stinutifir ${ }^{\text {ch}}$ moxican.

HSTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.

o. D. MUNN.

A. е. BEACH.

TEELES FOR THE SCLENTIFIC AMERICAN. One cons, one year postage included...
One copy, six months postage included

Clubs, -One extra copy of irae Scd 183160
 same proportionate rate. Postage prepaid.
Hemit uy postal order. Address

Remit wy postal order. Address
MUNN \& CO., 261 Broad way, corner of Warren street, New York.
The Scientife American Supplement is a distinct paper from the Scieviricic American. The silphiem.in t
la issued weekly. Every number contains 16 octavo pages, uniform in size Tissued weekly. Every number contains 16 octavo pages, uniform in size
with Sct Entipic Ambrican. Terms of subscription for Supplement, 85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the country
Combined llates. - The ScIENTIPIC
will be sent for one year postage free. on receipt of seven doluars. Both papers to one address or different addreesses as desired.
papers to one add ress or difirerent addresses as desired.
The satees way to remit is by draft, postal order. or repistered letter.
Address MUNN \&CO., 261 Broadway, corner of Warren street, New York
Scientife American Export Edition. The ScIuNTITIC A MERICAN Export Edition is a large and splendid perl-
odical, issued once a month. E:ach number contains ahout one hundred
large quarto pages, profusely illustrated. embracing: (1.) Most of the large quarto pages, profusely illustrated. embracing: (1.) M Most of the
plates and pages of the four preceding weekly issues of the Scienvipic plates and pages of the four preceding weekly issues of the Scinevific
American, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading hovses. T'erms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Manu facturers and others who desire
to secure foreign trade may have large, and handsomely to secure foreign trade may have large. and handsomely disp
nouncements published in this edition at a very moderate cost.
Tbe Sciantipic Amuincan Export Edition has a large guaranteed circulation in all commercial places throughout the world. Address AUNN \& CO., 261 Broadway, corner of Warren street, New Vork.

NEW YORK, SATURDAY, AUGUST 4, 1883.

TABLE OF CON'TENTS OF
the scientific american supplement INO. 396,
For the Week ending Angust 4, 1883 .
Price 10 cents. For sale by all newsdealers
 . ENGINE States.-Wrought and cast nickel Meno........... 663

VII. Horticulvire. Transplanting Trees in Japan

IX. MISCELLA NEOUS.- Sictionary of Carriage Terms....
X. BIOGRAPH Y.-Robert Griffths, the Father of Screw Propellers

A BRAVE LIfE GONE OUT.

Captain Matthew Webb, the famous English swimmer, was drowned in the Niagara Rapids, July 25, in an attempt to float "the angriest bit of water in the world," as he styled
it. His attempt was not made wholly for notoriety, for no extensive advertising was done, and no means taken to secure a large number of spectators. It was not made for money. Probably less than 200 persons saw this brave man go to his death. But he bad great confidence in his powers of endurance, for he bad swum the Euglish Channel from Dover to Calais, a swim of nearly twenty-two hours; he saved a sailor by jumping overboard in the mid-Atlantic in a storm, and was the recipient of a gold medal from the Royal Humane Society, and of other testimonials, for bis skill and bravery. He came to this country in 1879, and besides giving exhibitions of his own skill, gave lessons in swimming. He was only 45 years old when the remorseless waters drew him out of mortal sight.
Some time before the fatal attempt he stated that he felt himself strong enough and skilled enough to swim the Niagara Rapids and get through alive, in defiance of the stories told by the inhabitants of the adjacent localities as to the danger of these turbulent waters. He even described in
detail bis plan of avoiding the Scyila and Charybdis of detail his plan of avoiding the Scyila and Cbarybdis of the methods be would adopt in buoying bimself, the use of "breast strokes" and "overhand strokes," all bis plans being well thought out beforeband, and his failure should be attributed to bis lack of knowledge of the awful hell of waters into which he ventured, which outvie even Poe's horrible description of the "Descent into the Maelström."
Only three persons can boast of baving shot the rapids, and they did it in a steam vessel, the Maid of the Mist, in 1861, under circumstances of such extreme peril as may best be understood by the fact that she came out of the ordeal with loss of smokestack and with such other injuries as made her appear like a wreck when she landed on the other shore, miles below her starting point. And this success was made by a boat built to withstand the surges below the falls, and specially lightened for the shoot, with a one hundred horse power engine to propel her. If she barely came out of the test, battered and abused hy the terrible waters, it is no wonder that a brave man lost his life with only his own unaided physical stamina and mental courage to back bim.
completion of the great lyman-haskell gun The twenty-five ton gun, twenty-five feet long, whicli bas been in process of manufacture during the year past by the Reading, Pa., Iron Company, is at last completed, and is a splendid piece of workmanship. This remark
tion:
Hanging fom the under after part of the gun are four large protuberances arranged in a line, each something like a cow's bag. These protuberances contain pockets for holding powder, and they communicate with the bore of the gun. The latter is cbarged at the breech with eighteen pounds of powder, against which the projectile rests in the ordinary manner; each of the pockets is intended to contain twenty-eight pounds of powder.
The firing of the breech charge starts the projectile, which is successively accelerated, on passing the several pockets, by the firing of the powder charges contained in them, which are set off by the flame within the cannon. In this way five successive cbarges are made to act against the projectile, which leaves the gun with a tremendous velocity. It is expected that this cannon will revolutionize the art of gunnery; it is believed that it will carry its ball twelve or fifteen miles, and go througb iron plates two feet in thickness. The new gun is now on its way to Sandy Hook, N.Y., wbere it is soon to be tested before a board of army and navy officers, under a special Congressional appropriation. A
full, illustrated account of tbisnovel invention was published in the Scientific American of January 28, 1882.

THE TELEPHONE INTERFERENCE CASE DECIDED

The Examiner of Interferences at the Patent Office, Mr J. B. Clsurch, bas lately rendered a decision in the long contested telepbone case, in which the parties interested were Bell, Gray, Edison, McDonougb, Dolbear, Boelker, Blake, Irwin, and Richmond. We understand that this decision disposes of some eleven cases in all, in which the above parties were represented. These cases bave been pending before the Patent Office since 1878, and were argued before the Examiner about a year and balf ago.

It has been necessary for the Examiner to go over a vast amount of testimony, and it is understood that he has per' formed the duty with greatest care; bis decision is stated to cover nearly seven hundred pages of manuscript.

Priority of invention is awarded to Bell for the art by which oral conversation or sounds of any description can be telegraphically transmitted; also for the improvement in the art of transmitting vocal sounds or spoken words tele. graphically; also for the acoustic telegraph, including sound producers as well as reproducers on armature plate, the electro magnet for the same, and a closed circuit passing from the helix of such electro-magnet to the source of undulatory electric energy; also for the telephonic transmitters and the combination in one circuit of two or more disks or diapbragms; also for the combination for rendering audible coustic vibrations: also for the combination in an acoustic telegraph of an electro-magnet and a polarized armature,
and the combination in an acoustic telegraph of an armature plate polarized by induction, a resonant tube, and an electro. nagnet and circuit connections.
Priority of invention is awarded to Edison, although be did not claim it, for the transmitter, consisting of the combination in an electric circuit of a diaphragm and a liquid or equivalent substance of high resistance, whereby the vibrations of the diaphragm cause variations in the resistance of the electric current; also for the combination in a telegraph instrument operated by sound of two or more eiectrodes placed in an electrolytic liquid, and operating to inrease and decrease the resistance of the electric circuit by the movement derived from the diaphragm; also for a spring forming or carrying one electrode, and constantly pressing against the other electrode and the diaphragm to maintain the required initial pressure between the electrodes and yield to the movements of the diaphragm.
Priority of invention for "a telephone receiver, consisting of the combination in an electric circuit of a magnet and a diaphragm supported and arranged in close prosimity thereto, whereby sounds thrown upon the line may be reproduced accurately as to pitch and quality," is a warded to McDonough.

old boilding material.

An extensive trade in second band building material bas been carried on uninterruptedly in this city for fifty years, and is largely supported by builders and joiners. The stone and brick of an old building is used in the construction of a new one, the lime-whitened bricks making the inside of the uter walls and the partitions, and the stone going into the foundations. But it is not generally known that the inside woodwork is used again, frequently without radical alteration. Many builders prefer this old timber because it is thoroughly seasoned, baving been defended from the weather and been sutijected to the influences of a measurably even temperature for years. The richer woods which are ad mired for their color acquire mellower tones by age and become more valuable as the vears pass. Everybody knows that furniture of mahogany and rosewood that bas outlived several generations is much bandsomer than that made from new wood. But it has an added value as mere material. An article made from the old wood will retain its integrity in all its joints; its sbrinking days are over. For the same reason the timbering, waiuscoting. and flooring of old build ings has an added value, although its selling price is less than hat of new material.

the relations of patent experts to the codrts.

When a case involving scientific principles comes up in the courts the custom is for each side to call to their assistance scientific experts. These are men who, ou account of education and profession, are admitted to possess a pecu liarly full knowledge of the scientific points involved in the ssue.
They occupy an anomalous position. They are sum moned mominally as amici curic, or friends of the court, to assist in its deliberations, and give it information in the special knowledge required to dispose of the questions that come before it. This assumes that they are quite disinterested and indifferent to the ultimate issure. Yet each side engages its own expert, and each of these experts takes as favorable a view as possible of his nwn side and runs down the other as much as possible. Although their compensation does not depend on the final decision that is reached if they were to act as judges and not give their own side the benefit of all doubts, their occupation would soon be gone. The fact that they are in some sense advocates is recognized y the court. The fact that they are retained by one or the ther side to testify in its favor is admitted.
Because it is always possible in this special class of suit to engage experts to testify on either side. a certain degree of distrust for their opinions is oftcn expressed. The great truth is overlooked, that in uot one case out of a bundred are the principles so clear that something is not to be said on both sides. Yet the complaint is continually made that the expert is too much the advocate.
Among lawyers who practice in patent suits differen views of this subject obtain. Some say that they do not believe in experts. They would prefer to conduct their suits without them. The general custom is all that makes them retain them. These lawrers will often he found to be among the best of their class. They will have so good a knowledge of the principles of science, as to quickly grasp the mechanical points of a case. They could act as experts themselves, hut custom requires that they should bave some witness, one obliged to tell the whole truth, as a supporter of their views. Such a supporter bas been found to have great weight with the court, and to be of much influence in con trolling its decision.
Some lawyers propose another system. They say that the xpert sbould be engaged to present the views of the counsel to the court. They should not be witnesses. Tbeir statements should be an exposition in understandable and correct form of the views of the counsel. This statement sbould be given as a one-sided viex, and sbould not profess to be disinterested. Finally, it should not be given under oath. This certainly is meetng the difficulty, and justifies the ex pert in the most advanced position of advocate which be may be inclined to assume. Were his position recognized as this one be would still remain to a certain extent an amicus curue, while the fact of his heing an advocate would be recognized as proper and right. At present this is practically
is position. except that his testimony is given under oath. but in the one under consideration the antennæ are black Phis places a great restraint on his direct testimony, and with the exception of the center, which is white.
enables the opposiug counsel to test the validity of his views by cross-examination.
There is yet another way of disposing of the difficulties of the case. It is to have experts called by the court directly, and paid by it to assist it in its deliberations. At presentexperts are to all intents and purposes assisting counsel. This would make them assisting judges. The idea of thus using them is quite a popular one. Many of our best lawyers ad vocate $i t$. The expert would occupy a wholly disinterested position, and the decisions be reached would have every chance of being equitable and just. In this suggestion bere is much that is attractive, and in a more advanced state of society it would seem worthy of being carried out.
But the same necessity which calls for advocates and lawyers to argue separately each his own side of a case calls also for experts on the separate parts of complainant and de-femtant:- When two people come to an issue they do not go before a court and accept its unaided judgment as infallible. Each side engagesits own counsel. These are officers of the court. yet are not prohibited by that fact from taking one side or the other of a case. Their duty is to do so, and be as one-sided as possible, and to carry every possible point in their elient's favor. No matter how able the judge may be. his time is too important to be devoted to looking up authorities and to studying each from the books. He sits in judgment upon the views presented him by counsel. If hey are properly put forward, he in many cases can decide the case without leaving his seat. Thus business is expe dited, and the main expenses of a suit are borne by the interested parties and not by the government.
Were the court to call an expert for its guidance in special suits, and were the parties in the suit to have none, the position would be analogous to that of a court sitting in direct judgment or arbitration, with no lawyers to advocate the causes of those appearing before it. There would be no summary of the scientific questions presented. This work would fall upon the court and its expert. Business would be delayed, and a very considerable expense he placed upon the court. It would not be much better to dispense with experts than to dispense with counsel.
At present the scientific views are well presented. The experts give them in detail. They are formulated after discussion with their counsel. The counsels in their briefs and arguments summarize them, and present to the court their most salient and applieable points. The expert bas been debarred by his position of witness from arguing the case. Any tendency he may exhibit in his testimony toward such a course is met by objection from the opposing counsel.
cially qualified witness. The counsel completes the work the expert has begun. He can give the fullest license to bis reasoning powers in proving his case. The argument is the supplement of the expert's testimony, and has therefore to follow it very closely. A departure from any of the views brought forward by the expert will be made to tell forcibly against the same side.
Thus it will be seen that the lawyer and expert must work han: 1 in hand. One cannot, go ahead without the other, the witness being the most restricted on account of h is position. While his testimony must bear the stamp of independence, it will necessarily be partial. As this partiality is known and recognized as an attribute of expert testimony, it gives the professors of it a known standing. They are considered with justness as specially educated witnesses retained for the purpose of presenting the views of one side to the court. They should not be considered as sailing under the false colors of a pretended disinterestedness.

THE CATERPILLAR AND ITS ENEMY.

The ordinary caterpillar is covered with bright yellow hair, has a deep brown stripe down the back, has four tussocks, or tufts, of hair in a row back of its head, and has two small red warts on the two segments next the last. From the extremity projects a single pencil of hairs, and from the head radiate two pencils having the appearance of horns. The eggs from which the caterpillar, or grub, is batched are small, white, and hard.
When the grub emerges it commences to feed, bending all its energies toward gorging itself. It grows rapidly, shedding its skin several times, and when full sized, or full fed, as it is termed, is ready to spin its cocoon and enter the pupa or chrysalis state. The bairs of the body are woven in the cocoon in addition to the thread spun. The female case is longer and thicker than that of the male. From the cocoon emerges the moth known as the Orgyia leucostigma. The females are wingless, having only rudimentary wings, and do not travel any distance. The males are smoke colored with spotted wings. Tbe female lays about 230 eggs, covering tbem with gluten and a silk which she spins, so that the nest has the appearance of a little tuft of white cotton. She sometimes draws leaves around the nest so as
to completely close it, excluding the rain and deceiving the eyes of the birds.
The ichneumon fly is a parasite, its prey being the caterpillar above described. The female deposits its eggs on the back of the pupa in the cocoon of the caterpillar. When the egg is batched the grub works its way down into the pura; on which it feeds. When full fed it spins its cocoon in which
it completes its transformation, coming forth as a fly. The fly is slim bodied, abrout one-half an inch long, and of a
black color. In some species the antennæ and legs are red,

There is no way by which the worm-pest can be got rid of, and although this fly aids in the work of destruction, his numbers are too small to make his efforts appreciable Undoubtedly the best way yet devised is to brush off and destroy the nests of the moth. Generally they are easily seen, and when it is remembered that each one contains more than two bundred eggs, it is easy to conjecture what an inroad one man could make in the ranks of the caterpillar.

SKETCHING FOR MECHANICS.

While the value of a knowledge of mechanical draughting to a mechanic is indisputable, there is a sort of free hand drawing, or sketching, tbat is also useful. The faculty for its practice may be innate, and in that case but slight instruction is necessary to enable its possessor to illustrate bis thought far better than he could impart it verbally. But. even those whose natural tendency does not impel them to sketching as explanation can get enough facility by practice to make themselves understood readily.
Probably nothing is more difficult to explain and exhibit by words alone than mechanical construction and mechanical movement. It is not only difficult for the narrator, but also for the listener. The memory must bold all the points of the information in contact ready to make a completed idea at the climax. But an appeal to the eye, however crudely made, presents the entire image at one view without any laborious action of the mind. And it is a noticeable fact tbat tbose mechanics who are of an inventive, improving, and originating turn of mind are most apt with pencil and paper, or chalk and slab. To them the mecbanical idea has received a form in their own mind, and by a partial representation they seek to impart their knowledge to others.
The practice of sketching as illustrative of verbal statement is an excellent one for mechanics generally to acquire If one bas not the natural impulse in this direction, a few essons in free hand drawing will not be amiss. Some of the best of James Watt's improvements derive their historical and mechanical value from his rough sketches, which told much more plainly tban his equally crude English the operations and conclusions of his constructive mind. In : a paper read that is not illustrated by the autbor, at the time of reading, by the blackboard and chalk, or else it had been made visible by prepared cartoons, or possibly lithographed charts. Shop work also demands the ready hand at sketching. There are many jobs whicb do not require are greatly expedited if the foreman has a facility with pencil, crayon, or chalk.

PICKER FIRES

A writer in the Textile Record for July asserts that a fire cannot be started in a picker house by sparks of fire from: the picker igniting the cotton; " n o spark from a picker ever fired a mill or ever can be made to set fire to anything." As the writer well says, "these are tolerably broad asser tions." Nevertheless, he offers as evidence in favor of their truth the result of experiments whicb he made, such as producing a shower of sparks from a brick beld against the beater, into which was thrust successively sboddy, cotton fiber saturated with benzine, and even lucifer matches. The open hand beld against the stream of sparks felt on pain.
The sparks from an emery wheel do not burn the band, oor ignite the workman'sapronor overalls, but each particle is a minute coal of fire, and under favoring circumstances will ignite in flammable and explosive materials. Sparks from a flint and old file will ignite tinder, charred rags, and punk. But to do so the sparks must be protected from the wind Possibly the experiments made by the correspondent were made with the beater hox uncovered, and the lint and other materials and the shower of sparks were exposed to the blast from the revolving beater. It is probable that parti cles of grit, nails, bits of wire, and similar materials do run the gauntlet of the picker beaters frequently without inciting a blaze, as the condition of the waste proves; but there may come a time when, all the conditions being favorable, he destructive spark will do the work.
The writer attributes fires to the spontaneous combustion of oily waste which is put into the picker house. If such a reprehensible practice is followed, or allowed by a mill superintendent, he is certainly an unfit man for his place. It is not always possible to ascertain the cause of a fire tbat starts in the picker room, but that mills are burned by fires started there is unquestionable. Mill owners show their belief in the danger from this source in erecting detacbed fire proof buildings for picker houses, and it is doubtful if a single mill owner could be found so confident in this correspondent's belief as to allow experiments be made in bis picker bouse by passing through the rolls to the beater nails, wire, or grit with the cotton. At all events. no degree of the vigilant caution now practiced to prevent these foreign substances from reaching the picker should be hower of sparks.

An artesian well sunk by the Pierce Well Excavator Company for the Manhattan Elevated Railway Company, at 128th Street corner 2d A venue, in this city, has a depth of 250 feet, and yields 250 gallons of mater per minute.

How to Raise Big Grops.

It has often been asserted by advanced agriculturists that f wheat, either spring or winter, is sown in drills, far ennugh apart 10 admit of using a horse hoe between the rows, both to keep down weeds and loosen and aerate the soii, the yield might be increased to a marvelous extent more than it now is in this country.
In proof of this, a recent observing and intelligent traveler n Belgium gives the mode of culture there and the yield, which sometimes, with very favorable weather for barvest reaches as high as 160 bushels per acre. This is one of the most fertile, prosperous, and most populous countries in the world, supporting $481 \cdot \% 1$ persons to the square mile, against $18 \cdot 92$ in the United States and 216.62 in Germany. Winter wheat is a staple crop there on their high priced small farms of only an acre or two. The land is highly manuied in Autumn, well harrowed several times, and got into the best possible condition. The grain is sown in the fall in seed beds, very thickly on the highest and best location, where it is not likels to be wirter-killed, or injured by any casualty, such as overflowing or drowning out, or smothering under the snow.
In the spring the main fields are again dressed up and marked out in drills the proper distance. When the wheat has grown sufficiently to be moved, it is thinned out by being taken up, separated from the thick stools, and planted in the drills with a toool called a dibble, which makes a hole the proper depth, into which the wheat roots are inserted, pressing the earth tight against them with the foot. This work is usually intrusted to half grown boys and girls, a man sorting out the wheat plants in order that those of the same size may be placed together, that the field may grow ven and regular.
When the plants have commenced growing, the soil is thoroughly and constantly stirred, either by means of hand or horse power. Every weed and all foreign plants are destroyed, and oothing but what is wanted, the article itself, is allowed to grow. There are very seldom any extensive failures of crops tbus carefully and scientifically grown. The gield is a quantity never imagined or heard of in this country, and the crop always and surely pays the cultivator.
It is asserted that such pains would not pay to apply to crops in this country. But do we not go to the opposite ex treme? Has it ever been tried liere? It certainly would pay satisfactorily if applied to choice varicties in small quantities, about to be used for seed. It is certainly better o till one acre and get a crop now raised on four acres, than o try the four and only raise half a crop, which is now so often the case here.-Milling World.

The Water Jet.

The Annales des Travaux Publics describes the method used in sinking the piles for the foundation of the Palais de Justice at Brunswick (Prussia).
A framework with hoisting fall somewhat similar to the ordinary pile driver was used in placing the pile in position ready for sinking; two tubes, each 2 inches in diameter, with the lower ends bent inward toward the point of the piles, were attacbed to the piles by iron staples; at the upper end each pipe was connected by a short section of rubler hose to other pipes connected with the city water main, which water supply was in this case under a pressure of four atmospheres. The piles usually sunk by their own weight into the hole formed by the water jet, as soon as the valve was opened, making connection between the tubes on the pile and the water main. To hasten the rate of settlement, a vertical iron bar 3 feet long was set into a hole bored in the head of the pile, and upon this were placed iron weigbts of 200 pounds each, as the resistance might require. Piles 12 inches in diameter were sunk in this way to a deptb of fifteen feet in 10 minutes' time. The least time required for a deptb of 15 fcet was 2 minutes, the longest time for the same depth was 30 minutes. As long as the water jet was in operation at the foot of the pile it was possible to give the pile rotary motion, and thus facilitate the descent; but as soon as the jet was stopped the pile became mmovable. As a proof of their stability a dead weight of 50 tons was applied to some of them, aud it was found that their resistance was entirely independent of the time conumed in sinking them.
To sink 20 piles by this method required the use of about 2,000 gallons of water; 7 or 8 laborers were employed, and one gang put down from 6 to 14 piles per day.

Copper for Roofing.

In speaking of the cost of building materials an architect ecently suggested the use of copper instead of galvanized iron or "terne" sheets for roofing purposes. He said that copper costs only about double the price of tin, or iron, for the same area of roof, that it is practically indestructible by time, and that even if the building it covers is pulled down the roofing material possesses an absolute value. The price of copper bas seriously declined within the past year, and if oon be as cheap as tin

Cottonwood lumber seems to be coming into large use, and for dry goods cases, starch boxes, and similar purpnses it is said to be well adapted. One establishment in Ohio, it 18 said, works into boxes as many as two million feet of lumber annually. For building purposes it is not well adapted, as to is apt to 8 well and shrink with the condition of the atmospbere,

