIRICAN SUPPLMMINT Sent to them free.

 Machinery for Light Manufacturing, on hand and built to order. S. E. Garvin \& Co.., 139 Center St., N. Y. Nickel Plating.-Sole manufaciurers cast nickel anodes, pure nicker salts. polisining compositions. ett. Com-
plete outat tor
Newark, Curtis Pres Curtis Pressure Regulator and Steam Trap. See p. 222. C. B. Rogers \& Co.. Norwich, Conn., Wood Working mineral Levd
Mineral Lands Prospected, Artesian Wells Borsd, by
Pa. Diamond Drill Co. Box 423. Pottsvilie, Pa. see p. 237 . Pa.
Stephens Bench Vises are the best in use. See ad.,p.235. American FruitDrier. Free Pamphlet. See ad., p. 253. Best in the world. Patent chuck jaws, emery wheel machinery, and automatic machines to grind straizht
and sharp. Planer, veneer, lowwood, eather, paper mill, plate, cottonseed, and other long knives. Amen
Drill Co., Meredith, N. H. (Estabished 1865.)
Brass \& Copper in sheets, wire \& blanks. See ad.p. 54. The Chester Steel Castings Co., office 407 Library St. Philadelphia, Pa... can prove by 20.000 Crank Shafts and
15.000 Gear Wheels. now in use. the superiority of their Castings over all others. Circular and price list free. The Improved Hydranlic Jacks. Punches, and Tube
Expanders. R. Dudgeon. 24 Columbla St., New York. Expanders. R. Dudkeon. 24 Columbla St., New York.
Hoisting Engines. D. Frisbie \& Co., Philadelpha, Pa. Tight and Slack Barrel Machinery a specialty. John Greenwood \& Co., Rochester, N. Y. See illus. adr. p. 253.
Upright Self-feeding Hand Drilling Machine. Excelent construction. Pratt\& Whitney Co., Hartford, Conn. Catalogues free.-Scientific Books, 100 pages; Electri-
cal Books, 14 pages. E. \& F. N. Spon, 35 MurraySt., N. Y.

NEW BOOKS AND PUBLICATIONS.

Illugtrated Art Catalogue. Cassell \&
Company, 739 Broadway, New York. Company, 739
Price, 50 cents.
A very comprehensive and attractive hand book, including a complete catalogue of all the paintings and
other art works, numbering 700 , now on exhibition at other art works, numbering 700 , now on exhibitton at
the National Academy of Design in this city. The the National Academy of Design in this city. The
studio address and a brief biography of several of the studio adaress and a brief biography of several of the
artistsare given, and engravings of the most important
of their $\begin{aligned} & \text { morks on exhbibition }\end{aligned}$ of their works on exhibition.

HINTS TO CORRESPONDENTS.
No attention will be paid to communcations unless accompanied with the full name and address of the
writer. Namesand addre
given to inguirers.
We renew our rea
We renew our request that correspondents, in referring to former answers or articles, will be kind enough to
name tue date of the paper and the page, or the number name eve date of
of the question.
Correspondents whose inquiries do not appear after
a reasonable time should repeat them. If not then puba reasonable time should repear them. If not hen pub-
lished, they may conclude that, for goot reasons, the lished, they may concl
Editor declines them.
Editor declines them
Persons desiring s
Persons desiring soecialinf ormation which is purely of a personal character, and not of general interest,
sbould remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor to obtain such information without remuneration. Any numbers of the Scientific American SuppleMENT referred to in these columns may be had at the
office. Price 10 cents each. office. Price 10 cents each.
Correspondents sending
Correspondents sending samples of minerals, etc. for examination, should be careful to distinctly mark or
label their specimens so as to avoid error in their identilabel the
fication.
(1) A. V. P. asks the style and size of lens and focus, etc., suitable for a camera obscura for out-
side sketching. A. A plano convex lens of 2 inches side sketching. A. A plano convex lens of 2 inches
diameter, and 2 feet focus, makes a very convendiameter, and
ient proportion of pictnre for eketching. A Asarper de-
fned picture may be made by using two 30 inch focus lenses, 2 inches diameter, in a tube flat sides outward or back to back, 4 inches between the lenses.
(2) P. G. asks: 1. Will a windmill lift surface water through a $11 / 2$ inch pipe to a tank 40 feet
higher than water level, distant 400 feer. mill will forcs water the distance and height named, the quantity depending upon the power of the mill 2.
Would it do to carry water for drinking purposes
through galvanized pipe? A. Galvanized iron pipe is
largely used for conveyiug water, and is not considered very unheallty if the water is cold and not allowed to stand in tbe pipe. Cast iron pipe is beter, however.
(3) B. K. F. asks what the mode of print (3) B. K. F. asks what the wode of print
ing from engraved or stamped music plates is like. A. ing from engraved or stamped music plates is inke. A.
Music printing is done in the same way as copper plate printing. The plate is covered with ordinary printing without blistering the hands); rub off the exces withoot bistering the hands; rub of the excess
of ink with a rag, then rub the palm - of the hand
withe withsome whitingand lightly rubo over the face of the plate. This requires a little dexteritt to wipe in different directions, so as to leave the plate surface bright an
he ink in the lines. Then place the dampened paper apon the plate and pass under the roller, which should be blanketed. The press is a rolling platen, with a rolle 6 or 8 in
der it.
(4) G. L. G. asks: What is the pressure er equare inch on a steam cylinder 1 foot in heiyht, 8 nches in diameter, when Falrenheit thermometer
hows 4200 , and will a brass cylunder same dimensions a quarter of anjinch thick, stand the pressure? If not, how thick necessary? A. 296 pounds above atmo-
sphere. Yes, if perfecilly sound, but we would recomsphere. Yes, if perfecily sound, but we would recom
mend that it be not less than three-eighths of an incl thick, and tested to 450 pounds by hydraulic pressure before sub
(5) O. H. T. asks (1) bow to prepare green aint which will stand the heat of steam and not scale off and change color, for painting a steam engine. A. A.
Use a chrome green ground in Japan, and put on in vearing varnish. 2. Plea earing varnish. 2. Please give the dimensions for water. A. Make the tank to hold 16% cubic feet, or if
whe round, 24 f feet diameter, 4 feet 2 inchess high, or 3 feet
diameter, 2 feet 10 inches high. If square, $2 y 8$ feet diameter, 2 feet 10 inches hig.
square by 2 feet 8 inches high.
(6) S. S. G. writes: 1. Lengtb and size of bore, weight and shape of ball, weight of powder, and other conditions being the same, which will throw
ball the greater distance-a smooth bore or rifled gun? Does not rifing impede the discharge of the ball, and does it do any other good than to insure greater ac curacy to the direction of the shot? A. Smooth bore
is best for round bullets. The rifinig is necessary for is best for round bullets. The rifining is necessary for
long bullets. 2. What horse power is required to sustain 33,000 pounds immovably without other support? A. Horse power is supposed to be a moving power, and not used in sustaining weight immovably.
(7) L. W. McC. writes: We are running an
 sure. We have some controversy on several poiuts. We want not so much a maximum of power (that being ample) as to get say 40 to 70 horse power with a mini-
mum of coal. What size steam and exhaust ports ought they to have? What size steam and exhaus pipes? At what point of stroke ought engine to receiv steam to insure economical or barmonious working to
gether? Would we get any very perceptible reduction of fuel, by reducing the driving pulley (which is 93 feet), enlarging the driven (4 feet), and resure of stean
now 64$)$, would we get the highest economys Would the saving, and pressure? Or , would the reduction of driver of itself contribute to the result? One engineer says the
coonomy would be the result only of increased pisto speed and pressure, while another says the changein pulleys would also help. Is there any efticiency in am-
monia fortior in dissolving or loosening scale on quantitiass ${ }^{\text {bot tubes? If so, how used and in what }}$ scale? If so, how used, and in what quanticies and is it safer We use a rubular boiler 60 inches by 16 feet, with 90 three inch tubes, fed from spring water strongly impregnated with lime and (sup-
posed) magnesia, which forms scale rapidly and gives us trouble. The water passes through an old boiler and is heated with exhaust before beiug pumped into boiler. Can you tell us how to get rid of this scale and
prevent it? We have used various compounds, also soda, tanner's liquor, etc., with only pariial and varying results. How many feet of grate surface ought the furnace to have? Distance from grate bars to boiler from grate bar to bottom of ash pit? What size opening or throat at bridge wall and at back end of the
boiler? A. You would not materially economize in fuel by altering the ports or changing the steam or ex haust pipes. 3 inch steam and $33 /$ inch exhaust pipes ing the point of cut-off of the valve would enable you ting off at one.third to one-buf the stroke for ting of at one. third to no-haf the strote for engines
without automatic cut-off is fair practice. The automatic cut-off engines are made to vary from one-tenth points that are of great to the work. There are other an old engine that require looking after, such as cu faces upon the slide valves, loose piston from wear,
the sustaining springs giving out and allowing tbe piston rings to run loose. The leak of steam at these points is very much overlooked in old engines. Cylin-
ders should be rebored when chey are found to be out of shape. An engine that has run ten to fifteen years especially if of the horizontal kind. needs rehoring and newrings. Much of your loss in economy is aerived
from the use of two cylinders instead of one of equal power. We do not recommend change in the relative
size of pulleys or speed. The steam pipe should be well feited, and the top of the boiler covered 2 or 3 inches deep with fine light ashes if now exposed. A you say nothing about the kind of fnel used, we are t
suppose that you are using bitmminous coal, which quires a peculiar method of firing. For this coal the boiler should be 3 feet above the grate. Grate 5 feet by
5 feet, or 25 spuare feet, if you are oniy horse power. Youp boiler is rated 60 effective horse power. Ash pit shonid be two feet deep from top of Always keep a good flue brush on hand, and see that it
is used often and thorougly; for bituminous coal,
twice a week. In feeding the coal never cover the
whole grate at once with fresh coal, but feed at the front and gradually push the coal back, always keepin the bright fire at the back of the grate. This tends consume the smoke. As you have tried nearly all o
the chemical compounds for scale, we can only recommend you to try some of the mechanical boiler cleaner (8) W. T.-The vernal colure for 1884 is $288^{\circ} 15^{\prime 2} 6^{\prime \prime}$ west from the point of correspondence of the
signs of the zodiac and the signs of the constellotions the time of which is supposed to have been fixed as reck year- $28^{\circ} 15^{\prime} 26^{\prime \prime}$. You will find Norton's Astronomy sufficient guide in any mathematical calculation tha will give you the exact data
(9) J. H. D. writes: I bave been told that the sunhar receded in the equinoctial point of the eclip. tic until, though the equinox nominally takes place in
Aries (that is, the sign), it really bappens in the 30 th Aries (that is, the sign), it really bappens in the 30th degree of the constellation Aquarius. 1 s it so? A.
The zodiac is divided into 12 equal parts of 30° each; the division commencing at the vernal equinox, which west to east in the order of the signs. The first point of the sign Aries is the beginning of the reckoning for right uscension and longitude. The signs of the zodiac corresponded with the constelations of the same name
about 140 years B C., at which time the arrangement of the zodiac and the naming of the constellations wa supposed to have been establisted. Since then the equinoctial and soistitial points have retrogradeu nearly of the sign Aries, is near the beginning of the constel ation Pisces. In consequence of the precession of the equinox the star mans have to be corrected from time to time, the older maps not representing the true reck oniug in right ascension. Thus from precession alone
the equinox bas receded in 2,024 years $28^{\circ} 15^{\prime} 26^{\prime \prime}$, or
(10) H. B. G. writes: The distance from he mouthof the Cumberland River to Nash ville, Tenn. is 200 miles, with a fall of fifty feet, or 3 inches to
mile. Wiath of the Cumberland River is about mile, Wiath of the Cumberland River is about 17 l
yards. Now, in case of tie Ohio River being very high will it affect the flow of the water in the cumberland River at Nashville? A. A large rise in the Obio at the mouth of the Cumberland wonid very sensibly affect he flow at Nashville. We do not know the topography of the stream, and cannot be expectec to give an intel igent answer upon the mere data of 200 miles with 50 feet fall, or 3 inchest to the mile. The depth and volum of water flowigg in the Cumberland has much to do It is also necessary to know the emount of isise in the Ohio in order to estimate the rise at Nashville
(11) T. L. asks: What is zylonite?
(11) T. L. asks: What is zylonite? Wba is vulcanized fiber? What is the correct name of the
flaceous plant known commonly as "corn geranium" A. Zylonite is fiber of cotton or linen and sumetimes wood pnlp combined with camphor by the alcoholic process, and pressed intoa homogeneous mass, or only
another name for celluloid. Vulcanized fiber is fiber changed by a chemical combination through th aid of heat. The wora vulcanized was coined in the
rubber trade. Ask your floristabout " corn geranium." (12) C. A. C. asks: Who established the the thate. arst locomotive works for build ing railway engines, and probably Ross Winans estabiished frrst works in this country
(13) W. W. E. asks (1) the rule to find what quantity of water will foom through a pipe when A. The result is affected by the character of the pipe material) and bends. Ruie given in Haswell's Pocket Book, page 385:
$39: 27 \sqrt{\frac{n d^{3}}{l}}=$ volume of discharge in cubic feet per
second, in which $h=$ head in reet,

$39.27 \times \sqrt{\frac{50 \times 0.166^{6}}{200}}$

I would like the rule for finding the pressure, fricion, velocity, and quantity of water delivered, wben you have all the above points to compute by. A. The pressure is, 0.04335 pound per square inch for each foot
of head. In Haswell's Pocket Book you find the rules of head. In Haswell's Pocket Book you find the rules neer's Pocket Book.
(14) F. W. R. asks bow to calculate the ressure of water through an iron stand pipe 20 fee and discharging at the bottom through an orifice of a quarter of an inch in diameter. Should the pressure be increased or diminished if the stand pipe were reduced to 10 feet high and diameter increased to 4 inches A. 'The pressure is determined by the height or head mainained in the stand pipe; the diameter, or flow
to or out of, does not affect the pressure. The presure is 0.4335 pound per square inch for each foot of (17) V. B. asks: What is used in graining machines to stain poplar lumber in imitation of Spanish sedar? A. Just exactly tbe composition of the stain und madder and 2 ounces gwood chips in a gallon of water whol olution, 2 drs. to the quart. If not exactly the shade, can be modified by altering the proportions of the ingredients.
(21) S. G. J. asks: For what is talc used? Is there more than one grade or quality of it? Abnut extensively in soap making and also for dressing sheep kins. leather gloves, etc. The domestic talc is used in be manufacture of paper, replacing terra aiba for this purpose. A small amount of talc enters into the composition of some lubricating compounds. The talc imported is considered to be of a superior quality as combout $\$ 12.00$ per ton.

INDEX OF INVENTIONS For which Letters Patent of th

April 8, 1884,
AND EACH bearing that dare.

A brading machine, F. W. Coy.	
Air brakes. electrical connector in pipe couplings for, H. Flad.	
	ter, H
Alarm. See Burgla	
	Album, auto
Animals, safety attachment for horned, G. W. Ritchie	
	Anvil. vise. and drill, comb
zle box, car, R. Bre	
zle box, car, J. Stephens	
	ale boxes. pattern for
Axle for vehicles, self-oiling, L. H. Fish	
	Axle skein, L. H. Merri
Axletruss, A. J. Bea	
Bag. See Feed bag. Mail bag.	
Bale tie, J. A. Gresbam	
Barrel truBarrel tru	
y. See Galvanic battery.	
Bed bottom, spring, S. S. Burr......................................	
Belt fastener, W. R. \& T. H. Dunn.............. ...Bicycle bearing,	
Billiard and pool table. G. A. Chasley..............Board. See Bosom board.	
	ork rest, revolving. S. Rob
Boot and shoe cleaning implement, A. M. Carlsen 296,	
	oot and shoe soles, machine for leveling, S. D. Tripp. .
Boot and shoe stampins machine, Bolles \& Byron 296.	
Boot, rubber, J. J. Williamson 296,495 Boots and shoes. outer sole for, A. A. Brooks..... 296,519	
Boots or shoes, tacking machine for lasting, E . Woodward et at. 296,715	
Bosom board, S. Maxim.....	
Bottle stopper, J. T. Walker...........	
wl. fruit, D. C. Ripley	

Bowl. fruit, D. C. Ripley
Box. See Axle box. Letter box. Packing and
Brick machine, J. Baillie............................
Brick weather boarding for frame houses, imi Brick weather boarding for frame houses, imi-
tation, P. Toglio.......................... 296.647
Bucketand stool, combined milk, G. C. Bovey... Bucketand stool, combined milk, G. C. Bovey..... 29693886
Buckle, W. B. Woodman 296,662

Burglaralarm, G. W. Tallman
Burner, A. B. Lipsey
Bushing, metallic. C. Hemje
Bushing, metallic. C. Hem
Button, J. Harrington....
Button. J. Harrington.....

Can. See Creaming can. Car brake, electro-magnetic, H. S. Park....... ... 296.349 Car coupling, G. Blythe \qquad 296.66

Car coupling, C. W. Spence.
Car replacer, J. A. Hodel ...
Cars, sash adjuster for railway, A. K. Mansfield
Carpet stretcher, J. H. Bruso... Carpet stretcher, J. H. Brus
Carriage, child's, C. Bailey.

Chain tip, watch, O. M. Draper.......... 296,542
Chair. See Reclining chair.
Chairleg fastener, s. Kohn........................ 296,338
Chopper. See Cotton chopper.
Chopper. See Cotton chopper.
Churn. J. B. Schoggen ..296,630
Churn power. J. A. Boals........22
Churn power. J. A. Boals............................
Cigar mouth pieces, machine for manufacturin

Clay pulverizing mact
Clip. See Hame clip.
,445
Clock windtng device. P. B. Cassidy.
Cloth folding machine, J. E. windleCloth folding machine, J. E. Wind
Coat pattern, W. J. MceCoat pattern, W. J.
Colter. R. Kloss.

$\begin{aligned} & \text { Streever } \\ & \text { Corkscrew a } \end{aligned}$

man
Cotton

Coupling. See Car coupling. Pipe coupling.
Coupling device D. P. Driscoll...39
Crank, tedder, F. Trump
Crank, tedder, F. T. Cross..................................296.577 to 296, 296.53
Crayon bolder, A. T.
Creaming canCreaming can, J. A. Kendall..
Cultivator, C. M. Pincknes
Curtain bar, window. I. B. Tripp
Curtain fixture, A. Sweetland.
Goodman. 296,72
Dental mould. J. W. Hayford....Doors, guiding and supporting device for, San-
ders \& Henderson........
Doors. windows, gates, etc., fastener for, A. G.Simpson.
Dredger, \mathbf{H}.296,469
299653
298,572
Drier, G. H. Immendo

Diectric battery and lamp, portable, c. G. Gum-
pel........................

