Xerotine Siceative and Gas in Cual Bunkers.
The report of the committee appointed by the Lords of the Admiralty to inquire, in connection with the loss of Her Majesty's ship Doterel, into the subject of explosions of gas in coal bunkers, and as to the explosive power of xerotine siccative, has been published in the form of a Blue-book The committee report that the solvent which has been em ployed in the liquid driers known as xerotine siccative consists of the more volatile products of the distillation of petro leum, commonly known as petroleum spirit, or kerosene This liquid product is composed of a mixture of light petro leum oils, the most volatile of which evaporate freely a temperatures varying between $50^{\circ}$ and $80^{\circ}$ (Fabrenheit) If, therefore, this liquid be exposed to tir at ordinary tem peratures, inflammable vapor will escape readily and rapidly from its surface, and if it be thus exposed in a confined space, the air which the latter incloses will become im pregnated by the inflammable vapor with a rapidity propor tionate to the prevailing temperature, and to an extent sufficient to produce in a more or less brief period a rapidly inflammable mixture or an explosive mixture, if the quantity of liquid which evaporates bears the necessary relation to the volume of oxygen contained in the inclosed atmospheric air. The explosive misture produced is, in fact, quite analogous in its nature and behavior to a mixture of coal gas or of fire-damp and air, and is capable of producing similarly violent and destructive explosions. The experiments which the committee made led them to the conclusion that the explosion which resulted in the loss of the Doterel had been brought about hy the production of such a large body of flame as bad ignited the powder in the magaziue of the ship.

## Egyptian Mechanical Methods.

Petrie, who is the author of a treatise on ancient me trology, has lately turned his attention to ancient Egyp tian processes. Though much labor has been bestowed oi the literary remains of Egypt and the description of monuments, little attention has been given to finding out the tools and methods by which their results were reached. The first conclusion to which Mr. Petrie comes is that the stone cutting was performed by means of graving points far barder than the material to be cut. These points were bedded in a basis of bronze; and in boring, the cut ting action was not by griuding with a powder, as in a lapidary's wheel, but by graving with a fixed point, as in a planing machine. From discovering spiral grooves in diorite and granite, at least $\frac{1}{100}$ of an inch in depth, the author supposes that an instrument was used of sufficient hardness to penetrate the material that far at a single turn. In this, however, he was corrected by Mr. Evans. The simplest tool used was a straigbt bronze saw set with jewels: but there is proof of one circular saw which must have been $61 / 2$ inches in diameter. For bollowing the insides of stone objects,-the inventive genius of the fourtl dynasty exactly anticipated modern devices by adopting tubular drills varying from $\frac{84}{100}$ of an inch in diameter and $\frac{2}{100}$ of an inch in thickness to 18 inches in diameter. Other drills, not tubular, were used for small boles, one measuring $1_{10} \frac{2}{10}$ inches long and $\frac{8}{100}$ of an inch in diameter. But this is surpassed by the Uaupes of South America, who drill boles in rock crystal by the rotation of a pointed leaf shoot of plantain, worked with sand and water. The writer of this note has seen, in Porto Rico, tone beads of the hardest mat erial, 2 inches long, bored longitudinally with an orifice $\frac{1}{18}$ of an inch in diameter. The Egyptians understood rotating both the tool and the work. For the finishing of vases, a hook tool must have been used; but the early Egyptians were familiar not only with lathes and jewel turning tools, hut with mechanical tool rests, and sweeping regular arcs is cutting. In addition to the tools mentioned, are to be noticed those for dressing out drilled cores, stone hammering and smoothing, saws with curved blades, mallets, chisels, adzes, and bow drills. For mark ing and indicating the plane of the stone, red ocher paint was used in a variety of ways, wellstudied out by Mr. Petrie.

Rock excavation, both for saving the stone and for the creation of vaults and chambers, was altogether an affair of drilling. Granite bowlders were utilized in the pyramids, but the best stones were taken from quarries. The method of bandling these immense wasses is not known. Mr. Petrie concludes with a sensible remark upon the oft alleged inhumanity of the pyranid and temple builders. 'Io require a man every six years to serve upon the public works, during the season when he could do nothing else, would certainly not be a great hardship.-Science, from Journ. Anthrop. not be a gre
Inst., ziii., 88.
fhe magnetic station at the saint madr park OBSERVATORY.
Mascart's Registering Magnetometer.-It is well known that terrestrial and magnetic force frequently undergoes irregular and sudden variations in its direction and intensity, so that observation, even repeated, of the direct reading apparatus is not all-sufficient in times of disturbance. For the con-


Fig. 3.-THROWING THE IMAGE ON THE SENSITIVE PAPER
tinunus registering of magnetic pheuomena, Mr. Mascart has called in the aid of photography, the extreme sensitiveness of gelatino-bromide of silver allowing such a result to be obtained in a maneer that is at once sure and economical. The most widely used registering apparatus is the one known by the name of the "Kew magnetometer," and this, up to recent years, has been almost exclusively em-


Fig. 2.-the magnetic register.

The Mascart registering magnetometer, set up at the Saint Maur Park Observatory, is placed in the easterly vault of the Magnetic Cottage. This vault is rectangular in shape, and is ventilated by three air vents of a structure such as is shown in Fig. 1. As the registering must necessarily be done in darkness, there is arranged vertically before each air vent, outside of the cottage and at about 8 centimeters from the wall, a shutter which, while it allows of the necessary ventilation, proves an obstacle to the entrance of the light. Besides this, black curtains hang freely in the interior, in front of each aperture, and render the darkness of the vault complete.
The general arrangement is shown in Fig. 1. The variation apparatus were constructed by Mr. Carnentier. They are the same as those that serve for direct observation and which we have already descri bed, and are, like them, fixed on masonry pillars. We shall advert to the fact that these compasses are three in number: the declinometer, D , for declination; the bifilar, B, for the horizontal component; and the balance, C, for the vertical component. Each apparatus is provided with a fixed mirror and with a movable one which follows the deviations of the magnetized bar. In the de clinometer and bifilar the front aperture of the case contains a converging lens of a focal length of about 1.10 m . In the balance, this lens is replaced by a suitable curvature of the side of the prism that serves to right the images.
The registering apparatus (H, Fig. 1), properly so called, is represented in detail in Fig. 2. It was constructed by Mr. Duboscq. In order to allow its internal arrange ment to be seev, a portion of the front of the clockwork case is removed in the cut. This case is divided lengthwise into two parts by a wooden partition. In the back part there is a clockwork movement, H , with pendulum and weights, and the front part forms a camera obscura for holding the photographic frame, $\mathbf{E}$. This latter slides into a grooved bolder, which, through the intermedium of a rack, C, and a ratchet wheel, R, actuated by the clock, i capable of descending its whole length during an interval of twenty-four hours
The luminous source consists simply of a small gasogen lamp, G. When the combustible liquid is of good quality, and the wick is properly regulated, this lamp will burn with a sufficiently constant in tensity for about thirty-six hours, and care being taken to fill it every day at a certain hour, regularity in the light is secured. The flame is situated in the center of a lantern, $L$, affixed to the side of the case, and provided on each of its three external sides with a me tallic mounting carrying a field lens and a vertical slit, $\mathrm{F}^{1}$, whose width may be modified at will. These mountings may be moved vertically or borizontally for facilitating regulation.
The clock is fixed in such a position that its pendulum swings in a plane parallel with the magnetic meridian. One of the slits allows a luminous ray to reach the declinometer the second allows one to pass to the bifilar, and the third to be balance.
The system as a whole is so arranged that the luminous images of the slits, after being reflected from the mirrors, are sent to the sensitized paper.

Fig. 3 will give an idea of the arrangement. The reflected rays that proceed from one of the side instruments, the declinometer, for example, fall upon a right angled prism, $\mathrm{P}^{1}$, which send them to a narrow window (in the front side of the photograplic frame) that may be closed at will by a shutter, $O$, actuated by an external screw, V (Fig. 2). By a proper regulation of the slit, the two images, D and $D^{1}$ Fig. 3), reflected by the fixed and movable mirrors, are made to form sharply unon the sensitized paper. The bifilar gives in the same way, through the prism, $\mathrm{P}^{2}$, two images, $B$ and $B^{1}$, of the corresponding slit. The prisms, $\mathrm{P}^{1}$ and $P^{2}$, each covers a third of the width of the paper. The intermediate third remains free and receives the images, C an $\mathrm{C}^{1}$, directly from the slit corresponding to the balance-these images having beforehand been refracted by the prism adapted to the apparatus. Thereare thus obtained on the paper six traces, three of which are datum lines of each of these elements, and the three others so many curves
ployed in those few observatories in which the study of ter- which gives their variations.
oyed in those few observatories in which the study of terMr. Mascart, hich is as devi absolute condition in so delicate observations, he ap o apparatus is considerably reduced, and which permits of a reduction of the magnetic vaults to the least dimensions, of the use of one source of light for thethree compasses and of a registration of all the elements upon the same sheet of paper, thus facilitating a comparison of, the different results.
which gives their variations. The distance from one curve to the line that serves as a datum point to it is proportiona o the angle that the two mirrors make with each other.
The hour is likewise registered upon the paper. The clockwork movement is so arranged that the paper holder shall descend exactly 1 centimeter per bour, so that the total length of the curves is 24 centimeters. The paper is held in the frame between two plates of glass, one of wbich (that against which the sensitized surface rests) is transparent, and carries 25 horizontal dashes, separated 1 centimeter apart. These present themselves by turns before the
window, intercept the light for a few instants, and produce on the lines the breaks that are noticed in Fig. 4. But the paper is not always replaced at the same minute, and, on another hand, it is never certain that the holder will be raised to the same point. The window, being closed during the few instants necessary for the change of the paper and for the renewal of the lamp, it suffices to note exactly the bour at which it is opened after raising the holder, and to afterward inscribe such bour upon the sheet.

The hour may likewise be marked by a periodical disturbance of the magnetized bars. To do this there is adapted to the clock an electric conlact, which closes a circuit for a few instants every hour, at the moment the minute hand is at twelve. This circuit contains a small pile, and the current passes into three bobbins without iron placed neareach instrument. There result from this, bourly oscillations of each bar and a temporary disturbance in the corresponding curve.
Finally, there are likewise obtained on the paper the different inscriptions that mark the curves; as, Magnetism, Saint Maur Park, Horizontal Component, etc. These inscriptions are transparent on the blackened glass that forms the back of the holder. In order to produce them upon the sheet of paper, we begin by covering the sensitized side of the latter, and then expose the frame for a few seconds to the light of a candle. The sensitiveness of the paper is such that this short exposure suffices for a good photographic impression of the inscriptions through the sheet. The frame is taken from the holder every day at noon, and the paper is taken out and replaced by another. Then the frame is put back in place and raised by a cord to the upper part of the dark clamber, where it is held anew by the ratchetwheel.
The action of the light on the gelatino-bromide of silver paper appears only on developing the proof. The image is revealed by the well-known oxalate of iron process, and is revealed by the well-known oxalate of iron process, and is
afterward fixed by means of hyposulphite of soda. On afterward fixed by means of byposulphite of soda. On
coming from the bath the proof exbibits itself as shown in Fig. 4, save that there is no date, this being added by band after drying. This figure, moreover, is a reduction.
The images being revealed, there remains nothing more to do but translate the curves into numerical values. It is necessary, then, to proceed first to the graduation of the apparatus. For the declinometer, we revolve the case, and consequently the fixed mirror by a known angle which is indicated by the lower graduated circle; the datum line is thus moved and the distance of the two images of the mirrors before and after the rotation gives the angular value of the millimeter on the paper. In the same way, on turning the winch to an angle of only $90^{\circ}$, for example, we observe by the displacement of the movable image the influence due to the torsion of the suspending thread, although such influence is very slight
From these experiments are deduced the angular value that a distance apart of one millimeter represents upon the paper. The object of graduating the two other apparatus is to find out to what fraction of the vertical and of the horizontal component the ordinate of the curve corresponds.
For this purpose we place successively near the declinometer, the bifilar, and the balance, in a special position and at a uniform distance, for five or ten minutes, an auxiliary magnet supported by a comparing rule. The action of this magnet modifies the position of each of the three bars, and produces a sudden movement of the movable image. These separations, which leave their trace on the paper, permit of determining, by calculation, 10 what fraction of the components one millimeter on the paper corresponds. The sensitiveness of the various apparatus is so regulated that the variations of the different elements shall be always comprised within the limits of the paper. It is by analogous experiments that we measure and verify from time to time the value of one division of the scales of the direct reading apparatus. The ordinates of the three curves give, then, the variations in the three elements, save the corrections of temperature relative to the two latter. Every day, moreover, the results of the registering apparatus are controlled by those that are given by the direct reading variation apparatus.
The Mascart registering magnetometer formed part of the scientific apparatus carried by the Frencl Cape Horn expedition. It is operating at present at the Petit Port Meteorological Observatory, at Nautes, and other stations are taking measures to have it in use before long.
It is to be boped that the economic features connected with this apparatus, that are well in barmony with the modest sum at the disposal of country observatories, will quickly make the use of it general. A comparison of the results obtained simultaneously at different stations will furnish science with documents, on the importance of which it were useless to dwell, and which up to the present time have been lacking for the study of that so little known portion of the physics of the globe called terrestrial magnetism. -Th. Moureux, in La Nature.

A Hartrord, Conn., correspondent, referring to the recent remarkable sunsets, says that they are very common in Norway, where, if very red, they are taken to indicate rain but if of a lighter hue and clear, the weather thereafter is likely to be fine for many days.

## Ropes vs. Leather Belte for Driving Machinery.

At the October meeting of the New England Cotton Man facturers' Association reference was made to the adoption by many English mill owners, of ropes for driving machinery instead of the gearing formerly so largely used, or the belting so universally employed in this country. These ropes are run in V-sbaped channels in the pulleys; and for transmitting say 700 horse power, mention was made of twenty of them being run on a wheel 12 feet in diameter conveying power to wheels 7 feet in diameter, the rope being 2 inches in diameter after stretching. In favor of this system was urged, first, the very low cost of the rope as compared with good belting; second, its lightness, and the consequent saviug in power in running; and third, the convenience with which power could be added by putting on additional ropes to the full extent of the number of grooves on a pulley, with the security, also, of neverhaving to stop the machinery for a break down, as no more than one or two ropes would ever be likely to break at oue time
Notwithstanding these apparent advantages, we do not apprebend there is any danger of rope being substituted for leather belts in any of our factories. The English manu facturers never had a full idea of how well power could be conveyed by leather belting until we taught them.

Ten years ago their large belts were generally made so that there were ridges at the laps, and they could not bave that thorough pulley contact necessary to the effective transmission of power; but our belt manufacturers, at the very commencement of the business, made their belts of an even thickness throughout, skiving down the ends, forming the laps to a perfect match. The English manufacturers were for years very incredulous as to the possibility of conveying high powers by belting, as was done in this country, and they used gearing in a much larger ratio than ever we did. But to go from gearing to rope traction seems, indeed, like stepping from one extreme to the other. The ropes used are not supposed to lie in the bottom of the grooves of the pulleys, but are held in and pinched by the crotch which the sides of the grooves form. This makes the transmission of the power a direct pull to force the rope into the groove, which it must as rapidly leave with the rotation of


First be sure that you'bave the pure linseed oil. There is much sold as such manufactured out of peanuts. The test is simple. Nut oil has a sharp, acid taste, smells just like sour peanuts, is darker and thicker than the other oil, has a clinging tendency when rubbed on the finger, dries with a gloss even in priming coats, and is very much given to gumming up when sanded. Pure linseed oil has a bright amber color, runs freely, sparkles when flowing from the cau, tastes smooth and mild, and bas the smell of a flaxseed poultice. When you are satisfied that you have the genuine oil, and wish to boil it thoroughly, first take, say about onebalf pound of red lead and the same quantity of sugar of lead, put into five gallons of the oil, and place over a slow ire so as to boil evenly. Do not let your fire get either too bot or too low; keep an even temperature, if possible; coke or charcoal is preferable to either hard or soft stone coal. Avoid a wood fire, as, after the oil gets to boiling heat, a sudden flame shooting up might ignite the entire lot. Let it boil seven hours full ; the red lead and sugar of lead will then become dark brown. Stir all the time while boiling slowly, and only one way; do not change the direction of be stroke or you will burn the oil, just as you would starch. After you bave taken it from the fire, cover it up and let it stand to cool off, say over night. The sediment will settle; pour out the oil and strain; your oil is boiled, and a better article you could not bave, as all the fatty substances are destroyed. This is the English method, used in all the carriage factories in the United Kingdom. $\boldsymbol{O} . S$. Carriage Monthly.

## Geological Changes at Salt Lake.

Mr. G. K. Gilbert bas recently, according to Science, given ome rather disturbing suggestions to the people of Salt Lake City (Salt Lake Weekly Tribune, concerning the probability of destructive earthquakes there. He describes the slow and still continuing growth of the ranges in the Great Basin by repeated dislocation along great fractures, the carth's crust on one side being elevated and tilted into moun tain attitude by an upthrust that produces compression and distortion in the rocky mass, until the strain can no longer be borne, and something must give way. Suddenly and violently there is a slipping of one wall of the fissure on the other, far enough to relieve the strain, aud this is felt as an earthquake; then follows a long period of quiet, during which the strain is gradually reimposed.
Such a shock occurred in Owen's Valley, along the eastern base of the Sierra Nevada, in 1872, when a fault scarp five to twenty feat bigh eod forty miles long was produced. A scarp thirty or forty feet high is known along the western foot of the Wabsatch Range, south of Salt Lake, and other scarps of similar origin bave been found at the bases of many of the Basin ranges. The date of their formation is not known; but it must be comparatively recent, because they are still so little worn away. Wherever they are fresh, and consequently of modern uplift, there is probable safety from earthquakes for ages to come, because a long time is needed for the accumulation of another strain sufficient to cause a slipping of one wall of the fissure on sufficient
the other.
Conversely, when they are old and worn down, the breaking strain may even now be almost reached, and an earth quake may be expected at any time. This is the case at Salt Lake; for, continuous as are the fault scarps along the base of the Wabsatch, they are absent near the city. From the Warm Springs to Emigration Cañon they bavenot been found, and the rational explanation of their absence is that a very long time has elapsed since their last renewal. In this period the earth strain bas been slowly increasing. Some day it will overcome the friction. lift the mountains a few feet and re-enact on a fearful scale the catastrophe of Owen's Valley.

## A California Mirage.

According to the San Francisco Call, visitors to the Cliff House on the afternoon of November 12 were repaid by a clear view of the North Faralion, wheli, from the Cliff House point of view, is absolutely below the borizon. The clearly defined beights, seen as though they were within a dozen miles of shore, were at first thought to be the saildraped masts of some ocean ship, and when they were identified as the cliffs of the North Farallon, there was great interest displayed by the residents and visitors at the Cliff House. In addition to the well worn marine glasses, a telescope was brought into use, and the unusual sight of islands known to be below the line of the horizon, but plainly pictured in the mist-producing mirage, was regarded with intense interest. The effect, just before the setting of the sun, was as though far out in the ocean some, jutting rocks had been utilized for the building of gracefully outrocks had been utilized for the building of gracefully out-
lined castles, and when the light disappeared in the cloudlined castles, and when the light disappeared in the cloud-
less western horizon, and with it the beautiful mirage, the less western horizon, and with it the beautiful mirage, the
effect was as though the observers had been gazing on "castles in the air." So clear was the atmosphere that the South Farallon, with its light house towerclearly discern. ible, was seen as long as the already set sun left a golden streak of light in the west. The whole effect was beautiful in the extreme, and so rare that it beld enchanted every one who chanced to be where it could be seen, until darkness came and hid all view of the ocean.

Painting Iron.
The value of red lead as a preservative for iron bas been generally accepted. Wrought iron requires a bard and elastic paint, which will bold itself together even if the scale beneath gives way. The following experiments, made under the auspices of the Dutch State railroads, may be instructive. Iron plates were prepared for painting as follows: Sixteen plates, pickled in acid (bydrochloric), then neutralized with lime (slaked), rinsed in bot water, and while warm rubbed with oil. The same number of plates were cleared of scale, so far as it could be removed by brushing and scraping. Four plates from each set were then painted alike-namely, four plates wifl coal tar and four plates with iron oxide $\Lambda$, another set with iron oxide $B$, and the remaining set with red lead. They were then exposed three years, and the results observed were as follows : The coal tar on the scrubbed plates was quite gone, that put on the pickled plates was inferior to the others. The iron oxide A on the scrubbed plates was inferior to the other two, while on the pickled plate it beld well. The oxide $B$ was found superior to that of $A$, hut inferior to red lead, while the plates covered with red lead stood equally well on both prepared plates, and were superior to all others. From these results it is evident that pickling the iron removes all the black oxide, while scrubbing does not. It is also shown that the red lead unites with oil to form a bard, oxy-linseed oil acid soap, a harder soap than that given by any other combination. The red lead is shown by those experiments not to give way under the scaling; it is more adherent to the surface, more elastic and cobesive. On the Cincinnati Southern Railroad, experience extending over some years bas shown that red lead bas proved the most durable paint in the many miles of iron trestle and bridgework. It is found that the iron oxide is washed away by the rain and perishes in spots, although a valuable paint if frequently renewed. Red lead, on the other band, is more expensive than iron oxide and is difficult to be obtained pure. It is adulterated with brickdust, colcothar, and other substances, and bas lost its bigh repute.
Referring to white lead as a material for painting iron, one authority observes that "white lead should not, if possible, be used in priming iron, nor in any priming coat; moreover, it is a less desirable overcoat than iron oxide. The class of iron paints compounded of ores of natural iron rust, combined with clay or some other form of silica, are very useful, as they contain no water nor sulphuric acid. Magnetic oxide, or pure iron oxide, is an excellent protection for iron, says one writer; it is impossible to scrape it off. It is also of value in woodwork, and resists the action of salt water and sulpburous gases, so destructive to most paints. There is no doubt the great protective element in paint is the oil, and the conditions required for success are stated to be to prevent the drying part of the oil from becoming bard dry; the soft-keeping, nov-drying acids must be kept from flying away in such a quantity as to reduce the oil to à brittle mass. In other words, the elastic qualities of the oil must be protected from the action of the oxygen.

## Vegetable Wool, or Silk Cotton. <br> by James collins.

Kapoc, or kapok, as it is more usually rendered, is a Malayan word, signifying cotton or a cotton-like substance, i. e., silk cotton; real silk being known as sutra. Kapas is also used in Malay for cotton or silk cotton, the same vènacular name obtaining in Bengalee and other dialects; but in this latter case the term is restricted to true cotton plants (Gossypium eps).
Kapok silk cotton is furnished by the Eriodendron anfractuosum, DC., the Bombax pentandrum of Linnæus. The plant bas been placed in various natural orders, some giving it a place in Bombaceæ, others in Sterculiaceæ or in Malvaceæ.
The tree is from 50 to 60 feet in beight, the trunk being prickly at the base and the branches growing out borizontally. There are five to eight leallets, lanceolate in sbape, and either entire in their margins or serrated toward the apex. The capsule, or fruit, is five celled and five valved; the cells contain many seeds, covered with silky or cottony bairs, which form the kapok or vegetable silk. The gum furnished by the tree, when mixed with spices, is used in India in bowel complaints, and the seeds yield a dark colored oil. The tree is of rapid growth, and is lofty and imposing in appearance. It is found in India, the Malayan Archipelago, and in Africa and other countries. In the East generally, kapok is used for stuffing pillows, etc., and for tinder; but it has been found that the smoothness of the fiber prevents cohesion, or "felting," so necessary and important for spinning purposes. In Africa the tree is looked on with veneration, and is termed the "god tree," in some districts it being looked upon as a sacrilege to cut the tree down. Still the trunk is used for forming canoes, and although the wood is soft and liable to the attacks of insects, if soaked in limewater it becomes much more durable. The silk cotton, either alone or mixed with cotton, is largely utilized in Africa. The young leaves are used as food, and form not a bad substitute for "Ochro" (Hibiscus esculentus).
Another tree yielding silk cotton in India is the Cochlospermum gossypium, DC., the Bombax gossipinum of Linnæus; a member of the tea order (Terustrœmiaceæ). It is a tree attaining a beight of 50 feet, and the soft silky bairs surrounding the seeds are used for stuffing purposes. The tree
has large, conspicuous, yellow flowers, and is not uncom mon in Southern Iudia, Travancore, and Coromandel. The Calotropis gigantea, or Mudab tree (nat. ord. Asclepiadaceæ), also yields a like substance.

In America, both North and South, various so-called " milk-wceds," as Asclepias verticillata, and other plants, such as species of Bombax, etc., yield silk cottons, while the Asclepias syriaca obtained the attention of European agriculturists as early as 1785 , and paper bas been made from the cortical fibers of this plant. The young shoots of from the cortical fibers of this plant. The young ste said to equal asparagus in flavor.
These are only a few of the plants yielding silk, cotton which might be mentioned. Silk cotton bas made its appearance in the markets from time to time, and in 1851 the jurors of the Great Exbibition recommended this substance for stuffing purposes and in mixed fabrics, and notices respecting it bave occasionally appeared in this Journal. For the lining of quilts, quilted petticoats, etc., silk cotton seems to answer admirably, but its want of cobesion, or non-felting qualities, renders it of no use for spinning purposes, except as a mixture to impart a silky gloss to the fabric so mixed. The price is 10 w ${ }^{\circ}$ it is light in weight, elastic, and soft, and is said to resist the attacks of insects. Journal of the Society of Arts.

## WINDOW SASİ ADJUSTER.

The lowering and raising of the upper sash of a window is usually an awkward matter, and in large plate glass win dows one of considera ble difficulty. Either a poleor a chair must be brought, or else the lower sasb is lifted, and the upper one then drawn down or pushed up from the outside.
Th

The accompanying engraving shows a simple and per-


RUSEELL'S WINDOW SASH FASTENER.
manent attachment for adjusting the two sasbes, which are balanced in the usual manner by weights in the boxframe.
A- double side-pulley, S S, and a single one, S, are screwed to the face of the upper: sashi, and through these pulleys is reeved a cord, $h$, whose ends are attached to the top rail of the lower sash. A similar cord, $g$, is reeved through a dou ble and a single pulley screwed to the upper portion of the window frame, its ends being attached to the top rail of the upper sask as shown io the figure. Tbe pulling cords, M and N , carrying thimbles at their upper ends bang from the lonps of the cords, $g$ and,
By pulling down the cord, $\mathbf{N}$, either the upper sash may be lowered or the bottom oneraised, as desired. [On bolding the lower sash by pressure of the band or a clamp, the cord, N , draws down the upper sasb; on bolding the upper sash by its cord, M, the cord, N, will draw up the lower sash.]
The upper sasb is raised and closed by pulling the cord, M; the lower sash is drawn down and closed by the band, or by a cord not shown in the engraving fastened at one end to its top rail.
This invention has been patented by Mr. S. H. Russell, No. 10 Cedar Street, New York city, from whom further information may be obtained.

## Coke for Foundry Purposes.

Coke is being successfully introduced for foundry pur poses in New England and elsewhere in preference to anthracite. The advantages claimed for coke over antbracite are: 1. A duty 30 per cent bigher than anthracite. 2. A rate of smelting from 30 to 50 per cen't higher than that of anthracite. 3. A less powerful blast is needed. 4. The castings are softer.

## Affairs at the Patent office.

cIal correspondence.]
Washington, D. C., December 17. As those applications for patents on which the final fees ware paid on the 13tb inst. will not be issued until January 1 , 1884, all the patents which will be issued in the year 1883 bave now been determined upon, and the total issues for the year may be obtained. A calculation shows that during the year 1883 there bave been issued 21,196 patents, 167 deissues, 1,020 designs, 902 trade marks, and 906 labels. The total number issued since July, 1836, when the record was first started, is 289,793 patents, 10,418 re issues, 14,465 designs, 10,769 trade marks, and 3,743 labels.
These figures indicate in some degree the immense amount of labor performed by the Patent Office, and the record for the present year shows bow rapidly the spirit of invention is increasing.
During the past week the speaking telephone interference cases were beard before the Examiners-iu-Cbief in Appeals from the decision of the Examiner of Interfernces. The occasion was a notable one from the number of distinguished counsel who appeared for the different claimants, among them Mr. Roscoe Conkling.
These interferences were declared in 1878, and they involve not only the art or method broadly of transmitting articulative speech by throwing electrical undulations corresponding to the sonorous vibrations of the spoken words upon a wire, but the various forms of application that bad been suggested up to that time for carrying this method into practical operation. Seven parties now lay claim to the meril of this striking in vention, viz. : Alexander Grabam Bell. J. W. McDonnougb, Thos. A. Edison, Elisba Gray, A. E. Dolbear, Francis Blake, and J. H. Irwin. $\Lambda$ vast amount of testimony was submitted, and the Exami ner of Interferences, after a long delay, announced bis opinion last June in a pamphlet of 350 printed pages.

This opinion is an epitome of the case. The first thirty pages are devoted to an examination of the state of the art as described in prior publications. An explanation and construction of the various issues involved occupies the next thirty-five pages, and in two bundred and seventy-one pages following the Examiner traces the bistory of the invention of each party as disclosed in the testimony. The conclusion is then drawn that Bell is entitled to judgment conclusion is then drawn that Bell is entitled to judgment
of priority for the fundamental invention of the telephone as a whole and for the greater part of the particular devices involved in the interference. Mr. McDonnough is, bowever, adjudged the first inventor of the telephone receiver, which is a constituent and necessary part of any speaking apparatus, and Mr . Edison is awarded a particular form of the water telephone, au instrument now out of use and of very little importance.
While the Examiner enters upon a minute investigation of the facts of the case, be declares that he is controlled to some extent by certain technical presumptions arising
upon the face of the papers. These state that be is not enupon the face of the papers. These state that be is not entirely clear tbat Bell had any knowledge, at the time his application was filed, of any practical apparatus for speaking purposes, but that be must assume, as in other cases, that the invention was made at least as early as that time. The Examiner's rulings upon these points, as well as bis findings of fact, were arraigned as errors upon the appeal. It was argued before the Board that the controversy should be determined upon its merits, avd not upon strained con-
structions of the issue and technical presumptions at varistructions of the issue and technical presumptions at variance with the facts in the case. The hearing was concluded on December 15, and it will probably be some months be fore the Board will formulate its decision. Franklin.

## Wire Fence Telegraphing.

An experimental work bas been going on for a short time along the Milwaukee und St. Paul Railroad Branch and the Brandon Branch, about 30 miles in length, the object being to determine whether or not the barbed wire of the fence on either side of the road can be utilized for telegraphic purposes. The fence wire was placed in proper condition for a sufficient distance to make a satisfactory test, the wire being run under the surface at road crossings. Superintendent of Telegraph Simpson decides that the plan is not practicable. Telegraph work can be done over the fence wire at this time, be says, but during the winter months, when buge snow lanks completely cover the fence, the line would be made useless. There are thousands of miles of wire fence along the Western lines, and it bas been contended that they should be utilized for this purpose.

A New Treatment for Neuralgia.
The latest agent introduced for the relief of neuralgia is a 1 per cent. solution of byperosmic acid, administered by subcutaneous injection. It basbeen employed in Billroth's clinic in a few cases. One of the patients bad been a martyr to sciatica for years, and had tried innumerable remedies, including the application of electricity no fewer than 200 times, while for a whole year be bad adopted vegetarianism. Billroth injected the above remedy between the tuber ischii and trochanter, and within a day or two the pain was greatly relieved, and eventually quite disappeared. It would be rash to conclude too mush from these results, in the face of the intractability of neuralgiæ to medication, but if it really prove to be as efficacious as considered. by perosmic acid will be a therapeutic agent of no mean value.
-Lancet.

