srimtific enmeritan.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
o. D. MUNN.
A. e. beach-

THIRMS FOR THE SCIENTIFIC AMERICAN.

 One cony, one year nostage included....One cops, six months postake included
Clubs.-One extra copy of The scientipic American will be supplie same provortionate rate. Postuge prepaid.
Remit is postal order. Address
MUNN \& CO., 261 Broad way, corner of Warren street, New York.
The Scientific American Supplement
io a distinct paper from the Scientific American. I'HB SUPPIEMENT
is isyued weekly. Every number contains 16 vetavo pages, uniform in size Is ssuned weekly. Every number contains 16 uctavo pages, uniform in size
with Scigntiric AMLRICAN. T'erms of subscription Cor Scpylement
 all news dealersthroughout the country
Will be sent for one year postage free. on receipt of seven dollars. Both papers so one address or diffierent addresses as desirea.
The sultest way to remit is by draft, postal order, or rexistered letter.
Address MUNN \&CO., 261 Broad way, corner of Warren street. New York

Scientife American Export Edition.

The sciuntific american Export Edition is a large and splendid periodical, issued once a month. Eitch number centains about cne hundred large quarto pages, profusely illustrated. embracing: 1.) Most of the
plateg and pages of the four preceding weekly issues of the Sci krific Ameincas, with its splendid engriaings and valuable information: (2.) Commercial, trader and ruxunufacturing announcements of leading houses. Terms for Hxport Edition, 85.00 a year, sent prepaid to any nart of the
world Single copies 50 cents. Manufacturers and others who desire world. Sirgle copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely disp
noutcements published in this edition at a very moderate cust.
The SCi w © TIFIC AMEHICAN Export Edition has alarge guariuteed circu-
lation in all commercial places throughout the world. Address MUNN \& hation in all commercial places throughout the world. Address MUNN Co., 26i Broadway, corner of Warren street, New York

NEW YORK, SATURDAY, AUGUST 25, 1883.
Contents.
(Illustrated articles are marked with an asterisis.)

TABLE OF CONTENTS UF
the scientific american supplement NO. 399,
For the Week ending August 25, 1883.

WATER SUPPLY FOR NEW YORE CITY.

A meeting of the New Aqueduct Commission was held in New York, August 8, at whiçb the Commissioner of Public Works presented a report describing three proposed plans for increasing the water supply of the city. The first propo sition was the building of a dam and the formation of a reservoir at the lowest available point on the Croton River, and in the Croton Valley. The second proposition was to dam the east brancb of the Croton at Brewster's Station.
The third plan was the construction of two aqueducts, one below the present Croton Dam and anotber above the dam, the object being to add to the present means of delivering the present storage supply and to increase the supply from sources not now utilized. What may be considered a
fourth proposition was made by a member of the board who suggested the building of a temporary flume of wood, four feet in cross section, from the present Croton Dam to the city. Estimates regarding this plan are to be made.
But the plan that appeared to find the most favor among the members of the commission, was that of Mr. Isaac New. ton, the Cbief Engineer of the Croton Water Works, a plan which has been indorsed by seven of the most prominent hydraulic engineers in the country. This is the first proposition, the building of a dam at the lowest point in the Croton Valley at "Quaker Bridge," the reservoir to have an area of 3,635 acres, the water level to be nearly 34 feet above that of the present Croton dam.
Tbe additional watershed thus utilized will be 23 square miles, and the estimated daily increase of water over the present suppiy will be about $20,000,000$ gallons, making a minimum supply for the city of $250,000,000$ gallons. Tbe total cost of the dam, land damages, and the new aqueduct, 31.89 miles long, and of circular area of 12 feet diameter, will be as estimated about $\$ 14,500,000$; but other outside estimates put the cost of this job at $\$ 30,000,000$, and claim that its construction will be attended with serious dangers; that its success is problematical; that the only sure thing aliout it is the enormous load of debt which it will entail upon a city now overloaded with indebtedness; and thatany one of the other suggested plans would be better, far cheatper, quicker in furnisbing the required water supply, and equally effective for permanent use.

the carson footprints.

Dr. D. W. Harkness read a lengthy paper before the San Francisco Academy of Sciences, on August 6, on the foot marks found in the quarry at Carson, Nevada, some of which resemble those of a biped and have been referred to prelistoric man. To this belief Professor O. C. Marsh expressed a doubt, referring the footprints rather to those of a gigantic sloth, and giving, as one of his reasons for that opinion, the fuct that the spread (stradd)e of the lines of opinion, the fuct that the spread (stradde) of the lines of
footsteps was a bormally large for those of man, being eighteen incles, while the length of stride or step is but little over thirty-eight or thirty-nine inches, hardly more than a vigorous stepping six footer of the period would make.
To this principal objection, and other minor ones, Dr . Harkness gives a series of descriptions of the padded surfaces of walkers, from wating birds to springing quadrupeds, and sbows that wbile the bipedal tracks are no less than 400 in number in a series of eight, representing probably so many individuals, they are all similar in character and have no intimation of pad, nail, or talon; but they are crossed and recrossed by well defined tracks of the elk, borse, heron or or whif, mammoth, deer, the leaping tiger, the identified quadruped witt broad hoofs, sharp pointed at the toes. These all can be classified, but the bipedal tracks in dispute differ from all in slowing no natural foot cbaracteristics of structure.
Dr. Harkness' conclusion is that the tracks are those of progenitors of the present buman race, and be has given them the title of the "Nevada Man"-Hono Nevadensis. The feet that made the impressions were sbod with sandals, in one instance of wood and in others of rawbide or other yielding materials. They vary in size from fourteen to twenty inches in length, with an average breadth of about eigltt inches. Arrangements have been made by the Cali in larnia Academy of Sciences for taking plaster casts of the footprints now exposed, aud they are so valuable in palæon-
tolugical research that the Smithsonian Institution at Wasbington, the National Museum at Paris, and many other eminent scientific societies bave applied for duplicate casts. An area forty-nine feet by eigbt is to be cast in sections.

hard wood flooring.

The use of beech, birch, and maple bas been restricted to a few specific purposes, but the example of the builders of the new Flint Mill at Fall River, in flooring with these woods, will probably be followed by others. The narrow Soutbern pine planks that have been so long and extensively employed fur flooring require to be culled with great care to insure an even floor. They must be straigbt grained, or they will bend and splay by use, splintering into short slivers dangerous to the feet, and collective of all the fluff and fibrous dirt with which they come in contact. The
heart of the pine is especially open to this objection. But a beecb or maple floor will wear evenly and smoothly, and has greater endurance for heavy rolling weights than that of the Soutbern pine. It is more cleanly, and is not so readily inflammable.
inflammable.
The birch
dried at a heat not sufficient to vaporize its contained oil, makes a durable and evenly wearing floor. This cbeaply makes a durable and evenly wearing floor. This cbeaply
estimated wood is really elegant alson for furniture purposes. It shows well in cabinet work alternated with maple or apple, and it is fully as valuable for drawers and cllests in defending the contents from moths as is the red cedar. The best qualities of birch timber come from the black birch or the yellow birch, the white birch wood being two open or porous for fine finisb or durability; and the yellow and black bircb grows also to a larger size generally.
The New York Evening Postsays tbat the new building of the Pacific Mills at Lawrence, Mass., is to be floored will hard wood, some 300,000 feet to be used, and that ither mills throughout Massachusetts, Rhode Island, and Connecticut, lave also ordered this hard wood flooring, and it is very evident tbat Soutbern pine flooring will find a serious competitor. A good hard pine mill floor board, free of sap and coarse knots, will cost about $\$ 28$ per thousand feet in large lots, according to the quality, while hard word florring will cost from $\$ 30$ to $\$ 32$ per thousand feet all dressed and delivered.

HOW Granite columns are polished.

The word "granite" generally conveys the idea of rough ness, coarseness, and solidity. The idea of finish, smootbness, and polish does not, in the popularmind, belong to the material. But most kinds of granite are susceptible of a beautiful and almost faultless surface finish. Tbe effect of this finish in contrast with the bammered faced granite, on monuments where a tablet is surface polished, or lines of lettering are in brilliant contrast with the dull gray of the unpolisbed stone, is very fine, especially so when the slafts of columns are tbus finisbed, the bases being hammered and the capitals carved. As this finish can now be obtained by machinery at a low cost, the possibilities of obdurate graaite for ornamental as well as for building purposes bave been greatly enlarged.
Granite columns, vases, and similar cylindrical ornaments are polished in a latke. This differs but litte from au ordinary machinist's lathe, except that a continuous bed is not necessary to bold the lathe heads, tbat the spindle of the foot-stock revolves as well as that of the bead stock, and that no tool carriage and appurtenances are required. The bead-stock is furnisbed, like tiat of the ordinary back-bead-stock is furnisbed, like tiat of the ordinary back-
geared latbe, with a back slaft, on wbich is the driving geared latbe, with a back slaft, on wbich is tbe driving
pulley, or tbe cone of step pulleys, from whicb the spindls is driven by means of a gear and pinion, the surface spleesd of a column under process of grinding and polisbing being from 230 to 240 feet per minute, giving to a twelve-incb column about 77 turns per minute and to a thirt y-six incb column about 25 turns per mionte.
To center and swi.g a column in the lathe the stone has square recess cui cach end, into which is fitted a block of cast iron with round hole tbrough its center. The place of this block is found by means of a cross of wood with sliding arms on each of the four limbs of the cross, the arms projecting over the surface of tbe column longitudinally, and wben equidistant from the center deuoting tbe place of the center block, so that the true center of the column or shaft is found, justas it is on an iron slaft, from the circumference. The iron block is secured in place by a running of Babbitt metal, or a similar uushrinking compound, around it. The centers of the lathe spindles fit the holes in the blocks, and when swung in the lathe the column is rotated by means of a lug or dog on the face plate engaging with one seated in the end of the column.
Back of the lathe is a wall of plank against which rest the ends of a number of iron blocks, three or four inches diameter, long enough to project over the column and to have theirrear ends resting against the bulkbead or wall. Their under sides are concaved to embrace the columa onefourth of its diameter or less, and as the motion of the column in grinding is reverse to that of the ordinary lathe, the blocks are held against the wall by the rotation of the column. Tbese blocks are arranged closely side by side, and when the column is first worked its irregularities of chiseling and unevenness of contour make these blocks play pand down like tbe movements of pianoforte keys under be fingers of a performer. But as the grinding progresses tbis irregular movement becomes a very slight undulation, pleasant to see.
A trough runs under the column its entire lenglib, and from it an attendant shovels beach sand and water on the revolving column, the blocks with their concave faces acting as grinders, just as the binge clamps of the machinists are used in polisbing a turned sbaft. And like the clamps, the series of blocks are occasionally pusbed along one-balf of their width to avoid rings of roughness. This quartz sand is used until all the bruises, "stunts," and chisel marks are taken out, and the surface shows a un iform color. Then the trough is cleaned and emery of the numbers 40 to 60 , according to the quality of the stone, is weighed out in the proportion of about half a pound to every superficial foot; thus a column of ten feet in length by three feet dia-meter-ninety superficial feet-would require from 45 to 50 pounds. This is all weighed out at one time, and is never added to during the entire process. Mixed with water, it is fed to the grinders by the shovelful, over and over, untilt the grinding is entirely completed. The reason for this is evident from the fact tbat, in using, the emery becomesground up and mixed with the detritus of the granite and the particles of the iron blocks or grinders, and after a time is a cles of the iron blocks or grinders, and after a time is a
pasty mass losing much of its original sharp grittiness. If,

