but even then it continued its perversity, and it is to be kept as a curiosity as it is,
to inspect its interior
The most vexations thing about these "queerities" is that no " theory that bears the test of practice has, so far, accounted for them. If the "reason why" could be discovered the causes could be removed and the working of steel be made an exact and certain art. Still, there has been greal progress in this direction during the last twenty years; the percent age of loss in hardening and tempering steel has been reduced to a very low figure. These improvements have been owing to the greater uniformity in the character of the steel produced as well as to the greater skill in its after mani pulation. We may not despair of yet being able to make the production of hardened steel articles as even and certain as those from any other material.

A NEW TREATMENT FOR THE DEAD.

The question of cemeteries interests the public more and more, and in view of its hygienic relations has been discussed hy scientific societies, legislatures, and municipalities. M. (ih. Depertais announces is the Cosmos les Monds a new method of treating corpses by which they are rendered in(tions.
To day a feeling generally prevails that the cemeteries are centers of infection for the diffusion of epidemic maladies, and that their neighborhood is a menace by reason of their emanations and their influence upon percolating waters. This hurtfulinfluence has long been recognized. In India the natives yet expose their deadupon the banks of the Ganges or at the summit of the Towers of Silence. They become a prey in both instances to rapacious animals, and become partially harmless through their destruction.
The Jews, Etruscans, Ethiopians, Greeks, and Romans bad recourse to embalmment or incincration. Cremation fully satisfies the requirements of modern sanitation. The ensbalmment as practiced to day demands cares and expenses which are never applied, and it has been shown that the chemical bodies employed are insufficient to destroy ail the sorts of germs, spores, bacteria, etc., which arise. It only momentarily protects the body.
The process of embalmment among the Egyptians was long and complicated. It was loased upon the use of reagents and upon drying in the air or in furnaces. Cremation as at present executed is completely satisfactory, every atom of noxious gas even being consumed. Nevertheless, the feel ings of most people are opposed to it, and there are practical difficulties connected with it not always easily overcome. It seems therefore necessary to find a new method which, while it guarantees the destruction of the causes of infection, conciliates our customs and desires and is reasomable in its expense. M. Depérais has explained a process based on the fact or statement that at 106° Cent. these pernicious germs are destroyed. He utilizes the well known fact that saline solutions do not boil until after the boiling point of water (100° Cent., $212^{\circ} \mathrm{F}$.) bas been passed. The salt he employs is the chloride of calcium, on account of its cheapness, the ease of its management, and because it is antiseptic and tanning in its effects. Plunging a corpse into such a solution at 47° Baume and slowly raising the temperature of the bath, it is evident that when the temperature passes 100° Cent. the water of the flesh and tissues will evaporate.
Continuing the heat, the body contracts and the chloride of calcium impregnates it. The prolonged bath kills the disease spores, and the hardening and antiseptic properties of the salt partially embalm the body; as, however, chloride of calcium is deliquescent, the body would not dry on removal from the bath. It is removed by immersion in a bath of sulphate of soda, by which the lime salt remaining in the bodyand incrusting all its fibers becomes the sulphate of lime, and the chloride of sodium is free in the bath. Then the body is dried either in the open air or in an oven.

OSAGE ORANGE VS. MULBERRY FOR THE SILKWORM.

There is a strong disposition on the part of those who look for making money by the propagation and sale of mulberry trees to underrate the use of Osage orange as silkworm food. We have thoroughly demonstrated by the most careful tests on several occasions that when Maclura aurat tica is properly used for this purpose, the resulting silk loses notininu in fuantity or quality, and we have now a strain of Servarion mot that inas been fed upon the plant for twelve consecutive yoars withant deterioration. There is, perhaps,
 upon as an advantage. It is more than likely, however, that the different races will differ in their adaptability to the Maclura, and that for the first year the sudden transition to Maclura from Morus, upon which the worms have been fed for centuries, may result in some depreciation. Mr. Virion des Lauriers at the silk farm at Genito has completed some experiments which be detailsin the opening number of the "Silk Grower's Guide and Manufacturer's Gazette," on the relative value of the two plants. Four varieties of worms were reared. The race known as the "Var" was fed" thronghnut on mulberry leaves. The "Pyrenean" and "Cervennes" worms were fed throughout on leaves and
branches of Osage orange, while the "Milanese" worms werefed on Maclura up to the second moult and then changed to mulberry leaves.
At the close samples of each variety of cocoons were sent to the secretary of the Silk Board at Lyons, and appraised by him. The Maclura fed cocoons were rated at 85 cents per pound; those raised partly on Osage and partly on mulberry
at 95 cents per pound; and those fed entirely on mulberry at $\$ 1.11$ per pound. This, M. Des Lauriers thinks, seems to show that the difference between Maclura and Morus as silkworm food is some "twenty-five to thirty per cent in +avor of the latter," while it is evident that "the leaf of the Osage orange can be used with some advantage during the first two ages of the worms, thus allowing the mulberry trees grow more leafy for feeding during the last three ages. The experiment, although interesting, is not conclusive from the simple fact that different races were used in the different ests and not the same race, so that the result may have been due to race and not to food.-C. F. Riley.

HEAPPEARANCE OF THE COMET OF 1812.

〇o the third of September, Mr. Brooks, of Phelps, New York, discovered a telescopic comet. Its advent was quickly made known to the scientific world, and it was described as round and faint, and baving no tail. Its course was toward the earth, and it was hoped that it would become visible to the naked eye in two or three months. It was generally accepted as a new-comer making its first visit to the clime of the sm, and was known as comet Brooks, or omet $b 1883$.
Instead however of being a new-comer, this comet is an old friend that made its first recorded visit in 1812, and is known as Pons' comet from the name of the discoverer, or, more simply, as the comet of 1812 . Encke, an astronomer of the time, found that the comet moved in an ellipse with a probable period of nearly 71 years, so that its return was looked for about this time.
The Rev. George Searle, of New York, was the observer of 1812 .
Cometic astronomy was comparatively in its infancy when Encke made the computation of the orbit of this comet. It is simply wonderful that, with the data at his command, he should have reached a result so nearly accurate. Within a few years. however, two series of cbservations of the comet have been discovered which were unknown to Encke. Two French astronomers, Messrs. Schulhof and Bossert, undertook to recompute the orbit, using all the data known. The Paris observatory publisbed the result of their labors in a pamphlet of 209 pages. From time to time, the enthusiastic French observers issued memoranda of the probable position of the comet when near enough to be seen. Unfortunately, the first observations of comet Brooks did not seem to agree with the French ephemeris, and it was hastily concluded that the erratic visitor was a new member of the cometic family, come to take ils first peep at our little planet.

The Rev. Mr. Searle studied the question more carefully, and verified the rumplem: beyond question that the positions marked out for comet Brooks were identical, at the time of observation with those in which a comet would be found that was traveling in the ellipse computed by Encke. He went further, using the new orbil of the French astronomers, and proving that the comet was observed in the exact position where it should have been found according to the orbit computed 70 years ago.
There is therefore no shadow of a doubt that our eyes behold the long expected comet of 1812 . Its perihelion passage will take place on the 25th of January, 1884. It will then be about $60,000,000$ miles distant from the earth, two-thirds the distance of the sun.
In 1812, the comet presented, when discovered in July, the appearance of an irregular nebulous mass, with the tail entirely wanting. In September, the nucleus was \boldsymbol{o}^{\prime} in diameter, and the tail was $2^{\circ} 17^{\prime}$ in length. Though not very bright, it was distinctly visible to the naked eye, and was observed for ten weeks before it disappeared in the star depths. The returning comet, when first seen, presented similar elements. About the 23d of September, however, a remarkable and unexpected outburst occurred, the nucleus expanding into a confused circular nebulous patch of light, and the comet increasing many times in brilliancy in the course of two or three days. On the 23d, the nebulous mass was 2 in diameter; on the 25 th, it was 4^{\prime} in diameter and hone with a luster equaling a star of the seventh magnitude. 'l'he activity of the display is almost unparalleled in cometic history, and is specially noteworthy on account of the comet's 4 rat distance from the sun at the present time. Since this curious outburst, the comet has been a well bewnel_member of the family, but it is impossible to predict what vagary it may next indulge in.
The comet of 1812 may now be seen in the evening in the ortbwest in a telescope of moderate power, and is said to he visible in a good opera glass. In a few weeks it will be easily perceptible to the unassisted eye, and when the year 1884 makes its advent, it will be near its culminating point. It will not equal the superb comet of 1882 in size or brilliany, but it will be visible in the evening sky and will be so much more convenient to observe that there will be compenation in its lessened splendor.
It is an astronomical triumph, that with the inadequate means at command for computing an ephemeris, an astronomer seventry years ago was able to predict nearly the exact time for this comet's return. O ur ancient friend is winging its swift flight toward us, and before long our eyes will be gladdened by a sight of its face after a long travel of breescore years and ten, when almost every eye that noted its first appearance bas ceased to behold the shining picture its frst appearance bas ceased to b
that nightly arches over the earth.

There are several comets with a computed period of from 70 to 75 years. Halley's'comet with a period of 75 years is the only one of them that has made more than one return. Its last appearance was in 1835, and it is next expected in 1911. The comet of 1812 with a period of 71 years now records its tirst return. The comet of 1815 with a period of 74 years is confidently anticipated in 1889.

Clocks and Railway Time Tables to be Changed

 November 18.The changes to be made on Sunday, Nov. 18, in the time by which about all the railroads in the country are run, cannol be brought about, at the best, without considerable friction. In Boston, for instance, there is no little opposition to the putting of clocks and watches back some 17 mi mites, as will be necessary under the new provision for "Eastern standard" time, but orders have been issued for many of the public clocks in that city to be so regulated, and, as the whole railroad system of the Eastern States will be controlled by this standard, the prevailing opinion seems to be that the innovation will be generally accepted. There may besome who will at first carry the two kinds of time, the "standard" and the true, as can be readily done by having two minute hands on a watch; this is now frequently practiced to keep both New York and Boston time, by those who travel much between the two cities. In New York cit y, where the chance required calls for putting back the true time only four minutes, there will probably be less opposition to the adoption of the new standard, but it may be readily conceived that great confusion will inevitably be caused wherever it is attempted to use the two kinds of time simultaneously.

Full particulars relative to the adoption of the new plan, whereby there will practically be only four standards of time throughout the country, instead of forty-nine, as at present, were published in the Scientific American of Oct. 13. The time tables of many of the railroads will also have to be changed, as well as the clocks, in order to facilitate the making of connections between lines affected over considerable distances east and west. The following list of changes has, therefore, been furnished by Mr. W. F. Allen, Secretary of the railroad conventions which decided upon the adoption of the new standard, the letter f denoting that the clock is to be set ahead, and the letter s that it is to be set back :
Atchison, Topeka, and Santa Fe, cast of Dodge City, locks only, 9 minutes, f.
Atchison, Topeka, and Santa Fe, west of Dodge City, clocks and scherdules, 51 minutes, s
Baltimore and Ohio (west), hoth clocks and schedules, 28 minutes, s.
Boston, Hoosac Tunnel and Western, both clocks and hedules, 4 minutes, s.
Boston and Albany, clocks only, 16 minutes, s.
Canadian Pacific (Eastern division), clocks only, 6 mintes, s.
Central Vermont, both clocks and schedules. 12 minutes,
Chesapeake and Ohio, both clocks and schedules, 8 min tes, f.
Chicago and Alton, clocks only, 9 minutes, s.
Chicago and Grand Trunk, both elocks and schedules, 9 inutes, s.
Cleveland, Columbus, Cincinnati, and Indianapolis, both ceks and schedules, 28 minutes, s .
Delaware and Hudson Canal Company, clocks only, 4 inutes, s.
Delaware, Lackawanna, and Western, both clocks and chedules, 4 minutes, s.
Fort Wayne, Cincinnati, and Louisville, both clocks and hedules, 23 minutes, s.
Freehold and New York, both clocks and schedules, 4 nutes, s.
Hartford and Connecticut Western, clocks only, 4 mites, s.
Lake Shore and Michigan Southern, both clocks and hedules, 28 minutes, s.
Lehigh Valley, clocks only, 1 minute, f.
Louisville and Nash ville, clocks only, 18 minutes, s.
Missouri Pacific, clocks, schedules at St. Louis only, 8 utes, s
New York, Lake Erie, and Western, clocks only, 4 minutes, s.
minutes, s.
Northern, clocks only, 4 minutes, s.
New York and New England (east of Comnecticut), both ocks and schedules, 14 minutes, s.
New York-and New England (in Connecticut), both clocks d schedules, 4 minutes, \&
Pennsylvania, New York division, both clocks and scheules, 1 minute, f.
Pennsylvania, all divisions except New York, clocks only, 1 minute, f.
Philadelphia and Reading, both clocks and schedules, 1 nute, f
Rome, Watertown, and Ogdensburg, clocks only, 4 mi outes, s.

The Swiss railroad companies now cover a portion of their carriages with a phosphoresecnt preparation, which makes them visible at night.

