

Lucilla Macellaria

To the Editor of the Scientific American:
The article by Dr. Fred. Humbert in your issue of Now. 10 has just met my eye. Dr. Humbert speaks of several inaccuracies that are important enough to need correction in bis letter published in the Bulletin of the United States National Museum, which fay be trucenough; but in attaching any blame to the undersigned for whatever inaccuracies there may be in his letter, he is himself both inaccurate and unjust.
The truth of the matter is that the doctor's letter was so illegible, and his English so poor, that some alterations were needed to make sense of it; but those alterations were made for the most part before the letter was transmitted to me by Prof. Baird. A re-examination of the original letter shows that none of the changes which Dr. Humbert indicates were made, but that on the points which he draws attention $t w$, his letter corresponds witb the publisbed copy. In reference to tbe specific name of the fly, I wish to assure Dr. Humbert tbat I did not depend on his description for the determination, but upon the specimens tbemselves, which, fortunately, he transmitted with the communication. There are characters which enable tbe entomologist to make such a determination wbether the flies are dead or alive, and therefore his conclusion that the fly cannot be properly named is totally unwarranted.
C. V. Riley.

Washington, D. C., December 4, 1883.

"How to Cook an Old Hen."

To the Editor of the Scientific American:
In your issue of November 24 Professor Williams gives pis metbod of cooking an old ben, which reminds me of a ittle of my own experience with that familiar bird. Havlig the hen fever bad, I was glad to get in proper season very sitting ben I could. At one time I got a fearful heasly looking specimen, but ${ }^{\text {as }}$ as she was willing to sit on anything, even brick-bats, she served my purpose well. During tbe process of incubation she sat very close and almost entirely abstained from food. When the tbree weeks were up there was bardly enough of body left to generate beat sufficient to finish incubation. But wben she came out with ber cbicks she never declined her rations, and became very fat when the chickens were ready to wean; and as sbe was good for nothing else I took her head off, and not being the proprietor of a "boarding house," she was cooked for $\overline{\mathrm{m}} \mathrm{y}$ 浐 n table, and to my surprise she was the most delicious fowl I ever tasted. And it seems to me this is a proper question to place before any scientific American-Whether she was an old hen or not? And whetber a fowl can be old that makes all its growth, except the frame, in a few weeks?
Let that be as it may, the diservery made by me proved fatal to old hens afterward. The proper method is to feed well while they are with the chickens, and kill them as soon as the chickens are ready to wean.

Jos. M. Wade.
Boston, December 3, 1883.

The Use of Cinder as Ballast.

R. M. P. says: We are using on our road a consider able amount of cinder aud coal slack for ballast; the question has come up as to whether this ballast is destructive. to ties or not.
[Ans.-Engineers who have used cinders as ballast state that they have noticed no injurious effect upon the ties. In a well drained track ties laid in cinder are no more likely to rot tban when laid in some other materials. . The dust from fine cinders makes the latter objectionable. When the coal has not beeu completely burned, there is danger from fire.]

The Reis Transmitter.

Tbe world has au interest in knowing wbat relation Pbilipp Reis, of Germany, has to the speaking telepbone of to-day; what be did is of great importance to us, says a writer, signing himself W. X.; in the New York Electrician, because if he invented anelectric speaking telephone twenty years ago and made the invention known not only by descriptions of the device, but by making and selling bis telepbones in public market, it is clear that the credit for the invention belongs by right to him, and it is also plain tbat so much as be invented belongs now to the world, and ought not to be the exclusive property of any man or company of men.
On this question, as to what Reis did, there has beeu a vast deal of talk in courts, and a great deal of craftiness by lawyers has been displayed, and the language has been so carefully shaped for the requirements, that if the language were like a macbine it would no longer be fitted for ethical purposes. Let us see, tben, wbat it was that Reis did.
First. He invented a certain device, which he called the tele phone. It consisted of two parts, a transmitter and a receiver. Some of biss constructions are in existence to-day just as he used them and left them. Let us examine the structure of his transmitters. He made eight or ten varieties, but they all involved the same idea. For tbe purpose, we will take tbe bored block form, such as he exhibited to the Physical Society at Frankfort on the Main, 1861.
Physical Society at Frankfort on the Main, 1861.
invented and constructed for a specific purpose; namely, the variation of an electric current by means of sound vibrations, variation of an electric current by means of sound vibrations,
chiefly those of the poice, as the tube plainly shows. Is it adapted to its purpose, and will it do the work for which it was designed? This is a question which may be answered in two ways, theoretically and experimentally. If the above instrument, or a facsimile of it, be connected properly with a magneto receiver, its capabilities may be experimentally tested, and when thus tested it is found to be a good speech transmitter, extremely sensitive as a microphone, and words spoken ten feet from it may be plainly heard at the receiver. If that be true, it follows that the Reis transmitter, just as be left it, is capable through its appropriate action of giving to the electric current its proper variations for the reproduction of speech; in other words, it yields the genuine undulatory current. Wliat is true of this transmitter is true of the more common form of Reis transmitter; namely, the cubical box with the membrave on therale Especially good will the results be, if the transmitter be coupled in the primary circuit of a small
the secondary circuit.

Reis invented tbese transmitters far this purpose, and be used them for the same purposes, and he said he heard words at the receiver which were spoken at his transmitter, and what he said was corroborated by quite a number of bis contemporaries, several of whom are now living; but as an offset to the above it has been affrmed, and the courts have so ruled, that Reis intended that his transmitter should work in sucb a way as to make it inpossible . ${ }^{\text {a }}$ at speech could be
transmitted by it; namely, be intended the the electric circuit should be broken for every vibration, and the evidence for it is his description of the working of his device. This declaration is equivalent to the assertion that what Reis invented was, not certain instruments for a certain purpose, but a theory of the working of certain pieces of apparatus; and consequently, if Reis did not describe the working of his devices correctly, he did not invent the devices, and consequently tbe world has no right to bis apparatus.

Again, let us inquire what it was that Reis invented. Suppose that in place of the platinum terminals be bad used iron, or copper, or carbon, or anything else, would it bave changed tbe character of the device? Not at all. One might bave answered better tban anotber for the purpose, but all would act in substantially the same way, the differences would be altogether those of degree and nothing else. Let a piece of electric arc light carbon be substituted for the platinum in eitber of the forms of Reis' transmitters, and at once it becomes equal to the very best of modern transmitters. Why? Because the intention bas been cbanged? No. Because the mechanical arrangements bave been modified? No. Indeed, it is only because of the demand for a superior article of carbon for electric lighting that such carbon for transmitters has been adopted, as any one may verify for bimself by trying any ten year old carbon stick in bis transmitter. Has the one who substitutes the carbon for the ous. At best the undaty curront. It is preport even in that place, the function of the carbon is simply to vary resistance, and it had been put to that serviceyears before.
Second. Reis desoribed his apparatus and gave his theory of its action. This is the part that is seized upon by the assailants of the claims of Reis as being the inventor of the speaking telephone. Suppose, for argument sake, it be admitted that Reis expected to reproduce speech by means of an intermittent current, aud that he intended tbat his transmitter should make and break circuit for every vibration. It must be admitted that any automatically working device can only work in accordance with the mechanical conditions present in the device, and no will, or intention, or theory concerning it will make any difference in its working, so long as it is not otherwise compelled to wort differently, in which case it would not be automatic. What then does it matter how Reis thought his machine acted? His theory of its working might have been wholly wrong, yet its performance be wbolly rigbt. When we speak to a Reis transmitter we find it gives the proper undulatory current for the transmission of speech.
It must have done so for Reis, unless physical laws have changed since his time, and it is not likely tbat any onewill have the hardihood to affirm that; and it is enly bs trifing ; with the facts, and by ingeniously framing seutences, tbat conclusions hostile to Reis' claims have been drawn. How then does the case stand? Reis did two things. He invented a telepbone transmitter for the purpose of the electric transmission of speech sounds and any other. He succeeded in doing it, and we can to-day with the sameinstruments. He also described bis devices, giving a theory of their action, wbich in some particulars is inexact. These two things be scribe the action of his device as we would describe it to day, when used for the same purpose it was invented for, the Bell Company is, tberefore, entitled to a monopoly of what he invented for the purposes for which be invented it.

Copper and Microbia.

It is stated that the antiseptic action of copper sulpbate is sligbtly superior to that of salicylic and benzoic acids; twice greater than tbat of pheuol; five times greater than that of alum, tannin, and arsenious acid; and ten times greater than that of chloral hydrate and the ferrous salts. Copper chloride is from one-third to one-half more efficient
than the sulphate. than the sulphate.

Afrairs at the Patent offiee.

Washington, December 2, 1883.
The new change of time to accommodate the railroads, for that is really all this change was made for, and the consequent bringing to public notice the fact that some railroads had adopted the twenty-four hour system of reckoning time, seems to have had an influence upou inventive genius, for applications are pouring into the Patent Office for devices for clocks and watches with dials upon which the extended hours are noted. Miny of these are quite ingenious, but the majority are not actually new, but are simply modifications of a system which was in vogue some four hundred years ago. An inspection of some French publications of the fifteenth century discloses the fact that the manner of duplicating and marking the time from 1 to 24 , representing the twenty-four hours of the day, was practiced at that date. A notable instance was shown me in a work of that period containing a plate of a watch with the hours from 1 to 12 in Roman characters upon the outer rim of the dial, while upon an inner circle were the hours from 13 to 24 in Arabic fig ures. Tbis dial belonged to a watch in Prince Pierre Solty koff's collection, and was of gold and enamel of most elaborate workmanship, the sides being of rock crystal, througb whicb the works could be seen. The age of the watch is not absolutely ascertained, but from certain characteristics of be movement it is believed to date from the beginning of be reign of Henry IL of France (A.D. 1547).
The Examiner of Interferences has tbe past week made decisions in several cases which have been for a long time in litigation before the office, and the results of wbich have been anticipated witb considerable interest. In tbe case of Jablocbkoff ϑs. Brush, secondary battery as applied to electric light, Brush showed by evidence tbat the device wbich Jablocbkoff claimed as his invention, and in wbich tbe interfereuce was brought, had been in public use for over two years, and the examiner dissolved tbe interference. This is one of the first cases under the recent decision of the Su preme Court of the District, as to the taking of testimony to establish the public use of a patent.
In the case of Crompton, Fitzgerald, Biggs, and Beaumont v8. Brusb, also secondary battery, a decision has been given iu favor of Brush. The plaintiffs relied on a foreign patent, but that patent was ruled out.
In the cases of Kieth, Sbaw, and Brush vs. Faure, and Kieth, Shaw, Maloney, Brush vs. Faure, an application to extend the time for taking testimony has been refused. These cases bave now been hanying for over a year, and a near setlement seems probable.
Two interesting telepbone cases are now under consideraion by the Examiner of Interferences, aud will probably be sbortly decided. These are Eldred vs. Sbaw and Forium vैs. Shaw. The point involved is the telephone as applied to the exchange system.
Another examiner bas resigned to go into practice against the Office. As has been frequently said, the rates of compensation for the skilled labor acquired only by experience n the Patent Office are so disproportionate to the importance of the services, that it seems that young men of brains and ambition simply use their positions in the Office to acquire a complete familiarity with the rulings and practice, and tben resign to utilize that knowledge for their own benefit and that of their clients. While tbe ranks of patent attorneys are thus recruited the business of the government is really crippled, for new men are constantly being educated only to go out as their predecessors when they shall have become sufficiently well informed to show the Office its weakness, and to win for their clients that which ought to come witbout the aid of an attorney.

Franklin.

Dentists should sharpen their own Burs.

Dr. G. Newkirk, in tbe Dental Cosmos, recommeuds dentists who can spare the time to sharpen their own burs. He says tbat burs may easily be sbarpened several times without recutting, if one has tbe disposition to acquire the art. First, get a knife-edge Arkansas stone. (I had the ill or good fortune to break mine in two, and I keep one piece for this special work.) To keep the knife-edge, renew it when dull by holding it lightly on a small, fine corundum whecl, cither lathe or engine Of curre this grinding must be done carefully, to avoid cbipping the edge. A whetstone may be used to finish tbe edge if you wish. Take a pine stick, puncb a hole in the end with an awl or other small instrument; then whittle down to a uice round bandle to hold jour bur. Now, holding the bandle between tbe tbumb and three fingers of the left band, let the instrument itsel rest on the index finger: With a little practice the rigbt band may be taught to hold the stone lightly and draw it evenly through the slots and bearing on eacb chisel edge. As each becomes sharp, a very slight rotation of the handle from left to right brings the next cbisel into position, and those sharpened are so passed along and no danger of being dulled, as tbere migbt be if the bur were rotated backward. Clean tbe edge occasionally and have a bit'of oiled flannel with which to keep it lubricated. Tbe beginner will probably spoil the edge of his stone once or oftener, but if he perseveres he will soon be gratified by the consciousness of having mastered a nice little art.

Louibiana bas 2,557 factories, working 30,071 hands, with a capital invested of $\$ 18,313,974$, paying annually in wages, $\$ 4,503,470$, and yielding annually in products $\$ 24,161,905$.

The huge pyramids of spherical shot and shells deposited in various parts of the Royal Arsenal, Woolwich, are condemoed to the melting furnaces for conversion into projectiles more adapted to modern requirements. One heap alone contains about 40,000 of the 13 -inch shells which were supplied at the time of the Crimean war, and were the most furmidable missiles used in the siege of Sebastopol. The 13 incl mortars, from which they were fired, have long ago disappeared out of use, but lie in hundreds in a distant part of the arsenal waiting orders for their demolition, and no round shot or shell of any size have been made since the introduction of rifled ordoance and elongated projectiles. They are being all gradually broken up. Another ancient description of shell of the class known as smoke balls and ground light balls has been declared obsolete, and all that are remaining in store will be destroyed. They are of various sizes, varying from $\frac{4}{4} / 2$ inches to 13 inches in diameter.

Covering Iron and Steel with Copper.
According to the Metallarbeiter, iron can be coppered by dipping it into melted copper, the surface of which is pro tected by a melted layer of cryolite and phosphoric acid. The articles to be coppered must be heated to the same emperature as the melted copper
Another process consists in dipping the articles into a melted mixture of one part of chloride or fluoride of copper, and five or six parts of cryolite, and a little chloride of barium. If the article when immersed is connected with the negative pole of a battery, it hastens the process.
A third method consists in dipping the article in a solution of oxalate of copper and bicarbonate of soda, dissolved in ten or fifteen parts of water, acidified with some organic acid.

A MASBIVE SCAFFOLDING

The Manhattan Company's Bank and the Merchants' National Bank are now erecting a building at Nos. 40 and 42 Wall Street, this city, after designs by W: W heeler Smith. The building extends through to Pine Street. It will have a front of plain and polished granites from the Hallowell, Fox Island, and Westerly quarries: the floors will be iron beams resting upon iron columos.
In order not to interfere ith street traffic and at the same time to expedite the handling of heavy pieces, and be free from the a nooyance caused by curious sightseers, a scaffolding of massive strength was erected, showu in the accompanying engraving. The posts composing this framework are 12 by 12 inch pine timbers held together by lateral braces, and between each panel are wooden diagonals. The outer live of posts is set alongside the curbstone. Transversely on top are placed floor beams, 12 by 14 inches, and 6 feet between centers, which project a short distance be ond the curb live, and on these, parallel with the street line, is a flooring of planks 3 ioches thick, above which is a secood system of planks the same thickness, but laid obliquely.
Raised above the sidewalk is a passageway extending the whole length of the staging. This has a width of 4 feet 6 inches, and is reached by a flight of steps at each end. By this means the foot travel of the street is not interfered with.

The center of the scaffolding is wide and high enough to admit a wagon, which is driven in and unloaded upon the first floor of the building.
The rear post of the main derrick rests just outside the front wall, aud consists of two timbers 10 by 12 inches, bolted at intervals to each other and to the maio posts. These are placed in a line perpendicular to the street. About 12 feet above the floor is the horizontal arm of the derrick, consisting of two timbers 10 inches square, and placed a few incbes apart. The diagoval from the top of the rear post extends over an A frame, and is joined to the end of the horizontal arm. Upon the upper inner corners of the timbers forming thisarmare angle irons, constituting the track upon which a little car travels. From the under side of the car hangs a block and tackle. The car is run to the outer end of the track, under which the wagon has been driven, and the hook is attached to the piece to he raised. The hoisting rope exteods to the engive in the interior of the building. When the piece has been elevated above the floor, the car is run back and the piece is lowered on to a hand truck, or rollers, by the aid of which it is moved about on the floor. Distributed about parts of the building are derricks that raise the stone and leave it in its place.
The various parts entering into the construction of the scaffolding are held together by nuts and bolts, plates being placed under the heads and nuts. It was designed so as to have sufficient strength to support upon the flooring all the material immediately to be used, thereby relieving the street of all unsightly heaps. Another consideration is that people are not subjected to danger from falling pieces while passing the building.

a MASSIVE SCAFFOLDING.

out alteration, it is necessary before immersing them in the acid to plug up the apertures in the extremities with a bit of beeswax; and, moreover, as the eggs are very light, they must be held at the bottom of the vessel full of acid by means of a thread fixed to a weight or wound round the ex remity of a glass rod
If the acid is very dilute, the operation, though it takes a little longer, gives better results. Two or three minutes usually suffice to give characters that have sufficient relief. - La Nature.

Velocities.

An interesting table of velocities has been drawn up by Mr. James Jackson, the librarian of the Paris Geographica Society. He begins, says the Photo. News, with the velocity of a man walking two miles and a half an hour, and after alluding to the respective velocities of an ordinary wind, of a race horse, of an express train, of a carrier pigeon, of a hur ricane, of sound in air and water, he brings us at last to the velocity of heavenly bodies, of electricity, and, finally, of light. But Mr. Jackson has left out one important velocity, which has only been recently computed, and which is of singular interest, sioce it represents the ooly earthly agent known to man with a velocity quicker than sound in water although oaturally less quick than electricity and light; we mean the detonation of the photographer's old friend, gun cotton. Abel and Noble have computed that a train of guu cotton, fired with a fulminate fuse, will transmit the de tonating action at a speed of from 17,000 to 19,000 feet pe second. In other words, detonation travels at the rate of 200 miles a minute, while next in order comes electricity traveling through a submarive wire at a speed of some $12,000,000$ feet per second.

How Fire is Carried in Cotton.
Edward Atkinsoo, of Boston, says: "Fire lurks in a cotton bale for weeks. The cotton which was iujured somewhat over a year ago in Biddeford, Me., was moved to South Boston for sale. The fire broke out again more than once while it was at South Boston being made ready for sale. It was then sold at auction. The fire broke out again in one parcel while it was on the cars being carried away, and in another parcel after it had been received at a factory where it was to be used. The latest outbreak was, I think, where it was to be used. The late
thirty days after the original fire."

Sorghum Sugar in ©hio

A correspondent of the Ohio Former, coutucting a sugar factory in that State, says
' Not a single man that brought cane to our mill raised as much as one whole acre of it, generally from one-eighth to ove-quarter of an acre, and they would have from one load to three or four good wagon loads of the cane but over four-fifths of them simply wanted molasses for cooking purposes. And but a small portion of it were they willing should be cooked into sugar. Because we did not make moresugar was because we were not allowed to do so. Every gallon of good molasses made from matured cane, agreeable to the Stewart process, will granulate fully four pounds of sugar the first granulation. Estimalesgive 100 gallons per acre of sorghum molarses as the yield for Obio. If this be true it would make fullyfour hundred pounds of dry sugar and seventy gallons of drainage molasses, worth from 35 to 45 cents per gallon at wholesale for cooking purposes. We have sold every par ticle of our drainage molasses at 35 cents pe gallon, and if the sugar is left in we sell it from 69 to 75 cents per gallon. No man can get as much money from an acre of land in corn as he can from sugar cave, if he live close by a sugar factory. The average worth per acre, if made into molasses alone, unde the Stewart process, would be over sixty dol lars per acre; and if made into both sugar and molasses it would come to fully seventy dol lars per acre; besides this, the crop of cabe seed if properly saved, cured, and thrashed, the same as wheat, is worth half as much for feeding purposes as the average acre of coro will yield in the same vicinity." And in any place and upon any circumstances wherehy you are able to raise a reasonably good crop of corn, sugar cane will do equally well in the same freld. It is more work to cultivate it because you should plant more hills to the acre; but you can boe a bill. of one just as easy as you can the other, and the cutting is just the same. If you save the caue leave for fodder it makes more work, but the fod der fully pays for that. The cane seed
final resting \mid nish or simply with tallow, and then immersing the egg in some weak acid, such, for example, as vivegar, dilute hy drochloric acid, or etching liquor. Everywhere where the varnish or wax has not protected the shell, the lime of the latter is decomposed and dissolved in the acid, and the writing or drawing remains in relief. Although the modus operandi presents oo difflculty, a few precautions must be taken in In the first
In the first place, as the eggs that are to be engraved ar
usually previously blown, so that they may be preserved with
can be thrashed as easy and exactly the same as wheat, and will yield over fifteen bushels per acre on all cane that is good enough to make 106 gallons of molasses to the acre. The Rio Grande Sugar Company raised and worked up in 1882 about 800 acres of cane-not quite that amount as given into the State of New Jersey for the bounty money. They produced over 330,000 pounds of sugar and wice that number of pounds of drainage molasses. It is a well known fact in that vicinity that it was a very profitable business.

