(everempoudruts.

6 What is the Natural Age of a Cat ? 9

To the Editor of the Scientific American

I bad a cat that died last June whose age was a month or more over twenty-five years. This is the same cat that was mentioned in a great many papers last winte:, and was called twenty-three years old, whereas, according to correct reckoning, sbe was twenty-five years, instead. She bad oue kitten two years old at the time of ber deatb. About the time she bad the last kitten she renewed ber teetb. She never sbed ber hair for the last two or three years, which became very coarse and stiff. Sbe died with lung disease. She always lived at the barb and outdoors.
C. V. Swartwout.

St. Lawrence, N. Y., November 5, 1883.

The Brandy Bread Co.

To the Editor of the Scientific American
In your paper of Sept. 1, 1883, in the article upon "Fermentation in Bread," you finisb by asking, "Will not some American repeat this experiment?" that is, make alcohol from the fumes from oven while baking bread.
About 1836 the writer saw a very large bakehouse erected somewbere in Tipton, Staffordslive, called the Brandy Bread Company. I can just recollect that the doors were made steam tigbt, and that the bread was insipid, or taste. less, and that some thousands of pounds sterling were lost, and the company went bankrupt.
I should be sorry if tbis account should prevent the trial you suggest, for in forty-three years immense strides have been made in chemistry.

Tво. Boотн.
Oct. 20, 1883.
Gayam Sugar Mill, Pasvervewan, Java, Oct. 20, 1883.

The Sunset Colors.

To the Editor of the Scientific American:
I see in your paper of the 8th inst. you seem to attribute our recent fiery sunsets to the supposed presence of a stratum of meteoric dust. Would it not be more reasonable to consider it volcanic dust thrown up by the late terrific outburst in Java?
The forces there in operation-unparalleled I believe in all buman history-were evidently adequate to sucb an effect, and the fact that immense quantities of something were thrown into the air is attested by the greenness of the sun as seen in India. Besides, the time since the Java earthquake bas been just about what we might suppose sufficient for the dust to diffuse itself to this distance
Sixty-one tons of impalpable dust tbrown into the air would allow about one ounce to eacb tract of ten miles square over all the eartb's surface. This, I think, would be quite sufficient, when viewed at an oblique angle with the stratum containing it, and nearly in the direction of the sun, to be plaĩnly visible. Ha ving thus an adequate and probable cause, there seems to be no need of ascribing the pbenomenon to any mysterious extramundane cause of which we can know comparatively nothing, but of which we may imagine everytbing.

December 10.
S. S.

Storing Wind Power for Small Motors.

To the Editor of the Scientific American:
Your correspondent A, on page 353, proposes to drive a bonat 14 feet long for 5 consecutive hours with air compressed to 200 atmospheres, in a 2 inch pipe placed along the gunwale of the boat, the owner, at bis choice, using a screw or paddles to drive the boat.
I bave a very light boat built of $3 / 8$ inch pine, somewbat longer than A^{7} s theoretical one, but I fancy just as easily propelled, driven by a 3×3 inch cylinder, screw 18 inches in diameter. The time occupied in driving this boat two miles averages 18 minutes, carrying 100 pounds to the square inch on the boiler, the wheel turning an average of 400 revolutions per minute, making in all 7,200 revolutions to complete the two miles. Comparing A's air engine with mine, I think bis theory will not be borne out in practice. I suppose his theoretical pipe or receiver runs under both gunwales. This would make it 28 feet. My steam engine may not be as economical in its consumption of steam as it might be, as it cuts off only at $3 / 4$ stroke. A's air engine will doubtless be arranged to work more expansively, say bis cylinder is to be 2 inches in diameter, 3 incbes stroke, cutting off at $\frac{2}{8}$, then expanding into another cylinder 4 inches in diameter, same stroke. Tbrottle down bis air supply until it passes into the first cylinder at 100 pounds, and prohably, if his engine is well made, be may obtain as good results as I do with my 3×3 cutting off at $3 / 4$. If he used the same wheel that I do (my foundrymen tell me it is the best obtaiuable, bis engine must necessarily make the same number of revolutions to run the same distance. Four inches, therefore, of the supply in bis air pipe would be exhausted at every revolution of the engine if the pipe were cbarged at 100 pounds; but as it is supposed to contain 3,000 pounds, the 4 inches, if the pressure were constant, would accomplish 30 revolutions. The receiver being 28 feet long the sum would stand thus: sie $\times 30=2,520$ revolutions bis wheel would make on his receiver's becoming exbausted, if, as before said, the pressure was constant, which unfortunately it is not.

In my opinion, therefore, bis theoretical little boat would prove a failure. It would only run for a few minutes, and would need a second "placing to the windmill" before shle ran a mile.

The official assertion of Mr. Fawcett, Postmaster General of England, "that after the expiration of the present contract for carrying the mail across the Atlantic to the United States sball have expired, be sball cause to be paid to the fastest mail steamer for carrying the letters tbree shilliugs per pound, and for the newspapers only three pence per pound." Now, as the tastest steamers only sball bave the contract, the question arises, Who will own the fastest steamers-tbe English or the Americans? And who will adopt on scientific principles the plav of building the fastest boats?

The present transatlantic steamers can wit $\&$ propriety be called floating palaces, but they are all built on "the one \log section," they are as deep as they are wide, and built witbout any regard to the metacenter of a floating body. (Fig. 1.) In floating bodies the stability depends on the form of that body, and this form is the most improper or the most unstable, as it would require but a little force to set it rotating, unless ballast as a principle were applied to obviate this rotating tendency in this "one \log form;" and the more ballast to carry out the principle of stability the deeper the boat sinks into the water, bence greater the resistance the boat bas to overcome. These boats are all built with a " nice, clean run" fore and aft; this too is detrimental to their forward motion in a beavy sea, as far as their "forerun" is con cerned. The bow of a boat should be wedge-shaped, and the knuckle on a line from the "fore foot" to as far back on the planksbears as the length of the wedge-sbaped bows ex tends back, with a long " run" aft, so that when the boat sets on a sea it will have a tendency to slide forward at eacb such downward motion. You may imagine a slate sinking in water to illustrate this principle. Aud in place of the "one log section" we would adopt the "two \log plan," as illustrated in Fig. 2. This obviously is a stable floating body, and to enbance its stability we would suggest that the keel be a boiler iron tube filled with molten metal, care to be taken that the
 ket tube is not too large, o be furnished with a "screw" in place of the " fan "' in use; and the single surface measurement to b fully equal to the resistance offered by the water at the bows of the boat, so that a screw ten feet long (say) baving the required surface would move the boat (say, all things considered) nine feet at each revolution with a motive power to dive the screw three bundred revolutions a minute, which would move the boat seven hundred and twenty-five miles in twenty-four bours. Now as to the construction of the screw, which should be made of four separate flanges, each flange to pass once around the screw sbaft in its length of ten feet, and of sucb diameter as to measure on their single surface the same as the resistance offered to the bow of the boat, or the
screw may bave more bold of the water than the resistance offered by the water at the bow of the boat; the more the difference the greater the speed. One flange to pass around the screw sbaft several times to have the required measurement would be a violation of the principle. Since the Dapbne disaster the Clyde ship builders bave turned their attention to the subject of stability tests in the Clyde sbipyards. The Glasgow and Londonderry Steamboat Co., who are owners of the Dapbne, bave ordered a steamer to replace the Iris, that bas been recently lost on the Irish coast. They stipulate that the stability in every respect sbould be perfect, aud the builder must satisfy bimself with designs to athain that end
Being inyself an American by adoption. I would prefer that the fastest boat in the world sbould sail from New York or some otber American port for this coast. Tube compartments would be the safest in transatlanticsteamers, and the machinery could be tube inclosed.
Should these suggestions be of any value, be pleased to use them to the best possible advantage.

Yours respectfully,
Wilijiam Griffithe.
Ala Nursery, Piollbeli, North Wales,
Great Britain, Oct. 30, 1885.

Enterprise in Dakota

To the Editor of the Scientific American:
My attention was attracted by a short article in your issue of December 1, describing the rapid growth of the town of Wonnsocket, Dakota.
It so bappened that I was at the aforesaid town twice a ew weeks since, and can vouch for the truth of the story of its wonderful growtb. The first time I passed througb, the place was just ten days' old, and contained sixty-five
buildings in proce'ss of erection, only two of which bad progressed far enougl to be painted. Five days later I was there again ; there were then a number of other buildings under way (the exact number I do not know), and about a dozen or fifteen of the older ones were not only painted, but occupied. The depot was finished and in use, and the town contained the usual number of saloons, eigbt or ten stores, contained the usual number" of saloons, eigbt or ten stores,
one or two law offices, several of the inevitable "land and one or two law offices, several of the inevitable "land and
loan" offices, two hotels (unfinished), and, if I mistake not, a newspaper. Nearly every one of the buildings mentioned above was a bona fide store or dwelling; for in the "booming" places the out-buildings are left until the last tbing.
At the time referred to Woonsocket was, and presumably is now, an ideal " booming town." Mechanics were getting fabulous prices and were in great demand. Whole trains of freigbt cars, loaded with building material, stood upon the tracks, waiting to be used. Building lots which sold originally for oue bundred dollars had brought three hundred a little later on, and were now selling for six bundred. Large numbers of lithographic "plats" of the town had been struck off, and were being forced upon every stranger who bappened to set foot in the place. The envious inbabiants of the neighboring towns bave changed the name Woonsocket into. "Boom-struck-it," which certainly correctly expresses the state of affairs.

Charles T. Beardsley, Jr.

Birmingbam, Conn., December 4

J. A. asks (1) bow "opodeldoc" is made. A. Take of sbavings of Castile soap 4 ounces, of gum camphor 2 ounces, of oil of rosemary $1 / 2$ fluid ounce, of water 6 fluid ounces, and of alcobol 1 quart. Digest the soap in the water until it is dissolved; dissolve the camphor and oil in the alcohol ; then mix the two solutions, and filter. (2) What is a good recipe for rheumatism? A. The following has been bigbly recommended: Take of gum guaiac 2 ounces, of nitrate of potassa 1 ounce, of sulphuret of antimony 2 drachms, of gum camphor 2 drachms, of gum opium 1 dracbm, of saffron 20 grains,and of gin 1 pint. Mix. Dose, one teaspoonful three times a day in a little sweetened water. In a complaint like rheumatism it is better to consult a good physician thav to rely upon published recipes, which, although they may have proved efflcacious with some persons, may not be adapted to the cases of others.

Wire Fences in Georgia

A lawful wire fence in Georgia is described by legislative enactment as composed of not less than six borizontal strands of barbed wire tighthy tretched drom oust to post. bree and a balf inches from the ground; the second wire not more than vine and a half nor less than eight and a balf ncbes from the ground; the third wire not more than fifeen and a balf nor less tban fourteen and a balf inches rom the ground; the fourth wire not more than twentytwo and a half nor less than twenty-one and a half inches from the ground; the 'fifth wire not more than thirtytwo nor less than thirty-one incbes from the ground; the sixth wire not over fifty-five nor less than fitty-tbree inches from the ground. Posts to be not over ten feet apart, and every alternate post to be securely set in the round. Provided, a plank not less thav ten incbes wide ball be used instead of two strands of wire at bottom of fence. It is also required that a railing sball be placed equal distance between the two top wires, which shall answer be same purpose as a wire, and to extend from post to post in like manner.

Am I a Scot, or am I Not?

If I should bring a wagon o'er
From Scotland to Columbia's shore,
And by successive wear and tear
The wagon soon should need repair:
Thus, when the tires are worn through
Columbia's iron doth renew;
Likewise the fellies, hubs, and spokes
Sbould be replaced by Western caks;
In course of time down goes the bed,
But bere's one like it in its stead.
So bit by hit, in seven ycars,
So bit by hit, in seven yca's,
And still it seems as though it ought
To be the one from Scotland brought;
But when I tbink the matter o'er,
It ne'er was on a foreign shore,
And all that came across the sea
Is only its identity.
I came, a Scotchman, understand,
By cboice, to live in this free land,
Wherein I've dwelt, from day to day,
'Till sixteen years bave passed away.
If physiology be true,
My body bas been cbanging ton;
And thougb at first it did seem strange,
Yet Science doth coufirm the change;
And since I bave the truth been taught,
I wonder if I'm now a Scot?
Since all that came across the sea
Is only my identity.
Wimian Taylor.
Aurora, Ind.

