The huge pyramids of spherical shot and shells deposited in various parts of the Royal Arseaal, Woolwich, are condemped to the melting furnaces for conversion into projectiles more adapted to modern requirements. One heap alone contains about 40,000 of the 13 -inch shells which were supplied at the time of the Crimean war, and were the most furmidable missiles used in the siege of Sebastopol. The 13 incl mortars, from which they were fired, have long ago disappeared out of use, but lie in hundreds in a distant part of the arsenal waiting orders for their demolition, and no round shot or shell of any size have been made since the introduction of rifled ordoance and elongated projectiles. They are being all gradually broken up. Another ancient description of shell of the class known as smoke balls and ground light balls has been declared obsolete, and all that are remaining in store will be destroyed. They are of various sizes, varying from $\frac{4}{4} / 2$ inches to 13 inches in diameter.

Covering Iron and steel with Copper.
According to the Metallarbeiter, iron can be coppered by dipping it into melted copper, the surface of which is protected by a melted layer of cryolite and phosphoric acid. The articles to be coppered must be heated to the same temperature as the melted copper
Another process consists in dipping the articles into a melted misture of one part of chloride or fluoride of copper, and five or six parts of cryolite, and a little chloride of barium. If the article when immersed is connected with the negative pole of a battery, it hastens the process.
A third method consists in dipping the article in a solution of oxalate of copper and bicarbonate of soda, dissolved in ten or fifteen parts of water, acidified with some organic acid.

A MASBIVE SCAFFOLDING

The Manhattan Company's Bank and the Merchants' National Bank are now erecting a building at Nos. 40 and 42 Wall Street, this city, after designs by W: Wheeler Smith. The building extends through to Pine Street. It will have a front of plain and polished granites from the Hallowell, Fox Island, and Westerly quarries: the floors will be iron beams resting upon iron columos.
In order not to interfere ith street traffic and at the same time to expedite the havdling of heavy pieces, and be free from the a nooyance caused by curious sightseers, a scaffolding of massive strength was erected, showu in the accompanying engraving. The posts composing this framework are 12 by 12 inch pine timbers held together by lateral braces, and between each panel are wooden diagonals. The outer live of posts is set alongside the curbstone. Transversely on top are placed floor beams, 12 by 14 inches, and 6 feet between centers, which project a short distance be ond the curb live, and on these, parallel with the street line, is a flooring of planks 3 ioches thick, above which is a secood system of planks the same thickness, but laid obliquely.
Raised above the sidewalk is a passageway extending the whole length of the staging. This has a width of 4 feet 6 inches, and is reached by a flight of steps at each end. By this means the foot travel of the street is not interfered with.
The center of the scaffolding is wide and high enough to admit a wagon, which is driven in and unloaded upon the first floor of the building
The rear post of the main derrick rests just outside the front wall, aud consists of two timbers 10 by 12 inches, bolted at intervals to each other and to the maio posts. These are placed in a line perpendicular to the street. About 12 feet above the floor is the horizontal arm of the derrick, consisting of two timbers 10 inches square, and placed a few incbes apart. The diagooal from the top of the rear post extends over an A frame, and is joined to the end of the horizontal arm. Upon the upper inner corners of the timbers forming thisarmare angle irons, constituting the track upon which a little car travels. From the under side of the car hangs a block and tackle. The car is run to the outer end of the track, uvder which the wagon has been driven, and the hook is attached to the piece to he raised. The hoisting rope exteods to the engive in the interior of the building. When the piece has been elevated above the floor, the car is run back aod the piece is lowered on to a hand truck, or rollers, by the aid of which it is moved about on the floor. Distributed about parts of the building are derricks that raise the stone and leave it in its place.
The various parts entering into the construction of the scaffolding are held together by nuts and bolts, plates being placed under the heads and nuts. It was designed so as to have sufficient strength to support upon the flooring all the material immediately to be used, thereby relieving the street of all unsightly heaps. Another consideration is that people are not subjected to danger from falling pieces while passing the building.

a MASSIVE SCAFFOLDING.

out alteration, it is necessary before immersing them in the acid to plug up the apertures in the extremities with a bit of beeswax; and, moreover, as the eggs are very light, they must be held at the bottom of the vessel full of acid by means of a thread fixed to a weight or wound round the ex remity of a glass rod
If the acid is very dilute, the operation, though it takes a little longer, gives better results. Two or three minutes usually suffice to give characters that have sufficient relief. - La Nature.

Velocities.

Aninteresting table of velocities has been drawn up by Mr. James Jackson, the librarian of the Paris Geographical Society. He begins, says the Photo. Neros, with the velocity of a man walking two miles and a half an hour, and after alluding to the respective velocities of an ordinary wind, of a race horse, of an express train, of a carrier pigeon, of a hur ricane, of sound in air and water, he brings us at last to the velocity of heavenly bodies, of electricity, and, finally, of light. But Mr. Jackson has left out one important velocity, which has only been recently computed, and which is of singular interest, since it represents the ooly earthly agent koown to man with a velocity quicker than sound in water although oaturally less quick than electricity and light; we mean the detonation of the photographer's old friend, gun cotton. Abel and Noble have computed that a train of guu cotton, fired with a fulminate fuse, will transmit the detonating action at a speed of from 17,000 to 19,000 feet per second. In other words, detonation travels at the rate of 200 miles a minute, while next in order comes electricity traveling through a submarive wire at a speed of some $12,000,000$ feet per second.

How Fire is Carried in Cotton.
Edward Atkinson, of Boston, says: "Fire lurks in a cotton bale for weeks. The cotton which was iujured somewhat over a year ago in Biddeford, Me., was moved to South Boston for sale. The fire broke out again more than once while it was at South Boston being made ready for sale. It was then sold at auction. The fire broke out again in one parcel while it was on the cars being carried away and in another parcel after it had been received at a factory where it was to be used. The latest outbreak was, I think, where it was to be used. The late
thirty days after the original fire."

Sorghum Sugar in ©hio

A correspondent of the Ohio Farmer, coutucting a suga factory in that State, says
" Not a single man that brought cane to our mill raised as much as one whole acre of it, generally from one-eighth to ove-quarter of an acre, and they would have from one load to three or four good wagon loads of the cane but over four-fifths of them simply wanted molasses for cooking purposes. And but a small portion of it were they willing should be cooked into sugar. Because we did not make moresugar was because we were not allowed to do so. Every gallon of good molasses made from matured cane, agreeable to the Stewart process, will granulate fully four pounds of sugar the first granulation. Estimalesgive 100 gallons per acre of sorghum molasses as the yield for Obio. If this be true it would make fullyfour hundred pounds of dry sugar and seventy gallons of drainage molasses, worth from 35 to 45 cents per gallon at wholesale for cooking purposes. We have sold every par ticle of our drainage molasses at 35 cents per gallon, and if the sugar is left in we sell it from 69 to 75 cents per gallon. No man can get as much money from an acre of land in corn as be can from sugar cave, if he live close by a sugar factory. The average worth per acre, if made into molasses alone, unde the Stewart process, would be over sixty dol lars per acre; and if made into both sugar and molasses it would come to fully seventy dol lars per acre; besides this, the crop of cabe seed if properly saved, cured, and thrashed, the same as wheat, is worth half as much for feeding purposes as the average acre of coro will yield in the same vicinity." And in any place and upon any circumstances wherehy you are able to raise a reasonably good crop of corn, sugar cane will do equally well in the same freld. It is more work to cultivate it because you should plant more hills to the acre; but you can boe a bill. of one just as easy as you can the other, and the cutting is just the same. If you save the caue leave for fodder it makes more work, but the fod der fully pays for that. The cane seed
final resting \mid nish or simply with tallow, and then immersing the egg in some weak acid, such, for example, as vivegar, dilute by drochloric acid, or etching liquor. Everywhere where the varnish or wax has not protected the shell, the lime of the latter is decomposed and dissolved in the acid, and the writing or drawing remains in relief. Although the modus operandi presents oo difficulty, a few precautions must be taken in In the first cessful on a first experiment.
In the first place, as the eggs that are to be engraved ar
usually previously blown, so that they may be preserved with
can be thrashed as easy and exactly the same as wheat, and will yield over fifteen bushels per acre on all cane that is good enough to make 106 gallons of molasses to the acre. The Rio Grande Sugar Company raised and worked up in 1882 about 800 acres of cane-not quite that amount as given into the State of New Jersey for the bounty money. They produced over 330,000 pounds of sugar and twice that number of pounds of drainage molasses. It is a well known fact in that vicinity that it was a very profitable business.

