Brientifir Smeriam.

FST:ABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
-. . MUNN
A. 2. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year postage included...
One copy, six months postage included
Qlubs.-One extra copy of The Scientipic American will be supplied
gratis for every cuub of tive subscribers at $\$ 3.20$ each \cdot additional coples at same proportionate rate. Postage prepaid
Kemit vy postal order. Address
emit by postal order. Address

The Scientific American Supplement

is a distinct paper from the Scievtiric american. The SUPHLEMEN'I is issued weekly. Every number contains 16 uctavo pages, uniform in size with SCIENTipic American. Terms of subscription for Supplement,
85.01 a year, postage paid, to subscribers
Single copies, 10 cents. Sold by all news dealers throughout the countrs will be sent rates. - The Scientific american and Supplement wir be sent for one year postage free. on receipt ot
papers to one address or difierent ad dresses as desired. The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO, 261 Broad was

Scientific American Export Edition.

The Scivntific american Export Edition is a large and splendid periodical, issued once a month. Eich number centains about cne hundred
large quirto pages, profusely illustrated. embracing:
(1.) Most of the plater and pages of the fonr preceding weekly issues of the Sciverrric Amekicav, with its splendid engrivings and valuable information: (2.) Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies socents. Manufacturers and others who desire to secure foreign trade may have large. and handsomely displ
nouncements published in this edition at a very moderate cost. nouncements published in this edition at a very moderate cost.
The Sc| $\mathrm{E} \times$ TIFIC AM caican Export Edition has a large guarai Address MUNN CO , 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, NOVEMBER 3, 1883.

TABLE OF CONTENTS OF the scientific american supplement NO. 409 ,
For the Week ending November 3, 1883 .
I. ENGINEERING AND MECHANICS.-Brent Viaduct. Hounsiou
 ures
bridge way over in So sain--With fuil page of en
Biver sil, and viaduct and II. TECHNOLOGY - New Silver Intengifer foring Developing ana - Intensifyer Intensifier for Gelatine
Improved Autamatic Camera...............ives...
II. FLEETRICITY, LÏ̛HT, ETC.-Achromatism of Lenses.-

iv.

 of the expedition.- W.
I. HRTICULTURF.-The Sophoras.- With descriptions of the if if
ferent pecies and numerousilustrations, showing forms of trees
leaves, Howers, etc.

The New Cheap lostige Era

a convention of inventors.

For several weeks past printed circulars have heen sent through the mails addressed to prominent patent owuers in the name of "The Resident Inventors of New York," sigued by Mrs. M. A. Forbes as secretary, calling for a national c.nvention of inven

The alleged objects of the convention, asstated in the call, are to protect inventors and owners of patents against the encroachments of an organized hostility to our patent laws. Also to promote the introduction of new inventions.
In accordance with the call, the "convention" began its bled with the object, according to the New York Times, of forming an association to secure for themselves full legal rights and protection against piracy and infringement. Three lady inventors were present-Mrs. Cunningham, who
has evolved a cloth cutting machine; Mrs. White, the has evolved a cloth cutting machine; Mrs.
mother of a washing apparatus; and Mrs. Jones, whose talent has found scope in various directions. Mrs. Adams, a lady who is about to bring a play into the world, and who is known better under the non de plume of Della Dusine, was also present, presumably with the intention of availing herself of the benefits of the society, which, when formed, will extend its privileges to aathors. The temporary President, Mr. Dee R. Shryock, of the American Yostal Telegraph Company, said that inventors were the people who advanced the interests, prosperity, and civilization of the country more than any other class. He alluded to the Wadleigh bill, aud ungrateful selfishness which fell nothing short of in famy. Mrs. M. A. Forbes said that the Constitution of the United States did not provide for the protection of intellectural workers. There were powerful combinations to-day made expressly for the purpose of destroying the patent sys tem. There existed, she said, nearly 100 Western railroad companies organized to utilize and appropriate, without pay ing, the work of the inventors, the grangers, the mill men, and the boot and shoe manufacturers, sanctioned and encouraged by the National Board of Trade. The measures that had been introduced into Congress since 1875 had been such as to render it imperative that the inventors of this country should organize to endeavor to secure the rights of
intellectual workers, among whom authors and others might be included. During the proceedings Thomas L. Clingman, ex-member of Congress from North Carolina, came in, and stated that he was interested in the movements of the association, as he had taken out patents of electric light in America and Europe. He felt the necessity for patentees to protect themselve
A committee of five elected Mr. J. A. Price, of Pennsylvania, President of the convention, and Mrs. M. A. Forbes Secretary, Mr. F. W. Waruer being afterward appointed Assistant Secretary. Mr. Price said he thought the broadest ritle of the association was that of American citizenship. A committee of fifteen to draught the constitution, by-laws, and regulations for the association was appointed, each mem ber being made the representative of a State. A committee
of three, to draw up memorials to send to Congress embodying the ideas of the association, was composed of Mr. Price, Mr. Warner, and Mrs. Forbes. A telegram from Mr. E. M. Marble, ex Commissioner of Patents at Washington, was then read. He offered to become permanent president of the association. An Irishman named King, who had been dis turbing the harmony but relieving the monotony of the proceedings, violently opposed this offer. Hesaw no reason why Mr. Marble should thrust a telegram in such a manner upon them, and called the missive a "sugar coated pill." He preferred offering the post of president to Mr. John Kelly rather than to an ex-Commissioner of Patents at Washington.
On the second day, 23d of Octrber, the disturbing element in the shape of the turbulent little Irish agitator, Mr. King, described by one of the ladies present as a "dynamiter and a bad man," only prevailed at the commencement of the proceedings. Mr. King surreptitiously departed when the payment of fees was announced. An old lady, Mrs. Harriet
F. Donlevy, who is well known in many societies as a lover of argument for argument's sake, opposed many movement with scriptural quotations. A memorial was drawn up to Congress in respect to existing wrongs and threatened injusticeto a most useful class of citizens. It was petitioned that skilled persons be employed to make a digest of all the matter in the library of the Patent Office, with abbreviations of all inventions, so arranged as to correspond with the clas: sification in the office. It was also asked that the statute which limits the term of a home patent to that of the earli-
introduction of inventions and the supply of legal informaion. In the matter of "fostering" inventive talent and stimulating " inventive genius it would almost seem as if the proposed labor was superfluous, over thirty-two thousand applications for new patents being filed last year in the Patent Office. The existing laws appear to furnish all the stimulants required in that direction.

THE OIL STONE

Twenty years ago the oil stone was found only on the joiner's bench and possibly on that of the machinist, and its sole use was the sharpening of tbe edges of tools. To-day ts use has extended beyond this province of edging tools to that of grinding, reducing, finishing; in fact, invading the imits of the grindstone, emery, rottenstone, tripoli, and reaching almost to rouge. This stone, which is a slate known in science as novaculite-from novacula, a razor-is cut and dressed in hundreds of varying forms for differing purposes. In any hardware or mechanic furnishing store it may be found in all manner of shapes under the name of ' slips," adapted for sharpening tools of all forms. In dentists' supply stores it may be seen in twenty or more cylindrical and circular forms, and so minute as to be used at a apid rate of revolution even between the teeth of dentalsuffering humanity. Some of these cylinders, ovoids, cones, and edged wheels are so minute that a pea looks large by their side; yet they are all veritable grindstones.
In the manufacture and finishing of the metals, the oil stone, or novaculite, plays an important part. Our recent exaction as to fits and measures can hardly be filled except by the use of this stone, and it is in demand for truing turned urfaces and planed areas of iron and brass, slowly grinding down the imperfections left by the finish file and the corundum wheel. Recently its powder has largely usurped the place in mechanics' valuation of flour of emery or emery of the higher grades. It is found that a finish "for fit" can be readily obtained by its use in much less time than that by the scraper; and that it does not leave embedded particles of quartz or corundum to keep up a perpetual wear. This material is not strictly an oil stone; it can be used with any vehicle, water, benzine, or kerosene oil; it is amenable to all of these. Perhaps its best use is with water, especially when the stone is of the harder sorts, as the Ouachita.

MAKING WIND POWER AUXILIARY.

The subject of storing the wind power evidently attracts much attention, and many suggestions have already been made, but it is anifest that no one has brought forward as yet any plan for doing practically the work intended. The ngenious soul mentioned in our paper of October 13, who uns his arastras with 2 current of sand, deserves a world of credit, and in his own case has at his command the means desired, for out in New Mexico or Arizona (where he appears to be) sand is to be had in abundance, and is the only thing of which that can be said. But alas ! our supply of sand is limited, nor have we always a hillside to which we can raise it, and what we need is something of which we an avail ourselves every where
Now, though the full answer to the question of storage may be too much for us at present, yet if we can contriv to secure a portion of the wind power sufficient to practically reduce the expenses of running our machinery, while we have the same steady supply of power as now, we shall surely have made a step in advance. Some weeks since (July 28), we made some remarks on one means by which this might perbaps be accomplished. Let us see if figures will show us that the thing is possible to such an extent a to make it worth attempting. We will base our cal culations on the same amount of power as that formerly as sumed; that is, a factory needs and uses a steam engine which gives it twenty horse power as its regular motive energy. Acting on the plau which we propose, this engine serves as an air compressor, for no other presents itself whereby we may combine the action of the steam and the wind in the same movement We need therefore a riscrvoir which shall be common to both, and it is at this point that we must begin our calculations.
For the sake of convenience it will probably be better to divide our space, two cylinders instead of one, though this of course is not necessary. A diameter of eight feet with a height of ten gives us in round numbers 500 cubic feet of contents. Such a reservoir, built of three-eighths iron, and sufficiently fitted to bear a pressure of sixty atmospheres, will cost abont $\$ 450$. The two, therefore, holding 1,000 feet we may set at $\$ 900$.
This amount of air compressed to the degree stated will furnish twenty hore power steadily through a working day of ten hours, without needing renewal.
But we do not propose to supply it from the steam engine alone or chiefly; we $\stackrel{\rightharpoonup}{\text { will }}$ bring in the wind power. At such point as is convenient wind wheels are erected in number and extent as required. A simple, solid, durable, and in expensive wheel can be built after the following plan:
A vertical hard wood shaft of twelve feet is firmly sup ported at top and bottom, where it revolves freely in common iron bearings. Six (or eight) blades project four feet, plain, solid, of inch piue board. We bave thus a wind wheel, twelve feet high, and eight feet in diameter.
A semicircular shield, concentric with the wheel, but of A semicircular shield, concentric with the wheel, but of
larger diameter, is fitted with a movable vane. When the mill is to run at its full speed the vane is so set that, which ever way the wind blows, the revolving shield leaves con ! stantly one-half of the mill exposed to its force, and the ful
power of the wind is exerted. This will doubtless be the case at almost all times; should it ever be advisable to let the mill lie still, the vane can be changed to a position at right angles, and at once the shield is presented directly to the current of the wind, and the mill is entirely sheltered.
Much more elegant and expensive windmills can be built, and yet not be one particle more effective. Such a mill will rnn for years without a dollar spent for repairs; it runs a the utmost speed of a gale, and needs no checking.
At the average speed of the wind in New York a mill of this size is good for a steady half horse power; that is, it will give 84 hours of one horse power per week, for night and day, week days and Sundays are pressed into the service. If, therefore, the manufacturer has space on which he can build fifteen such mills, he has at his command the full force of his twenty horse engine. The expense of building them will not exceed $\$ 800$.
Here, then, is our case. We liave the wind wheels each driving its air pump leading to the receiver, and we have dusisam cugine suyilarly connceted. We will as sume that by the action of one or the other or both, we have the receiver stored with air at a pressure of 1,000 pounds. At
starting work in the morning there is no occasion to think starting work in the morning there is no occasion to think
of steam, for there is on hand a reserve of force sufficient for of steam, for there is on hand a reserve of force sufficient for the day's running, and the engine lies idle. The work goes on, but so do the wind wheels go on, for they take care of themselves and need no attention, and they never can make a revolution without adding to the stock of compres ed air. When the factory shuts down at niglt, the chances are very strong that the pressure in the receiver is as great as it was at starting, or if not it will probably be fully up by morning.
A factory thus fitted will run with no outlay for current expense of power during a very large part of the year, and it certainly does seem as though the plan was worth a trial. It does not solve fully the problem of storing the wind power, but it may perhaps help us in that direction.

aspects of the planets for november.

 neptuneis morning star until the 12 th, when he becomes evening star. He retains until that time his pre-eminence among the planets on the morning roll, being the first to make his appearance iu the field. On the 12th, at 4 o'clock in the morning, the event in his synodic period most interesting to terrestrial observers takes place. He is then in opposition with the sun. As the word implies, he is opposite to the sun,
rising wben the sun sets and setting when the sun rises. He rising when the sun sets and setting when the sun rises. He
is at his nearest point to the earth; the sun, the earth, and is at his nearest point to the earth; the sun, the earth, and
Neptune beingin a straight line, with the earth in the center.
An observer on the sun, endowed with visual power to take in the system at a glance, would behold the earth and Neptune, far beyond, directly in line. He would also find, just before the time of Neptune's opposition, six of the seven planets on one side of the sun, leaving Venus as the sole planetary representative on the other. The movements of the planets as seen from the sun would be far less coniplicated than they are as seen from the earth, who is herself traveling around the sun, and changing constantly her position in regard to the other members of the system. Neptune at opposition is under tbe most favorable conditions for be ing seen with the telescope. Though the third planet in size, he is too far distant ever to be visible to the naked eye. He is now among the small stars of the constellation Aries, near the boundary line of Taurus, and nearly west of Aldebaran, the only bright star in his neighborbood. A good telescope sweeping the field where he lies will quickly detect his presence. For a small, ill-defined sphere will suddenly spring into being, while the surrounding slars will remain mere points of light.
Neptunian astronomers have an advantage over terrestria ones, and can find little difficulty fir measuring the distance of the fixed stars. While the earth has $180,000,000$ miles-the diameter of her orbit-for a base line, Neptune sweeps round the sun in an immense orbit whose diameter, or base line for measuring the distance of the stars, is $5,550,000,000$ miles. But there are disadvantages to counterbalance this advantage. It takes Neptune 165 of our years to revolve once around the sun, and astronomers there must wait more tban eighty years to make measurements in opposite points of his orbit. The sun as seen at this far away planet measures $64^{\prime \prime}$ in diameter, a little more than the greatest apparent di ameter of Venus as seen from the earth. Our glorious sun
to the Neptunians is therefore but a brilliant star, giving to the Neptunians is therefore but a brillia
only a thousandth part of the light we enjoy.
The right ascension of Neptune is 3 h .12 m .; his declination is 16° north; and his diameter is $2 \cdot 6^{6}$.
Neptune rises on the 1st at half-past 7 o'clock in the even ing; on the 30th he sets about half-past 5 o'clock in the morning.

saturn

is morning star until the 28 l , and then evenigg star. On the 28th, at 11 o'clock in the evening. Saturn is in opposition with the sun, the culminating point of his size and brilliancy for the present year. He will be a superb object for observation during the month, rising now an hour and a half after sunset, coming every evening earlier above the horizon, and sbining so serenely in the evening sky tbat he needs no one to point him out as he travels on his way near the Pleiades and Aldebaran, with whom he has long kept company. Very clear sighted observers may see him in a
elongated aspect, on account of his widely open rings. A telescope of moderate dimensions will give a surpassingly lovely picture of this unique planet, and every oneinterested in astronomy should make an effort to obtain a telescopic view of this wonder of the skies.
On the 1st, at midnight, Saturn is in conjunction with Alpha Tauri, or Aldebaran, the star being $3^{\circ} 30^{\prime}$ south. Tbis is the second conjunction of the same planet and star during the year, the previous one having occurred on the 13th of August, at almost the same point in the sky, with only a difference of 10^{\prime} in declination. Therefore Saturn is nearly in the same position in the heavens he occupied in August, although he bas been wandering in bis orbit in true planetary fashion, sometimes straight forward, sometimes backward, and sometimes stationary.
The right ascension of Saturn is 4 h .29 m . ; his declination is $19^{\circ} 46^{\prime}$ north; and his diameter is $19^{\prime \prime}$.
Saturn rises on the 1st at half-past 6 o'clock in the even ing; on the 30th he sets a few minutes before 7 o'clock in the morning.

JUPITER

is morning star throughout the month, and when bis regal head appears above the eastern bills star gazers pay involuntary homage to the brilliant planet that unerringly pursues his stately course in the star depths, and is visible through the entire night. Observers will not need to sit up late to obtain a glimpse of him, for he rises now at half-past ten o'clock, and, rising four minutes earlier every night, will be above the eastern horizon at balf-past 8 o'clock at the close
of the month. of the month.
On the 22 d lie is stationary near Praesepe, the same luminous cluster in Cancer that Mars immortalized by his passage through it in October. Those who desire to observe a planet in a stationary phase will find an illustration in Jupier, wbo scarcely varies his position during the month.
The right ascension of Jupiter is 8 h . 25 m .; his declination is $19^{\circ} 35^{\prime}$ north; and his diameter is $37 \cdot 6^{\circ}$.
Jupiter rises on the 1st at half-past 10 o'clock in the evening: on the 30th he rises at half-past 8 o'clock.

mars

is morning star, but contributes no incidents to the annals of the month. He is in the constellation Cancer, thougb he makes his way into Leo before the month closes. His increase in size and ruddy color is plainly perceptible, his ap parent diameter having doubled since the 1st of October As he rises 22 minutes after Jupiter, be can readily be found, Mars illustrates direct motion at present, that is, he is moving eastward according to the signs of the zodiac.
The right aseension of Mars is 8 h .47 m .; his declination is. $19^{\circ} 18^{\prime}$ north; and his diameter is $14 \cdot 6^{\prime \prime}$.
Mars rises on the 1st ten minutes before 11 o'clock in the evening; on the 30th he rises a quarter before 10 o'clock. uranus
is morning star, and pursues his slow and solitary way among the insignificant stars of Virgo. He, like Mars, is moving in a direct course, but at present is an object of little interest.
The right ascension of Uranus is 11 h .47 m .; his declinaion is $2^{\circ} 5^{\prime}$ north; and his diameter is $3.5^{\prime \prime}$.
Uranus rises on the tirst about 3 o'clock in the morning; on the 30th he rises a few minutes after 1 o'clock.

mercury

is morning star until the 26th, and evening star the rest of the month. On the 26tb, at 1 o'clock in the morning, he is in superior conjunction with the sun, passing behind and below him, and reappearing on his eastern side as morning ; tar. He takes no active part in the events of the month, but contents himself with pursuing the swift tenor of his way.
The right ascension of Mercury is 13 h .38 m . ; his declina ion is $8^{\circ} 17^{\prime}$ south; and his diameter is $5 \cdot 4$.
Mercury rises on the first about half-past 5 o'clock in the morning; on the 30th he sets about half-past 4 o'clock in he evening.

vends

evening star during the whole month, the only planet that plays this part without change. She will not long remain at he foot of the list, but will soon put forth her claims to no ice, when the other planets will hide their diminished heads Though set ting now forty minutes after the sun, at the end of he month she will be above the horizon a little more than an hour after sunset and can be easily seen. Her place will then be far south in the constellation Sagittarius, $2^{\circ} 35^{\prime}$ south of the sunset point
The righ ascension of Venus is 15 h .9 m .; her declination $17^{\circ} 25^{\prime}$ south; and her diameter is $102^{\prime \prime}$.
Venus sets on the 1st about half-past 5 o'clock in the eve aing; on the 30th, she sets about balf-past 5 o'clock.

the moon.

The November moon fulls on the 14th at forty-one minutes fter 11 'clock in the morning, New York time. None of the planets lie near the moon's path until slie nearly reaches the full, when she is in conjunction with Neptune, the planet being 15^{\prime} south. On the 15 th, at noonday, she is in conjunction with Saturn, being $1^{\circ} 2^{\prime}$ south. Observers in
some localities between 28° and 71° south declination will see some localities between 28° and 71° south declination will see Saturn occulted, making the eighth occultation of this planet during the year. On the 19th the moon is at her nearest point to Jupiter; on the 20th she is near Mars; on the 23d she is near Uranus. On the 29th, the new moon is the 23d she is near Uranus.
in conjunction with Mercury.

occoltation of beta capricorni

The moon the day before the first quarter occults Beta Capricorni, a star of the third magnitude in the constellation Capricornus. The immersion of the star takes place five minutes after 8 o'clock in the evening, Washington mean time. The emersion occurs four minutes after nine o'clock, Washington mean time. The occultation continues 59 minutes. The phenomenon is a beautiful one, is worth taking pains to see, and the hour of exhibition is convenient. As the moon travels with her dark edge foremost from new to full, her illumined sidebeing next the sun, observers will see the star apparently blotted from the sky as it disappears behind the unillumined portion of the moon.

New Form of Electrical Accumulator.

Julius Elster and Hans Geitel slow that Zanboni's dry piles can be used as accumulaturs. The copper pole of the pile is connected with the positive, and the tin!pole with the negative poles of a Holtz machine. After the latter has been worked for a few minutes the dry pile is found to be charged. After repeated discharges the pile is found to coutain a charge of considerable intensity. The authers recommend the following form of pile: The plates of the pile are strung by means of a needle upon a silk thread and then stretched between the poles of a Holtz machine. A pile of 11,000 pairs of plates of one square centimeter surface, after ten minutes charging, gave shocks one millimeter long and made a Geissler tube luminous. The light of the tube was continuous at first, butafterward became intermittent. Dry piles were also made of one metal. Plates of lead foil were coated on both sides witb tissue paper by meavs of potash water-glass to which a little oxide of lead was added. A pile of 7,000 of the lead plates one square centimeter in section could be charged so as to exhibit strong polarization. A certain amount of moisture must be communicited to the piles. The superoxide of lead deposited electrolytically acts more powerfully than when deposited in any other way. A pile of 1,000 plates, coated on one side with chemically produced superoxide and on the other with protoxide of lead, gave proportionally much less tension. These piles are well suited to exhibit t^{\prime}) a large audience the principle of Plante's or Faure's accumulator. - Wiedemann's Annalen; American Journal.

Preparation of Butylene.

Puchot says that butylene, $\mathrm{C}_{4} \mathrm{H}_{10}$, can be conveniently prepared from butylic alcohol obtained by fermentation, as follows: 100 parts of sulphuric acid are placed in a flask or retort, and 100 parts of butylic alcohol poured in carefully so that it will float on the acid. The flask is then placed in cold water and shaken until the two mix without much rise of temperature. Then 160 paris of gypsuinin aud 40 of eul phate of potassium, both in powder, are introduced, still shaking the flask until the misture is loomogeneous.
On heating very gently the gas is given off. About 30 parts of butylene are obtained from 100 parts of alcohol, or nearly 40 per cent. The rest of the alcohol collects in the wash bottles, together with otber interesting substances.
By the action of chlorine upon butylene in diffused daylight a liquid was obtained homologous witb $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2}$, but in direct sunlight a substitution took place and formed $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{6}$. If the flasts was heated while chlorinewas passing through, lie obtained $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Cl}_{0}$.
Butylene is one of the constituents of illuminating gas, but its nature is so little known that we are not yet able to separate it from the other constituents of the gas.

A steamer Comes into Port on Fire.

Late in the afternoon of Octnber 22, the large iron steamship Heimdal, of the Thingvalla line, plying between New York and Amsterdam, came into this harbor with the signal, 'I am on fire." Prompt assistance was rendered, the passengers and mails removed, and the ship saved. Including the crew, there were 350 persons on board. In the cargo were 1,000 cases of safety matches, consisting of brands manufactured in Norway, Sweden, and Denmark.

A smell of fire was noticed on the day preceding her arrival here, and upon investigation tbe matches, in the main hold, were found to be on fire. Steam from the boilers was turned into tbe hold, which reduced the heat.
The heads of these safety matches may consist of a pasty mass composed chiefly of clilorate of potash and sulphuret of antimony. They are lighted by being drawn across a surface on which is glued red or amorphous phosphorus mixed with very fine sand. This is generally put upon the outside of the box. It is considered probable that the fire was the result of spontaneous combustion.

The new and thrifty town of Pullman, near Chicago, lies on a flat prairie, and the problem of drainage, which is so difficult to solve in a great many places, had to be met in Pullman. The following is the one adopted, and it is said to be salisfactory in ito, workings and profitable in its results: Sewers are built to empty into a sunken tank, from which the sewage is pumped througb a twenty-inch main to a farm three miles away. The system cost $\$ 80,000$; the farm yields a profit of $\$ 8,500$ a year.

At the beginning of 1882, Sweden possessed a mercantile navy of 4,151 vessels, measuring 530,000 tons, of which 3,397 were sailers, with 450.000 tons, and 754 steamers, with 80,000 tons. The number of sailing vessels had during the year decreased with 184 ships.

