ndia-rubber in Brazil

In the early morning, men and women come with basket of clay cups on their backs, and little hatchets to gasb the trees. Wbere the white milk drips down from the gash they stick their cups on the trunk with daubs of clay moulded so as to catcb the whole flow. If the tree is a large one, four or five gashes may be cut in a circle around the trunk. On the next day other gasbes are made a little below these, and so on until the rows reach the ground By eleven o'clock the flow of milk bas ceased, aod the ser ingueiros come to collect the contents of the cups in calabash jugs. A gill or so is the utmost yicld from each tree, and a single gatherer may attend to a hundred and twenty trees or more, wading always tbrougb these dark marshes, and pasng dearly for bis proft in fever and weakness. Our mame luca hostess has brought in her day's gathering-a calabasb full of the wbite liquid, iu appearance precisely like milk. If left in this condition it coagulates after a while, and forms an inferior wbitish gum. To make the black rubber of comenerce, the milk must go through a peculiar process of manufacture, for which our guide has been preparing. Over a smouldering fire, fed with bard nuts of the tucuma palm, be places a kind of clay cbimney, like a widemouthed, bottomless jug; througb this boiao the tbick smoke pours in a constant stream. Now be takes his mould-in this case a wooden one, like a round bladed paddle-wasbes it with the milk, and holds it over the smoke until the liquid coagulates. Then anotber coat is added, only now, asthe wood is heated, the milk coagulates faster. It may take the gatberings of two or three days to cover the mould thickly enough. Then the rubber is still dull white, but in a short time it turns brown, and finally almost black, as it is sent to the market.
The mass is cut from the paddle and sold to traders in the village. Bottles are sometimes made by moulding the rubber over a clay ball, which is then broken up and removed. Our old fasbioned rubber sboes used to be made in this way. Twenty million pounds of rubber, valued at $6,000,000$ dollars, are annually exported from Para in the dry season; many thousaud people are engaged in gathering it. But the business altogetber is a ruinous one for the province, as Brazilians tbemselvesare fully aware. Tbe seringueiro, who rains two or three dollars for a single day's gathering, has nough, as life goes here, to keep bim in idleness for a veek; and when his money is spent, he can draw again on his ever ready bank.
The present wasteful system is spoken of as follows: Tbe half wild seringueiros will go on submitting to impositions and dying here in the swamps, until Brazilians learn that by purcbasing tbisl and from the government and planting it in rubber trees they can iusure vastly larger proflts, and do away with the evils of the present system. It is what must eventually be done. Tbe rubber gatherers, in their eagerness to secure large harvests, have already killed an immense number of trees about the Para estuary; they have been obliged to penetrate farther and fartber into the forest, to be Tocantins, Madeira, Purus, Rio Negro, and eventually even these regions must be exhausted, unless they are protected in some way. Tbe trees, properly planted and cared for, will yield well in fifteen years, and, of course, the cost of gathering would be vastly reduced in a compact plantation; balf the present latior of the rubber collector consists in lis long tramps tbougb the swampy forest.-Dominica Dial.

Swiss Labor statistics.

The most recent report of the Department of the Interior states tbat there are in Swi:zerland 8,642 factories and workshops under legal supervision, 1,472 of which are worked by macbine power. Of these, water furnishes the movement to the amount of 41,316 borse power, steam to the amount of 18,064 , and gas to the amount of 117 . The number of operatives employed is 134,862 , of which 70,364 are males and 64,498 females. There are 10,442 children between 14 and 16 years of age, 14,590 between 16 and 18 , and 109810 over the latter age. The textiles, such as cotton, silk, woolen, and linen, occupy 1,619 factories, with 85,705 work people; 68 establisbments carry on tanning, leatber dıessing, bair weaving, etc., with 3,753 bauds; there are 6,636 bands employed in 143 food preparing shops; 2,749 in 102 cbemical works; 4,950 in 150 printing shops. Tbere are also 111 wood working establishments, occupying 2,913 bands; 353 for clock and jewelry making, with 24,988 work people; and 96 for glass making, etc., with 3,170 .

A Lure for Tront and Black Bass

Is suggested by one of the writers to a sporting periodical that is somewhat novel. He says that he bas used it for thirty years, and never saw its equal as a bait. Tbe skin of the neck and the head of a foal, with speckled and red featbers, cut into narrow strips with the feathers on, makes a most enticing bait, and it may be used fresb, or be kept pickled in salt brine from fal! till spring. He says:

When on the hook it is a most enticing bait, and being tougb bangs on well and loolss bright. I have caught a basket of trout with one bait. Sometimes you may want a baitlike a bug or grasshopper, or a large miller; this you can closely imitate hy leaving on one or two featbers. Sometimes by cutting from the wattles near the hill, with a feather or two, or a piece of the comb) and a piece of the little feather's attached, will lure a trout when potbing else will."

SPRING WHEEL FOR TRACTION ENGINES.

Difficulty has always been experienced in the use of trac tion engines, on ordinary roads, on account of the rigidity of the wheels and the injury to the machine by jolting, for lack of sufficient elasticity. Tbe general idea of using elas tic spokes in wheels is an old one. But the particular form here sbown seems to be especially adapted to traction engines, and has proved bigbly successful in practical operation in England, where traction engines furnisbed with these wheels have been run for between two and three thousand miles with great satisfaction.
Engines of this construction were shown by J. \& H McLaren, of Leeds, at the recent agricultural show at York The rim of the wheel is made of strong iron rings and stee cross plates. The wheel bub bas wrought iron ribs to which the spring spokes are bolted. Tbe springs are made of the bect steel, nine inches wide by balf an inch tbick. Wben the weight of the engiue comes on these spokes, those nearest

SPRING WHEEL FOR TRACTION ENGINES.
the ground are compressed a little and those at the top elongated. The driving strain is sustaiued by an arm a ached to the rim.

METHOD OF PRESERVING ENSILAGE IN SILOS.
To preserve corn or other vegetable matter in silos it is necessary for its preservation to remove all air before heating or fermentation sets up. This has been done in a very imperfect manner by placing beavy weigbts on boards covering the top of the ensilage, the air escaping through cracks betwee" and around the boards; but as silos are from twelve to twenty feet deep, a large percentage of air will re main in contact with the ensilage, especially in the central and lower portiona, when treated in the ordinary way. The beavy pressure commonly used bas a dnuble disadvantage inasmucb as the walls of the silo must be made very strong, to resist lateral pressure, and ensilage under pressure fer ments much more rapidly than it would were the pressure sligbt, as the juices of the ensilage are expressed, and finding their way to the bottom of the silo are readily attacked by fermentation.
The improvement shown in our engraving has been pa ented by Mr. Samuel M. Colcord, of Dover, Mass., and is

PRESERVING ENSILAGE IN SILOS.
designed to preserve the ensilage in a sweeter and more wbolesome state than is possible by the ordinary metbod. This improved device not only removes atmospberic air from the silo very speedily and perfectly, and witb mucb less than the usual pressure, but it permits of a ready examination of the contents of the silo, and affords a means of applying cbemical preservatives for preventing or arresting ermentation.
By reference to the engraving it will be seen that the silo is provided with a frame of perforated metal pipes at the bottom, connecting with nue or more pipes leading out of the silo and upward to the surface. Juice or water accumulating
at the bottom of the silo may be remored through the hori-
zontal pipe, and the condition of the ensilage at the bottom of the silo may be'determined by the odor rising from the vertical pipes, or by dropping a sensitive thermometer into either of the pipes. Figs. 2 and 3 show the pipes in detail
A second set of pipes is supported upon a skeleton frame half way up the silo. The number of these sets of pipes may be increased, and of course the number of pipes in each set may be varied.
The pipes and the skeleton frame supporting them may be readily removed when reacbed in the operation of discharg. ing the silo.
This apparatus may be readily applied to silos of the old style already in existence.
Tbis useful invention will be readily understood without further explanation, and further particularsmay be obtained by addressing the inventor as above.

Study of Leprosy.

Dr. G. H. Fox, the lecturer on cutaneons diseases at the College of Physicians and Surgeons, New York city, bas recently made a trip to a leprosy lazaretto at Tracadie, Province of New Brunswick. In an interview with a representa tive of the New York Sun, Dr Fox gave some interesting information about this disease, which is less understood than its terrible cbaracter seems to demand. Dr. Fox says tbat lẹprosy is not absolutely and always incurable, and suggests leprosy is not a molutely and always incurable, and maggests that a wealtby man who would endow a bed in the Skin and
Cancer Hospital, so that lepers would come there, would be greatly facilitating the study of this disease. Nearly all the patients at Tracadie are descendants of two sisters, who, about 100 years ago, are said to have contracted the disease by wasbing clotbes for sailors. In the beginning of the century there were about 100 cases in the neigbborbood of Tra cadie. A hospital was built on Sbeldrake Island, not far from Tracadie, especially for lepers. Dr. Fox found a woman 80 years old in the lazaretto, who came there as a leper when a child. She was discharged as cured thirty years ago, but subsequently returned with fresb symptoms of the disease; but, in the doctor's opinion, she will die of old age ratber than of leprosy.
Many of the patients have the worst form of leprosytubercular leprosy or leontiasis-so called because large buncbes often form over the eyes, giving the patient a lion like, brutal expression. It is frigbtful to be in a room sur rounded by such lepers. Tbe macular lepers merely bave bronze patcbes over the body. The disease is hereditary, but not contagious, except by inoculation. To illustrate this phase of the disease the doctor said:
"A priest who visited the lazaretto caught the disease; but I heard from Babineau that this priest, in a spirit of bravado, would take a pipe from a leper's moutb and smoke bravado, would take a pipe from a leper's mouth
it. So be caught the disease from inoculation."
Dr. Fox dops unt think that the disease is infectious. If he is correct, the story of the origin of it in Tracadie must be rejected, and the infection of the women by washing the clothing of diseased sailors be treated as a myth. But the most important portion of the doctor's revelations must be that he knows of "six cases of leprosy in this city," and helieves that "cases of leprosy exist in the Chinese quarter of New York, housed with otber people and perbaps inter marrying."

Extreme Minuteness.

When vision is not aided by any magnilying process, there is a point of minuteness, as all know, when an object will make no impression upon the retina, and will not he seen by the unaided eye. But when the object is viewed by means of a microscope, it becomes visible. There is a question, however, that remains unanswered, whicb is, wbetber any object may become so attenuated that it cannot be made visible by any means. Not many years agn, less probably than twenty-five, there were lines tbat could not be resolved by any microscopic lenses then in existence, which can be exlibited now without any difficulty; but, at that time, exhibited now without any difficulty; but, all that
makers of lenses had not attained to the skill of making makers of lenses had not attained to the skinl of making
them with large angles of aperture, but now they are made with the bigbest angle tbat is possible, and consequently the capacity of such objectives can only be increased by greater skill in their manufacture. But the limit of angle of aperture having been reached-no opportunity remaining of increasing capacity in that direction-is it not reasonable to suppose that, with present appliances, no greater skill in manufacture can be expected? Sir Royston Pigott, recently, at a meeting of the R. M. S , stated that he bad seen globules of mercury, made by smashing a minute particle of mercury with a watch spring, less than $1 \frac{1}{0 \sigma}$ of $1 \frac{1}{0} \sigma \overline{0}$ of an incb, or less tban the millionth of an inch. Anotber member replied tbat be was not aware that there is any limit of visibility in the microscope other than that imposed by the sensibility of the observer's retina, the correction of the objective, and the illumination. - The Microscope.

Coated Tongues.

Among the various substances wibicb bave been found on be buman tongue, as sbown by the microscope, are the fol lowing: Fibers of wool, linen, and cotton; fibers of spiral vessels; fibers of muscle, in one case eight bours after eating; starch grains; cheese mould; portions of potato skin; sales, moths, etc. ; bairs from legs of bees; hairs from legs of spiders: pollen of various flowers; stamens of various lowers; hairs of cats, quite common; bairs of mouse once only; bairs from various leaves; wing of mosquito once; fragments of the leaves of tobacco, of cbamomile flowers, etc.

