

Coloring of Flowers by absorption

Tothe Editor of the Scientific American

In the last number of the Scientific American, under the beading "Flowers Colored by Absorption," it is stated that " the process of coloring flowers by the absorption of dyes tbrough tbe stem" is tbe discovery of Mr. Nesbitt.
Two years ago Mr. C. B. Riker sbowed me several field daisies colored by placing their cut stems in aniline violet ink. They refused to absorb any color from black ink.
Mr. J. M. Foote, of Newark, made experiments of a similar nature twenty years ago, wbich are even more curious inasmuch as be colored peonies as they grew by applying various dyes in solution to the ground in whicb tbey stood, obtaining five or six different colors, and also findiug them to refuse certain colors.
Both the above experiments probably antedate Mr. Nes bitt's.

Dídand Woodman.
South Orange, N. J., September 3, 1883.

The Locomotive Whistle.

To the Editor of the Scientific American:
In your issue of 18 th inst., page 99, I notice, with much surprise, your observations on sounds-distances at wbich locomotive whistles, etc., can be beard. From my own observation I know that the sound of a locomotive wbistle can be heard much further tban 3,300 yards. Many times, on calm nights, I have heard distinctly the whistle of an engine -locomotive-seven miles, air line measurement; and parties of undoubted veracity tell me that they have heard tbe sound ten miles distant. The noise of passing trains on the Weldon road, six miles (10,560 yards) away, is perfectly audi ble on calm nights. Why, any of our robust negroes could be heard calling bogs, on a calm morning, 3,300 yards dis tant! and the voices of my students at play during recess bave been beard a mile from the academy.
Tbis part of North Carolina is very level, and sparsely timbered; this may, perhaps, account for the great distances at which sounds can be beard.

David L. Ellis,
Principal of Falling Creek Academy
Goldsboro, N. C., August 28, 1883.

Novel Spectacles for Near-sighted People.

To the Editor of the Scientific American:
Having passed forty, I require to read with comfort No. 11 near-sigbted glasses. I can read at six inches without, orat
ing, is very uncomfortable, so I bought a pair of No. 11 eyeglasses, and for the day it was eyeglasses and spectacles, spectacles and eyeglasses-a regular monkey and parrot time of it. Necessity being the motber of invention, I pressed for a solution and found it. My left eye is so afflicted with myopia tbat I cannot use any number whatever to advantage, and so call on it only for guard duty, and poor at that. I concluded that this misfortune could be turned to good account by putting a No. 11 glass in the left eye frame and a No. 8 iu the right, and "presto!" when I want to look or walk, pop go my eyeglasses proper face forward. Wben I want to read or write, I reverse the order, and No. 8 goesto my left eye and No. 11 to the right. Result-spectacles are carefully laid aside as mementos of twenty years' faitbful service, and I am happy, as I believe many of your readers might be wbo are likewise aflicted.

Pittsburg, Pa., September, 1883.

M.

Dollar Weights and Measures.

To the Editor of the Scientific American :
It is a duty man owes to bis fellow to add to his comforts, conveniences, etc. Accepting tbis view as correct, I have determined to publish to the world my (I believe) new plan for weights and measures in the United States. By my plan we only need one table in our schools of arithmetic instead of all the various ones now in use. Avoirdupois, troy, apothecaries', land, and other measures and weights will or may be abolished and this one table substituted. Besides, my plan will confine a large amount of business and trade to our own country in the shape of printing, milling, etc. It will save many hours of study to our youtbs at school, thus enabling them to acquire a more extended education. I suppose the benetits which would accrue would for a long time be almost incalculable. This is not the thought of a moment. It is the result of the study of years. I bave consulted some fine minds concerning it, and all approve it.
Tbe plan is to have a certain accurate weight and measurement for our silver dollar. Then everytbing can be measured by it, and "standard weights and measures," which now cost heavily to Government and the States individually, will be unnecessary. Thus:

How in weight (av.); 1 ounce of distilled water at 60° Fahrenheit is displaced by 10 dollars. This gives us, viz.
Measure of length.
Measure of weight.
Measure of capacity.

It being all decimal, the silver coin of the United States can be made to conform to the standard of measures, etc., and we will thus bave a uniform standard for weigbt, measure, and coin, the one being a check on the other.
In the Frencb system there is some danger of error on account of incorrect punctuation. I think that would be avoided in tbis plan.
The discovery of some better plan than the old one has long been desired, and I believe this plan is all we need.
Suppose we want about a grain of medicine exhibited There are about 412 grains in a silver dollar. A mill is the one-thousandth of a dollar. Then two mills would represent nearly tbe weight desired. Suppose we want the weight of a load of coal. If there were 2,000 pounds of coal on the wagon, we would represent tbat amount by 210 eagles, or, say, 211. Suppose we want to sell a gallon of oil. There are 128 eagles in an oil gallon. We may, if required, add to this nomenclature double eagles, flags, or states, or something to that effect, making use of our own surroundings to desig普te amounts.
View the question as youmay, the decimal system is superior to any, and I believe my system is the best decimal system.

Lupton, Colo., September, 1883.
S. Hubbell.

Drawing in the Workingmen's School of Berlin.

by g. hrabowsit.

Tbe object of this school is to furnish apprentices and assistants in every trade, during their spare hours, such instruction in drawing, science, and art as shall supplement the practical part wbich they learn in the shop.
It opened two years and a half ago witb 300 pupils, and last winter had 1,013 pupils with 26 teachers, mostly specialists.
A special class was formed for the apprentices of opticians and instrument makers in mathematics, mechanics, physics, and free hand mechanical and technical drawing. Last October the number applying for instruction in drawing was so large that it was found necessary to start a second class. The number of apprentices receiving instruction was 114 , each of which paid 6 marks ($\$ 1.44$) per semester (balf year) for 8 hours a week instruction, which comes out of their own salary.
These gratifying results are largely due to the increasing and judicious endeavors of many master workmen [i. e., tbe men who bave the instruction of the apprentices in the shop] to induce apprentices to go to tbis scbool, by directing their attention to the advantages of a theoretical know-
specially among "self-made" masters, that a theoretical education, on the one hand, only made the young workmen conceited and inclined to expect more, and, on the other, that workmen who tbink do less work and are of less value, has fortunately been entirely overthrown. Absolute indifference, so great as to be manifest, which cares only for gettingathe most work out of the apprentice as a labor machine, without regard to whether tbe latter rises to a useful member of the profession or sinks to a mere factory hand, and which has a still worse effect than the other idea, is now so rarely noticed that we need not dread its influence on the rades.
For constructive workmen drawing is of the greatest importance; it is the application of mathematics. To make omething new, to invent something, without drawing, is very difficult, owing to the lack of being able to get a view of it; in fact, it is impossible in making large machines. Engineers and architects could not do balf what they do without drawings. Every young man that receivesgood instruction in drawing will become accustomed to neatness, thorougbness, matbematical babits of thought, a correct and ac curate eye, in fact, all good babits that it is important a workman should have, and his dexterity will increase and the taste for beautiful and graceful forms be cultivated. Drawing, which has hitherto received too little attention in the schools, is the very branch of art that is most valuable to the artisan.
The pupils have received such varied previous preparation hat it is necessary to give each one personal attention and individual instruction. Class instruction by lectures and blackboard drawing would not be feasible, as less advanced pupils could not keep up and the more advanced would be beld back.
The drawings are not made, as is unfortunately still the case in many schools, from other drawings, but from the objects themselves, or from problems given out by the teacber. A mechanical drawing copied from another one, although it is very easy to get nice, clean drawings in this way, is of much less value than drawing from actual models, in which the pupil exercises bis eyes more and must use bis understanding.
Tbe first drawings that the pupils in the special classes make, after they learn to draw witb dividers, are "nets" or sketcbes of surfaces. The pupils are given the problem of evolving the "net" or drawing the shape in which a piece of foil (or sheet tin) must be cut so as to make a particular object, which has been shown or descrihed to them, with sketches of the correct size of the base, elevation, side, etc.* These exercises are specially suited to the beginner, because he becomes accustomed from the start to mathema-
*This experience is also given in Prof. Felix Adler's Workingmen's School in West 64th Street, New York.
tical thought in drawing, and also because they can soon be finished, so tbat bis patience is not put to too severe a test, and finally because it gives him an opportunity to learn how to work accurately and neatly with all the drawing utensils, even the brush.
In the second stage of instruction, projections are made, besides tbe well known projection of a screw, the projection of a curved tripod, and of tbose parts of an instrument that are placed at acute angles, such, for example, as a lens holder, or a microscope stand, wbich is specially important for instrument makers. Such drawings are generally made on a large scale to render the construction easier. In the third class, drawings are made from parts of instruments. First, some metallic object bounded by plave surfaces (turned or filed) is employed, then more complicated parts. They are first sketched free hand, as they will subsequently be drawn; then measurements are made of the model and written on the sketcb; then the model is put out of sight, and an accurate drawing made according to these measurements.

Afterward, in the fourth class, complete instruments and apparatus are drawn in this manner, except that the preliminary sketches are omitted to save time, as soon as the pupil bas learned to make them correctly and draw from them.
The models used for these drawings are not all "sections," nor such as present to the eye the actual cross section; complicated apparatus tbemselves are used, which the pupils have to take apart so as to be able to draw the section correctly.

Pupils that have gone over these four stages, which can be done in two semesters (one year), and are able to draw any kind of apparatus, even complicated ones, correctly and neatly, from henceforth draw designs for parts of instruments.
Tbe pupils sketch from memory as many parts of instruments as possible that serve the same purpose, for example, joints, systems of axes, arrangements for adjustment, mountings for lenses, mirror and prism bolders, and the like.
After the teacher bas directed the attention of the pupil to still other approved constructions for parts of instruments and corrected bis sketcbes if necessary, the pupil will make complete drawings from systematically arranged sketcbes. Other designs, which are made especially by such mechanicians as make optical instruments, are made by tbose who have completed the regular course, such as graphic representations of simple optical problems tbat come before the constructive opticians.
All the drawings are made with black India ink, partially with and partially without shading lines; colors are used only on nets and cross sections. The colored borders so
for this work, where the parts of apparatus are often very fine. Then, too, the color conceals any imperfections in tbe lines, which is very bad for beginners.-Translated from the Zeitschrift fur Instrumentenkunde.

Dangers from Impure Water

Too mucb reliance is placed on the senses of taste, sight, and smell in determining the character of drinking water. It is a fact which has been repeatedly illustrated that water may be odorless, tasteless, and colorless, and yet be full of danger to those who use it. The recent outbreak of typhoid fever in Newburg, N. Y., is an example, having been caused by water which was clear and without taste or smell. It is also a fact that even a chemical analysis sometimes will fail to show a dangerous contamination of the water, and will always fail to detect the specific poison if the water is infected with discharges of an infectious nature. It is tberefore urged that tbe source of the water supply should be kept free from all possible means of contamination by sewage. It is only in the knowledge of perfect cleanliness tbat safety is guaranteed.

The local European volunteer health commission in Alexandria, wbere tbe cholera bas been raging along back, is unearthing, according to the Sanitary News, some very unsanitary conditions in tbat city. They bave found a large native cemetery, underneath wbich runs a canal with wbich communicates a well, the water of whicb is used to wasb dead bodies. A drinking fountain adjoins this well, and the canal is the water supply of a crowded portion of the town. In tbe mosques are stagnant pools of water used for ablutions prescribed by religious belief, the water in wbich, being unchanged, gets indescribably foul. Such nuisances are difficult to abate because of religious prejudices. Is it any wonder, adds the News, that pestilential disease attacks such a locality?

A New England Manufacturing City.

The Maryland Farmer publishes a letter from a correspondent wbo has seen the great cotton mills of Fall River, Mass., and gives some statements which are not generally considered when estimating the relative manufacturing importance of tbe geographical sections of the country. Fall River bas a population of 55,000 , according to the last census: it bas fifty-tbree mills for the manufacture of cotton goods, covering an investment of $\$ 35,000,000$. Fall River has over one-seventh of all the spindles in tbe country, and manufactures over three-fifths of all the print cloths of the country. Tbis manufacturing city employs 18,185 persons, their pay weekly amounting to $\$ 113,000$, and the capital stock is reckoned at $\$ 16,738,000$.

