THE "HERCULES" BONE MILL.

Messrs. Nicholson, of Trent Iron Works, Newark-on Trent, designed and are manufacturing the "Hercules" mill, of which we give a perspective view from Iron. There are two classes of these mills made, viz., one ín which only one pair of rollers is used, and anotber in which two pairs are employed.
The mills fitted with one pair of rollers will reduce raw bones to tbree-quarter incb, five-eighths inch, and one bali incb pieces, and making comparatively very little dust The more complete mills, with two pairs of rollers and concaves, will grind to any degree of fine ness from one-balf inch pieces down to bone dust, or by sbutting off the lower pairs of rollers by the use of a single slide, can be made to produce a similar sample to the mills witb a single pair of rollers. 'The rollers are composed of case bardened disks of tougb annealed crucible cast steel bolted togetber; the additional precaution bas been taken of securely interlocking themmost important provision. Should, therefore, one of the disks on either side of it , and are not liable to fall out and be passed between the roll ers, with tbe certainty of causing serious damage to them or the gearing. They are further protected from breakage caused by sudden strain, or by the introduction of bard foreign substances, by automatic safety appliances, consist ing of compressible boxed springs, which offer uniform resistance up to their ultimate compres sion. The concaves are similarly protected by a weighted lever, by means of wbicb the pressure can be regulated and a coarser or finer sample of bone dust produced; or tbe concaves can be brown altogetber out of use.
"An additional safeguard is provided in the shape of a friction clutcb on the main driving shaft. This is found of great service. Occasionally hard substances of large size are accidentally passed into the rollers, whicb it is impossible for them to avoid even when the safety springs are compressed to their full extent. The resistance then of the obstacle overcomes the resistance of the clutch, and the rollers remain idle and consequently uninjured, enabling the attendant to remove the source of danger at his leisure. All the rollers run at different velocities, so that a tearing as well as a crushing action is obtained, and they are rendered to a great extent self-cleaning. The lower pair of rollers deliver into and work against corresponding toothed adjustaof one or both rollers, and by their action the bones are further reduced to a fair sample of bone dust at a siñgle operation. These adjustable concaves also kecp the fine rollers free from fatty or glutinous matter exuded from the crusbed bones.
"For the upper rollers a series of efficient separate cleaners are provided. We had an opportunity of examining these mills at the late Royal Sbow at York, and can affirm that their construction throughout is of the most substantial cbaracter, and calculated to withstand witbout risk of breakage the sudden and severe strains so frequently fatal to ordinary bone mills, while t he testimony of users places their efficiency at about double that of mills requiring the same driving power, but not possessing the same detail improvements. The spindles are of steel, as also is the main driving pinion. The side frames are each cast in one piece, and are securely braced together. On the driving sbaft is fitted a pulley, up to 36 inches diameter, and a separate and beavy fly wheel. The bearings are of the best gun metal, witb careful arrangements for lubrication. A strong fioo bracket with pedestal is provided to carry the outer end of the driving slaft, as seen in our engraving."

Gas engines from 34 horse power to 80 borse power are now made. Medium sized gas engines, say 16 borse power, will run on a consumption of fuel equal to $1 \frac{1}{\frac{1}{6}}$ pounds of coal per horse power per bour, which is about one-balf the fuel required for the most economical steam engines of the largest size.

SOCKET FOR HARROW TEETH.

The barrow tooth is constructed with a right angled arm at its upper end, as sbown in Fig. 4. The metal socket that carries the tooth is arranged on the under side of the bar, and has at one end a bolt bole, aud is made with opposite side Hanges on its upper surface to clip the bar, on either side, and thereby assist in holding the socket to its place. Formed within the upper surface of the socket is a cbanne whicb extends from the side of the socket to an aperture assing down through the socket, as indicated in Figs. 3 and

CARSTENSEN'S SOCKET FOR HARROW TEETH.

A New Aperiodic Galvanometer.

If we add a third maguetic needle to an astatic galvanometer, so that it is below the frame and parallel to the two otbers, and so that its poles may be opposite to those of the needle above it, we obtain a galvanometer the sensibility of which is nearly trebled, and which preserves a directive force. We may also reverse the arrangement, making the frame movable, into which the current arrives by the suspension wirss, and leaving the needles fixed.
The above considerations bave led the author to devise an aperiodic galvanometer, which has been exlibited at the Vienna Electrical Exbibition. A more per fect model has since been constructed by the firm of Breguet.
In this instrument the six poles are retained, but the poles are formed by three horse shoe magnets with legs very near togetiter. These three fixed magnets are placed horizontally oue below another, at a distance of 0.005 meter The frame incloses the two poles of the middle magnet, with play sufficient to permit it to oscillate freely, and obtain a deviation of 20° on each side. The light wire of this small frame is perpendicular to the axis of the magnets, and the current arrives by means of the suspension wire, us in the siphon recorder of Sir W. Thomson and other analogous frames.
If we place this galvavoineter in communication with the two ends of a telephone from which the vibrating plate bas been removed, then, in order to make the frame deviate, it is sufficient to let fall upon the pole of the magnet of the telephone a small fragment of iron filing, weighing a few milligrammes. This example ill show its seusitiveness.
It is completely aperiodic, i. e., if the two extremities of the galvanometer are connected by a wire of little resistance, the frame, having de5, the latter figure being a vertical section througb Fig. 2. \quad viated from its position, stops at zero without passing it. The cbannel occupies an oblique position to the sides of the If we examine the position of the lines of force with socket and length of the bar, and is of such size as to freely receive the arm of the tooth.
The aperture through which the shank of the tooth passes is of gradually increasing oblong shape, baving one vertical side and one sloping side shown in Fig. 5. This construc tion emables the tooth to adjust itself eitber to a perpendicular or backwardly inclined position relatively to the beam. In Fig. 1 the draugbt is toward the rigbt, and the shank of the tooth rests against the inclined side of the aperture; in Tris.-9 the draught is

THE "HERCULES" BONE MILL

the socket has been reversed the tooth bears against the vertical side. The teeth are fitted in sockets which can be readily applied to either iron or wooden frames.
This invention has been patented by Messrs. P. C. and I A. Carstensen, of Walnut, Iowa.

A correspondent of the Engineer, London, commends the water-tight coal bunkers of the new United Slates so provided she would not hove ir
reference to the four sides of the frame, we see that electromagnetic induction is produced on the four sides of the frame, and in the same direction.-M. G. Le Goarant de Tromelin, in Comptes Rendus.

The Present Nall Product.

The Bulletin of the Iron and Steel Association prints a list of the nail works, and states that seventy-four now $\mathbf{c o m}$. pleted have 5,008 machines, and will add 391 more hefore built whicb will have at least 200 more nail macbines in operation by January 1. By that time there will be 6,599 nail machines ready to work, with a capacity of 12,376 , 000 kegs of cut nails and spikes yearly. The mills and machines now completed bave a capacity of about $1,000,000$ kegs less; about $3,264,000$ in Pennsylvania, 2,200,000 in Ohio, $1,668,000$ in West Virginia, 875,000 in Massachusetts, and 690,000 in New Jersey.
Apropos of the same subject, the Philadelpbia Press remarks: "The building boom has been for at least nine months past the clief support of the iron market; but tbere are many minor signs that it is near its end. The pause in the rise of rents
May was the first indication that building in New York city was overdone, and it has been followed by others which point 10 a serious check in real estate values there in the next six montbs. Nails, which since their tremendous jump in 1879-80 have been in steady demand, now show overproduction. The capacity of the nail works in the country, finisbed or unfinisbed, is $12,376,000 \mathrm{kegs}$, or twice the output in 1882 , and this increase is launched on a failing market. In addition, various forms of iron used in building show a decided decrease in demand. Unless there is a sudden increase in railroad building, the falling off in bouse building must have a serious effect on the labor market before spring."
T. G. Merrill, a mining engineer, says that this year's product of the Montana gold mines will reach $\$ 15,000,000$.

