

A WEEKLY JOURNAL OF PRACTICAL INFORMATION. ART. SCIENCE. MECHANICS. CHEMISTRY AND MANUFACTURES.

the rondout bridge.

The New York, West Shore, and Buf falo Railway crosses Rondout Creek at an elevation of 150 feet above water, in order to permit the passage of large schooners and barges. There is a large amount of coal, cement, and flag stone that annually passes this point, and a drawbridge, which the height of the present structure makes unnecessary, would have seriously interfered with the operation of the road.
The line of the road leaves the top of a hill of the same elevation as the bridge, crosses the three spans, then a long viaduct, and thence through a tunnel in the opposite hill. The spans are of the following lengtbs, beginning at the south (left of the engraving): one of 163 feet, one of 241 feet, and one of 264 feet. They rest upon three iron piers of 15 by 30 feet section. The viaduct is 531 feet long, supported on piers-thus making a total length of 1,244 feet. The weight of the iron entering into the construction is 2,000 iron entering into the construction is 2,000
tons. The work of erection was begun tons. The work of erection was begun
November 8, 1882, and the first train crossed May 8, 1883. The total cost of the bridge was about $\$ 350,000$.
The iron work was designed and constructed by Clarke, Reeves \& Company, of Phœnixville, Pa., in accordance with

FRAMEWORK FOR ERECTING THE SPANS.
specifications and detailed directions of Col. Walter Katte, chief engineer of the North River Construction Company, and E. L. Corthell, chief engineer, and A. Lucius, engineer in charge of bridges of the New York, West Shore, and Buffalo Railway.
The bridge is 29 feet wide from center to center of trusses, the viaduct being the same from center to center of column caps. The first span has a beight of 32 feet, and the other two a beight of 45 feet. It is a pin connected, wrought iron bridge, the iron having a minimum ultimate tensile strength of 50,000 pounds per square inch of original sectional area before fracture. The end and intermediate posts and top chords, as well as the columns in the piers, are of the pattern known as Phœnix columns. The wooden floor consists of transverse floor timbers, extending the full width of the bridge, supporting rails and guard beams. According to the specifications for bridges of this size, they must carry the dead load consisting of the iron in the structure and a floor weighing 400 pounds per lineal foot of track, consisting of rails, ties, and guard timbers only, and a moving load for each track--supposed to be moving in either direction-consisting of two consolidation engines, coupled,

followed by a train weighing 2,240 p.ounds per running foot. In order to provide for vibrations and wind pressure, the bottom lateral bracing in through bridges is proportioned to resist a lateral strain of 450 pounds for each foot of span.
The viaduct is composed of lattice girders supported upon six iron piers, the distance between facing columns of the piers being 50 feet in all except that next the bridge, which is 60 feet. Much trouble was experienced in obtaining a suitable material upon which to build the piers, and in some instances excavations to the depth of 60 and 80 feet had to be made before finding a good foundation. The bridge piers rest on masonry, built on piles driven to refusal.
The placing in position of a structure of this magnitude at so great a height involves great care and much labor, avd its rapid and successful completion makes it a subject well worth studying. No false work was used in erecting the viaduct. The piers consist, practically, of four iron columns resting on beds of masonry, and firmly held in position by struts and ties. After the foundations had been completed the columns were raised in place, when a gin pole (a wooden mast baving a pulley at its upper end, through which a hoisting rope passes) is fastened to them by iron bands. A rope passes from a hoisting engine through a block at the base, thence through the pulley in the gin pole. By this means the several parts were raised into position and secured. The work was completed, section by section, to the full height and the track laid. As soon as the first section had been finished a traveler, operating on top, assisted in the work of raising the balance.
Very different and much more difficult was the task of erecting the spans. In this case it was necessary, in order to support the great weight of iron, to build a framework of heavy timber of strength sufficient to bear the load and resist the wind which sometimes sweeps through the gorge with great violence. Our drawings show a side and transverse elevation with details of the top, bottom, and splice. All bolts were three-quarter inch, all diagonal transverse braces were 3 inches by 8 inches, all horizontal transverse braces were 4 by 8 inches, all longitudinal braces 3 by 8 inches, with X bracing between outside and center legs. This framework was supported on piles; the distance from the top of the piles to the caps was 142 feet. Three hundred thousaud feet of timber was used and 416 piles. Putting the span together after this had been finished was comparatively easy. About two-thirds of the total cost of erection was for the false work, engines, blocks, tackle, and other appliances. The total cost of erection was about $11 / 2$ cents per pound. The cost was from one-third to one-balf a cent per pound greater than it would have been in summer, owing to last winter being an unusually inclement one. Much of the time the ropes, stagings, etc., were covered with ice.

Consideration for Employes.

Referring to an article published in the Scientific AmerCan in its issue of June 2d, on "Consideration for old Employes," the proprietors of the Morgan Crucible Company, London, England, send a plan of a scheme for the encouragement and relief of faithful, disabled, and aged employes, which is in practical operation with them with good results. In brief, the plan gives to each employe at weekly wages: to all who have been employed six months, a bonus of six peuce on the pound, or $21 / 2$ per cent; to a one year's worker, $33 / 4$ per cent; to a five years' employe, 5 per cent.
These bonuses must be placed in the Post Office Savings Bank, and every twenty pounds thus deposited will draw yearly $21 / 2$ per cent given by the company. The company give pensions also to incapacitated workmen at a rate of six shillings per week for a workman of ten years' continuous service, eight shillings per week for one of fifteen years' service, ten shillings per week for twenty years, and when a workman has performed twenty years of coutinuous service and has been retired, he receives 30 per cent of his salary thereafter.

Tar and Ammonia from Coke Ovens.

In the course of his inaugural address as President of the Iron and Steel Institute, Mr. B. Samuelson, M.P., F.R.S., said, with reference to the recent improvements in the manufacture of coke, that the yield of this product per ton of coal had been increased from about sixty per cent-the average of the ordinary beehive oven-to seventy-five and seventy-seven per cent. These were the figures realized by certain oblong ovens erected at the president's own collieries in Durbam, and by the new ovens on the Corves system crected by Messrs. Pease. Atthe same time that the yield of coke had been increased, the by products were utilized to the extent of seven gallons of tar and thirty gallons of ammoniacal liquor per ton of coal. The value of these byproducts at present is 4 s . 3 d . per ton; but against this must be set the charge of 1 s . 4 d . per ton for additional labor, and the interest on the capital cost of the plant, which is considerable. Viewed from the standpoint of the iron manufacturer, this advance in the utilization of by-products simply means a reduction in the cost of the production, of iron. It does not appear, however, that Mr. Samuelson gave any further details of the profit and loss of the process referred to in his own case; and therefore his hearers were left unenlightened as to the extent to whicb the development of the system may be looked for

Sinentifir ©

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 published weekly atNo. 261 BROADWAY, NEW YORK.

o. D. MUNN.

A. e. beach.

TELEMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included...
One copy, six months postage included

8320
160
apy of 'Te Sclentific American will be supplied gratis for every clut of tive subscribers at $\$ 3$
same proportionate rate. Postage prepaid.

Remit by postal order. Address

MUNN \& CO., 261 Broa
The Scientific American Supplement
is a distinct paper from the Scievitific american. The suphlement is issuad weekly. Every number contains 16 octavo pages, uniform in size 5.00 a year 45.00 a year, postage paid, to subscribers. Single copies, 10 cents. §old by
all news dealers throughout the country 1 news dealers throughout the country
will be sent for one year postage tree. on AMERICAN and SCPP1,iminn papers to one address or different addresses as desired. The sifest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO , 261 Broadway, corner of Warren street, New York

Scientific American Export Edition.

The Scienvific amurican Export Edition is a larke and splendid peri-
odical, issued once a month. Each number contains about cine hundred arge quarto pages, profusely illustrated. embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Sciwntiric
Amiricas, with its splendid engravings and valuable information: (2) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire nouncements published in this edition at a very moderate cost.
The Scientific Amuican Exnort Edition has a large guaranteed circu-
ation in all commercial places throughout the world. Address MUNN \&

NEW YORK, SATURDAY, JULY 7, 1883

TABLE OF CONTENT'S OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 392,
For the Week ending July 7 , 1883 .
Price 10 cents. For sale by all newsdealers
ELECTRICITY AND MAGNETISM.-lmproved Dynamo Machine. - Eight figures.
An Improved M

The Cause of Evident Magnetism in Iron, Steel, and other Mag-
netic Metals.-By Prof. D. E. HUGHES. Neutrality.-Superposed netic Metals.-By Prof. D. E. HUGEES. Neutrality.-Superposed
Magnetism. - Elastic Nature of the Ether Surrounding the Magnetic Molecules. -3 figures..
ENGINEERING.-The Westinghouse Brake.-2 figures
Hydraulic Elevators and Motors.-By B. F. Jones,-Bearing
upon the Water Supply of Cities -Cost upon the Water Supply of Cities.-Cost of Water used.-Objection-
able effects on Water Works.-Best method able effects on water works.- Best method of arranging wate
supply.-Cause of Accidents.--Advantages of Water Motors over supply.-Cause of Accidents.--Advantages
Steam Engines.-Rates for Water Motors...
Water Suply
Water Supply of Small Towns.-Process of Softening Hard
Wat....................... Water.-Six figures.
Improved Water Meter
III. TECUNOLOGY.-Washing Machine for Wool.- 1 figure.

3 figures \quad Preventing Iron from Rusting.

An Elastic Ma
Caoutchouc
Caoutchouc
Sait and Lime.
Renewing Pa int without Burning
A Green or Golden Color for all Kinds of Brass.-By E. PULCHER
The Preservation of Meat by Carbonic Acid.....
On the Adulteration of Soap.-By Dr. H. Brackebuscr.......
. Chemistry.-Testing Olive Oil.-By Dr. O. bach
On the Theory of the Formation of Compound Eth
The Alizarine Industry..
Reduction of Oxidized Iron by Carbonic Oxide.
V. MEDICINE AND HYGIENE. - Bovine and Human Milk; the Dif ference in its Action and Composition.- By C. HUSson.
Cereal Foods in their Relation to Health and Disens.
Cereal Foods in their Relation to Health and Disease.-By F. R
Moist Air in Living Rooms.
ilance of the Human Plysiognomy.The Developmental Significance of the
By E. D. Cope.-Numerous illustrations

I. NATURAL HISTORY.-The

Sponges at the Bahamas.............
Testing Fish Ova for Impregnation
VII. MISCELLA ANEOUS. -The Production of Fire.- 4 figures..

THE TOTAL SOLAR ECLIPSE OF THE 6TH OF MAY

Not a word was heard from the astronomers who traveled解 12th of June. The glad news then flashed over the wires from San Francisco that the weather on the momentous day was excellent, and that the results attained were a great success. Somewhat fuller accounts of the expedition have since found their way eastward, but the full results of the observations can only be obtained from the official reports of the observers, which will be forthcoming as speedily as possible.
It will be remembered that the American expedition was sent out by the National Academy of Sciences to observe the total eclipse of the sun on the 6th of May at Caroline Island, in the South Pacific Ocean. It consisted of six members, and was iv charge of Professor Holden, of the Washington Observatory, of Madison, Wis. The observers started for their destination on the 1st of March. From Callao, Peru, they were conveyed by the United States steamer Hartford to Caroline Island, which they reached on the 20th of April. Two observers joined them at Callao, sent out by the Royal Astronomical Society of Great Britain, and four officers from the Hartford increased the number of observers to twelve. On the 22d of April, a party of French astronomers arrived in the L'Eclaireur, and took up their quarters on the island. Among the members of the French expedition were several astronomers of world-wide fame, including M. Jannsen, to whom total eclipses and their aweinspiring phenomena are as familiar as the letters of the alphabet to ordinary men; M. Tacchini, of the Roman Observatory, famous for his power of handling the spectroscope; M. Trouvelot, whose wondrous drawings of the sun and the planets gained for him great fame during his residence in Cambridge, Mass.; M. Palisa, distinguished for his skill in picking up asteroids ; and M. Pasteur, of the Meudon Observatory, well known as an accomplished photographer.
Caroline Island was found to consist of a chain of small coral islands encircling a lagoon. The vegetation is good, and cocoanuts and a small quantity of guano form articles of export for a London firm which has leased the island from the British government. At the time of the astronomical invasion the seven inhabitants consisted of four men, one of whom was accompanied by a wife and two childreu. Caroline Island was not their permanent abode, but they had been brought from Tahiti to take care of the young cocoanut trees and the property left on the island.
The men of science landed on the coral rocks, not without difficulty, and encountered still greater difficulty in getting their precious instruments on shore. But the unloading was finished at last, and the Hartford; leaving ten men be. lind to give needed assistance, steamed away to Tahiti, to find a harbor where she might safely lie till the eclipse was ver.
The intervening time was spent in mounting the instruments and making every possible preparation for the coming of the great event. At length, the day of the eclipse dawned, and American, English, and French astronomers were at their posts, determined to do what men can do to wrest important secrets from the grasp of the sun, while his face was veiled by the dark shadow of the moon. Serious doubts as to the weather disheartened the observers on the morning of the eclipse. But the clouds scattered, and the sky cleared before the grand event, and remained nearly clear till after the eclipse was over. Λ slight haze and a few passing clouds alone interfered with the perfection of the conditions under which the phenomenon was observed. The period of totality was five minutes and twenty-five seconds, and the practiced observers made the most of the precious minutes as they passed, each observer devoting himself to the part assigned to him.
The most glorious sight ever witnessed by human eyes was displayed in all its grandeur and sublimity to the band of observers on this lone island of the ocean. The four contacts were noted, and, as the moon covered the sun's face, the corona beamed brightly forth, with five well defined streamers. The rosy protuberances were, however, very few, and the chromosphere was in a state of unusual quiescence. Photographs were secured of the corona and its spectrum, and of the sky in the vicinity of the eclipsed sun. Some very interesting spectroscopic observations of the corona were made, whose result seems to upset prevailing theories; for Professor Hastings, of Baltimore, one of the observers, asserts that the corona is not an appendage of the sun, butan optical phenomenon. There was a time when this was the general view, but astronomers of late years have not only considered the corona as belonging to the sun, but photograpds of the solar disk have been recently made showing the silvery streamers when there was no eclipse. Professor Hastings will have to support his observations by proofs strong as Holy Writ before his theory will be accepted, now that a different one has been long considered valid by the astronomical mind.
Not a trace of that mythical member of the solar brother hood, the planet Vulcan. was obtained, though careful search was made. Perhaps there is no such planet, and perhaps he was safely hidden behind the sun's vast mass, and may beam forth at some future total eclipse to prove conclusively that Mercury's unexplained perturbations have a tangible cause. Much more valuable work was done. Trouvelol made a sketch of the corona; Dr. Dixon sketchied its five well defined streamers; Tachini observed a spectrum resembling that of comets in one of the coronal stream-
ers; Jannsen noted dark lines in the spectrum of the corona.

The English and French astronomers obtained a series of coronal negatives. Some of these extended to its outer limits, and some of those of the coronal spectrum contained several bright lines. The meteorological observations showed a rise in barometric pressure of 0.02 inch, the rise in bumidity was five per cent., the temperature fell to that of night, the direction and velocity of the wind were uniform, and the observations on radiation showed that the reception of heat by the earth was almost entirely checked.
Even these barren items of information are of exceeding interest, and will furnish admirable material for thoughtful interest, and will furnish admirable material por though and a study until the official accounts are made public, and a
wonderful story of personal experience, observation, and devotion to science will be related that will find admiring listeners all over the civilized world.
The astronomers enjoyed excellent health during their long trip. After the eclipse, the Hartford returned to Caroline Island and carried the American party to Honolulu, from whence they took passage to San Francisco and home.

HOW SCREWS ARE threaded.

Screw threads are "originated" in the lathe usually. All lathe turning, with regular-constant-feed of the turning tool, is screw cutting, or threading; the tool cuts a spiral around a revolving cylinder.
It is evident, therefore, that by increasing the speed of the feed relative to that of the revolving cylinder, and having the point of the cutter properly shaped, a screw thread would result, instead of a paring off of the entire surface of the cylinder. All important actuating or working screws, as those for feeding on machine tools, are formed in this way, and large numbers, also, of ordinary machine screws, which when once seated are expected to remain in situ until the machine or implement of which they form a part is worn out.
Wood screws, as screws for fastening wood to wood metal to wood, etc., are tbreaded in a similar manner, the thread being cut from the solid by a single cutter removing the material between the threads.
Large numbers of screws are threaded by dies, which may be called hollow screws, or nuts with cutting edges. These, by rotating, form the feed as well as the cutting device for threading the smooth cylindrical rod or bar. Some of these dies are worked by hand, others by power, but in either case the cut, by the modern and improved dies, is clean, and the thread is formed from the solid. The old fashioned dies were adjustable so as to be "set up," and could be made to cut several sizes of diameters. Much of their work was done by pressure, or squeezing, and a part of the thread was Zñere are adjustable dies made now, but they are so formed as to do solid cutting.
There is another method of cutting threads direct from the solid, and that is by milling. It is the invention of the late Eli Horton, the chuck man of Windsor Locks, Conn. The machine is entirely automatic, the blank to be cut being ro tated as in a lathe, and a rotary milling tool rotating against it at an angle adapted to the pitch of the thread desired. As the blank revolves slowly toward the cutter, the cutter revolving more rapidly forms the thread by being fed along over the blank as is the cutting tool in a lathe. The milling tool is so formed in cross section as to produce any shape of thread desired. This method is still in use by the successors of Mr. Horton to thread the steel screws of their chucks.
Threads ou large cast iron screws are sometimes formed simply by being cast, and formerly there was much cheap small work of that sort in the market.
Threads may be raised by forging in dies, and some good work by this is produced. In both these cases, however, an after finish in the lathe is desirable.
For some peculiar purposes threads are formed by twisting a square or a flat bar; a common form of hand drill that has superseded the bow drill being a case in point. The stock of this drill is a bar, square in cross section, twisted and which is rotated by sliding a loosely fitting nut rapidly back and forth over its length. A familiar instance of a screw thread of this description is the ordinary auger or bit, the cross section of which is a flattened parallelogram like a flat bar.
One peculiar method of forming screw threads remains to be mentioned. It is that of raising a thread by rolling between dies under pressure. There is a great deal of what is known as "bright wire goods" in the market, which are threaded. In many cases these threads are formed by simply rolling-one revolution, or a little more-the wire bet ween two hardened steel plates that are corrugated spirally to form, when combined, a continuous thread. Sufficient pressure is applied during the rolling-which, however, is very rapid-to raise the metal from the annealed wire enough to make a thread. In this case the threaded portion
is considerably larger than the stock or wire, at least half is considerably larger than the stock or wire, at least half the depth of the thread on each side.
The threads in nuts are produced either by the "originating" method, cutting them in a lathe, by being tapped, or ometimes by bing cast of sont metal, as brass, on a thread ed core of hard metal, as iron or steel. But nuts are mostly threaded by tapping, running one, two, or three successive
taps through them either by band or in a power machine. Nuts of very thin material, as sheet brass for lamp tops, jar covers, etc., are formed simply by rolling hetween spirally corrugated rolls, a work analogous to "beading" on tin ware.

D'arREST'S COMET.

[Translated for the Scientifio American from Ciel et Terre of the 15th April.]
On the 27th of June, 1851, D'Arrest discovered at Leipzig a very faint comet. After following its course for a fortnight, D'Arrest and Yvon Villarceau announced, almost simultaneously, that the orbit of the new comet was elliptical, and that it must be ranked among periodical comets that return at regular intervals to perihelion, the only time when they are visible. The comet was observed for three months. Yvon Villarceau, from the computation of its positions, assigned to it a period of about six years and a half, and an orbit that at aphelion approached very near the orbit of the giant planet of our system, the mighty Jupiter, whose mass is nearly 340 times greater than that of the earth, and whose attraction must consequently exert a powerful
influence upon the path traversed by the comet, and cominfluence upon the path traversed by the comet, and com-
plicate the determination of the successive epochs of its return.
It is difficult to form an idea of the length and tediousness of the process required by these mathematical calculations. The task was, however, undertaken, and, on the 1st of June, 1857, Yvon Villarceau announced the return of the comet during the winter of 1857-58.
According to the ephemeris issued at the same time with the article in question, he also announced that the comet would not be visible in the northern hemisphere, and notified observers in the southern hemisphere of the results of his work, that they might be on the watch for the erratic visitor. On the 4th of December, 1857, Sir Thomas Maclear, of the Cape of Good Hope Observatory, detected a faint comet in the neighborhood of the position assigned to it.
In July, 1861, Yvon Villarceau published a new paper concerning the comet's orbit. He predicted its return to peribelion on the 26th of February, 1864, but declared that its faint luster and small angular distance from the sun
would probably render it invisible. This prediction was would probably render it invisible. This predic
fulfilled, and the return of 1864 was not observed.
The next appearance of the comet was announced for 1870 . M. Leveau calculated the probable orbit for this epoch; folIowing the plan of M. Yvon Villarceau, he introduced into his calculations an indeterminate quantity from which he selected three probable values that gave him three different ephemerides. In spite of the great perturbations caused by the attraction of Jupiter between the returns of 1858 and
1864, and the absence of observations in 1864, D'Arrest's 1864, and the absence of observations in 1864, D'Arrest's
comet was detected by Winnecke at Carlsruhe on the 31st of August, 1870.
Its position was in right ascension 16 h .38 m .3 s .; its declination was $10^{\circ} 39 \cdot 8^{\prime}$ south. One of the ephemerides of M. Leveau had assigned to it for this epoch a probable position in right ascension of 16 h .38 m .18 s ., and in declination of $10^{\circ} 41 \cdot 1$ south. The agreement between calculation and observation is remarkable.
Finally, the return of 1877 was observed at Marseilles on the 8 th and 9 th of July. The return of the visitor is expected during the present year. It has even been already announçed, but the news proved to be without foundation, and the celestial object mistaken for D'Arrest's comet is a faint new nebula.
The reader will, perbaps, ask what scientific interest here can be in announcing the return of periodic comets. After the brilliant confirmations of the law of universal at traction that have been furnished by phenomena of various kinds, of what use is it to build monuments of figures in or der to predict the return of a comet? At first sight it
would seem that such labor is unwarrantable, and without would seem th
direct utility
We must, however, discard such conclusions, for they are in contradiction to the essentially perfectible character of science. Certainly it is no longer necessary to seek in the movements of the planets of our solar system confirmation of the law of universal gravitation; but the utility of the labor in question is not bounded by this law !
A multitude of secondary causes play a part in the economy of the material universe, and the effect of these mul. tiple causes can only be revealed by the constant observation of all the phenomena offered for examination. Each observation constitutes, in some measure, a function of the constant quantities that enter into the great law of universal attraction, combined with the effects of these causes in detail. The accumulation of a great number of these func tons will alone allow us in the future to suspect the exist
ence of these causes and to discern the part that belongs to ence of these causes and to discern the part that belongs to
each one of them in the production of phenomena as we observe them. The constant study of facts constitutes the experience of science; this is not lost, like personal experience, but it can be transmitted to our successors to throw light pon their researches in ages to come.
Each comet therefore presents, as it were, a special interest in our studies of the universe. Encke's comet seems to feel the effect of the resisting medium through which it passes. The great comet of 1882 grazed the sun's atmosphere and furislied appreciable elements of the small resistant power of his atmosphere. D'Arrest's comet offers in the same way at every reappearance the passibility of measuring the ex tent of the perturbations to which it has been subjected, and as it passes excentionally near to Jupiter it is eminently adapted for furnishing the data of observation relative to the
mass-not yet absolutely determined-of this immense mass-not yet absolutely determined-of this immense
planet, which exerts so powerful an influence upon the solar system.

Snakes in Australia.

" Although the bushman has nothing to fear out here from the attacks of any wild animals," sayse a writer whose knowledge of Australian country life is not to be excelled, "he has still his secret enemies, which in many cases are as dangerous as the open foe; and what he has most to dread in the Australian bush are the snakes." Such is certainly the case. "I do not believe," he continues, " any part of the world can be more infested with these reptiles in the summer season. Let him walk where he will-in the deptls of the forest, in the thick heather, on the open swamps and plains, by the creek or water holes-the shooter is sure to meet with his enemy, the black snake. It enters his very tent or hut, and coils itself in his blankets. In fact, nowhere is he safe; and if he did not banish the thought of them altogether from his mind, he would not have a moment's peace.

It does, indeed, appear as if the eye of a watchful Providence peculiarly guarded the traveler in these wilds; for at any moment he is liable to tread upon a deadly snake, coiled up in his very path, which does not always get out of the way, but lies watching him with his basilisk eye, ready in a moment to make the fatal spring if touched, and very often the snake is not seen until the danger is past." Bushmen soou become accustomed, like the black fellows, to the indications of the presence of a snake, and can see it before reaching it, uniess coiled up very snugly. The bush fires destroy thousands of snakes, but seem to make no impression on their numbers. Curiously enough, snakes are uot found in New Zealand, although there is no record of St. Parrick having ever visited that part of the world.

A Bolivian Saurian.

" The Brazilian Minister at La Paz, Bolivia, has remitted ot the Minister of Foreign Affairs in Rio photographs of drawings of an extraordinary saurian killed on the Beni after receiving thirty-six balls. By order of the President of Boiivia the dried body, which had heen preserved in Asuncion, was sent to La Paz. It is twelve meters long from snout to point of the tail, which latter is flatteued. Besides the anterior head, it has, four meters behind, two small but completely formed heads(?) rising from the back. All three have much resemblance to the head of a dog. The.legs are short, and end in formidable claws. The legs, belly, and lower part of the throat appear defended by a kind of scale armor, and all the back is protected by a still thicker and double cuirass, starting from behind the ears of the anterior head, and continuing to the tail. The neck is long, and the belly large and almost dragging on the ground. Professor Gilveti, who examined the beast, thinks it is not a monster, but a member of a rare or almost lost species, as the Indians in some parts of Bolivia use small earthen vases of identical shape, and probably copied from nature.'
Mr. William E. A. Axon, in a note giving the above to the Journal of Science, says: "If this account should prove to be accurate, it would form a counterpart to the etching of the mammoth, which forms so interesting a memorial of prehistoric art."

New Explosive.

Herr Koppel has devised a new explosive substance, which he expects to be less costly than any other, to give out no injurious fumes, and not to be liable to explosion by shock or friction. The following is the composition of two kinds, No. 1 being suitable for hard rocks, such as basalt, and No. 2 for softer, such as sandstone:

The New Nickels not a Standard Weight for Weare
The new V nickels are now coming into general use, the word "cents" having been added to prevent their being mistaken, when gilded, for half-eagles. The following, which was true of the old nickel, although it does not apply the new, is now going the rounds of our exchanges:
Five Cent Nickels as Measures.-A fact probably but little known is that the United States nickel five cent piects furnish a key to metric measures and weights. This coin is two centimeters in diameter, and its weight is five grammes. Five of them placed in a row will give the length of a decimeter, and two of them will weigh a decagramme. As a kiloliter is a cubic meter, the key of the measure is also a key to a measure of capacity."
Although the new nickel pieces are larger in diameter than the old, they weigh less.
The average weight of those which we have tested is 4.9 grammes, or $751 / 2$ grains, while the diameter is 21 millimeters. Both old and new are so nearly two millimeters in tickness that the eye cannot distinguish the difference, hence a very correct idea of a millimeter can be had by taking half the thickness of a five cent nickel.
To give an idea of larger metric measures we may àdd that the column rules of the Scientific American are 0.36 meter, or 36 cm ., in length, while the editorial columns are 8 cm . wide. The columns of the New York Sun and Times are nearly 54 cm . long and 6 cm . wide.

IMPROVED HOP PRESS.

Various presses have been contrived at different times for extracting the wort from spent hops, but as a rule the objections to them have been their very complicated character and consequent expense.
The press here illustrated is fitted with two circular wrought-iron boxes, holding about six bushels each, which are filled and pressed alternately, and are arranged to run in and out of the presses on wheels and rails. The pressed bops are discharged from the bottom of the press, which open

IMPROVED HOP PRESS.

dowuward like a door, and can be run into any suitable receptacle, or through a chute into the yard. One of these new hop presses has just been constructed for and fitted at Messrs. H. \& G. Simonds' Brewery at Reading, and has proved highly successful. The pump which works the hydraulic press is driven by a strap from the main shafting, so that the attendant has nothing to do but open and close

When an upper and a lower boiler are used, the feed wate is let into the latter, which the fire gases reach last, and there fore is not so hot as the other. It is often noticed that the separate plates of this boiler are pock-marked with little grooves. When fresh water containing air is warmed, little bubbles of air containing much oxygen form, and as there is very little motion in this part of the boiler, they adhere to any rough spots on the iron and are destructive to it. It is easy to see that rough iron is attacked more readily than smooth; and of course, the action is most powerful in the grnoves themselves. If steam bubbles at tach themselves to any spot whatever in a steam boiler, where the temperature is not very high from its being heated with hot gases only, rusting will take place. Here too the atmospheric air in the feed water would be the destructive agent
Hence, if care is taken to keep the water in motion circu lating around in the boiler, the chief cause of internal corro sion will be for the greater part neutralized.-Polyt. Notiz.

Detection and Estimation of Lactic Acid.
R. Palm says that when lactic acid is added to a clear 0 slightly opalescent solution of basic acetate of lead, i. e., acetate of lead mixed with five or six parts of alcoholic ammonia, a white amorphous precipitate of plumbic lactate will be immediately formed.
The same precipitate is produced when acetate of lead is added to a mixture of lactic acid and alcoholic ammonia. The precipitate is soluble in a large quantity of water, in acetic acid, lactic acid, and caustic alkali, but insoluble in alcohol, and must therefore be washed with alcohol. It dries to translucent scales like dextrine. After heating with fuming sulphuric acid and igniting, it left behind $791 / 2$ to $771 / 2$ per cent of oxide of lead, so that its composition corresponds to a basic salt having the composition
$3 \mathrm{PbO}, 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$,
which requires 78.8 per cent of oxide of lead.
Lead for the Examination of Drying olls.
The lead is obtained by precipitating with slips of zinc a 10 per cent solution of lead nitrate acidulated with a few drops of nitric acid. The precipitate obtained is agitated for a few moments with distilled water, washed by decantation two or three times; thrown into a funnel plugged with glass wool, washed quickly, first with alcobol and then with ether, and dried in a vacuum over sulphuric acid. To expel traces of ether, it is lastly exposed to the air in thin layers for about two hours.
For the examination of an oil, one gramme of the lead is spread out in a rather large watch-glass, and the oil in question is allowed to fall drop by drop from a pipe drawn out to a point, placing the drops in such a manne that a space may remain between them. The lead gradually sucks up the oil, so that every fragment is coate with an excessively thin film of oil. If the oil has been added in too great quantity it forms a thick coating, which dries at the surface, and forms a solid pellicle, which protects the lower part.
About 2 parts of oil at most should be used for 3 parts of lead. The watch glass should have been first tared; the lead is then weighed, and afterward the oil added. The watch glass is then exposed to a mean temperature and to ful light, which materially aids oxidation. With drying oils the increase of weight sets in afte about eighteen hours, and is generally at an end after three days, when it remains constant.
With non-drying oils the weight generally does not begin to vary until after four or five days. Numerous series of experiments have shown the following numbers as the limits of the increase of weight of oils in presence of finely divided lead: Linseed, 14 to 15.5 per cent; nut, 75 to 85 ; cotton, 5 to 6 ; beech nut, 4 to 5 per cent. The non-drying oils give an increase of weight from 1 to 3 per cent, and it is only after the lapse of some months that we find an increase of 4 to 5 per cent.-A. Livache.

The Petroleum Fields of the World.

The relative importance of the oil fields of the world are succinctly stated as follows, in the July Century, by E. V. Smalley, in his graphic and fully illustrated article on "Striking Oil:" " Nearly all the petroleum that goes into the world's commerce is produced in a district o country about a bundred and fifty miles long, with a varying breadth of from one to twenty miles, lying mainly in the State of Pennsylvania but lapping over a little on its northern edge into the State of New York. This region yielded, in 1881, $26,950,813$ barrels, and in $1882,31,398,750$
DR. HUBBARD'S CHEMICAL VAPORIZER AND DEODORIZER. barrels. A little petroleum is obtained in West Virginia, a little at various isolated points in Ohio, and a little in the Canadian province of Ontario. There is also a small field in Germany, a larger one, scantily developed, in Souther Russia, and one still larger, perhaps, in India. The tota production of all the ficlds, outside of the region here de scribed, is but a small fraction in the general account, how ver Furthermore the oil of these minor fields, whethe in America or the Old World, is of an inferior quality, and so long as, the great Pennsylvania reservorr holds out, can only supply a local demand in the vicinity of the can
wells.

Boring an oil Well

A letter from Bradford, Pa., to the Drug Reporter gives a very clear description of the above operation as follows: The machinery used in boring one of these deep oil wells, while simple enough in itsclf, requires nice adjustment and skill in operating. First comes the derrick, sixty feet high, crowned by a massive pulley.
The derrick is a most essential part of the mechanism, and its shape and beight are needed in handling the long rods, piping, casting, and other fittings which have to be inserted perpendicularly. The bore or drill used is not much different from the ordinary hand arm of the stone cutters, and the blade is exactly the same, but is of massive size, three or four inches across, about four feet long, and weighing 100 or 200 pounds. A long solid rod, some thirty feet long, three inches in diameter, and called the "stem," is screwed on the drill. This stem weighs almost a ton, and its weight is the hammer relied on for driving the drill through dirt and rock. Next come the "jars," two long loose links of hardened iron playing along each other about a foot.
The object of the jars is to raise the drill with a shock, so as to detach it when so tightly fixed that a steady pull would break the machinery. The upper part of the two jars is solidly welded to another long iron rod called the sinker bar, to the upper end of which, in turn, is attached the rope leading up to the derrick pulley, and thence to a stationary steam engine. In boring the stem and drill are raised a foot or two, dropped, then raised with a shock by the jars, and the operation repeated.
If I may hazard a further illustration of the internal boring machinery of the well, let the reader link loosely to gether the thumbs and forefingers of his two hands, then bring his forearms into a straight line. Conceiving this line to be a perpendicular one, the point of one elbow would represent the drill blade, the adjacent forearm and hand the stem, the linked fingers the jars, and the other hand and form the sinker bar, with the derrick cord attached at a point represented by the second elbow. By remembering the immense and concentrated weight of the upright drill and stem, the tremendous force of even a short fall may be conceived. The drill will bore many feet in a single day through solid rock, and a few hours sometimes suffices to forceit fifty feet through dirt or gravel. When the debris accumulates too thickly around the drill, the latter is drawn up rapidly. The debris has previously been reduced to mud by keeping the drill surrounded by water. A sand pump, not unlike an ordinary syringe, is then let down, the mud sucked up, lifted, and then the drill sent Dern to begin its pounding anew. Great deftness and experience are needed to work the drill without breaking the jars or connected machinery, and in case of accident there are grapples, hooks, knives, and other devices without number, to be used in recovering lost drills, cutting the rope, and other emergencies, the briefest explanation of which would exceed the limits of this letter.
The exciting moment in boring a well is when a drill is penetrating the upper covering of sand rock which overlies the oil. The force with which the compressed gas and petroleum rushes upward almost surpasses belief. Drills, jars, and sinker bars are sometimes shot out along with debris, oil, and hissing gas. Sometimes this gas and oil take fire, and last summer one of the wells thus ignited burned so fiercely that a number of days elapsed before the flames could be extinguished. More often the tankage provided is insufficient, and thousands of barrels escape. Two or three years ago, at the height of the oil production of the Bradford region, 8,000 barrels a day were thus running to waste. But those halcyon days of Bradford have gone forever. Although nineteen-twentieths of the wells sunk in this region "struck" oil and flowed freely, most of them now flow sluggishly or have to be "pumped" two or three times a week.
" Piping " and " casing," terms substantially identical, and meaning the lining of the well with iron pipe several inches in the interior diameter, complete the labor of boring. The well, if a good flowing one, does all the rest of the work itself, forcing the fluid into the local tanks, whence it is distributed into the tanks of the pipe-line companies, and is carried from them to the refincries. The pipe lines now reach from the oil regions to the seaboard, carrying the petroleum over hill and valley hundreds of miles to tide-water.

A Historical Expedition.

Professor Nordenskiöld's present expedition to the northern regions is not connected with ordinary polar researches, as his efforts will be mainly devoted to attempts to reach the interior of Greenland, the coast of which presents a forbidding wall of " icy mountains," as designated in Bishop Heber's hymn, "From Greenland's Icy Mountains." The professor believes that the interior of Greenland is not only habitable, but measurably fertile. As a suppletment to his interior explorations, Nordenskiöld will seek onthe southeast coast for relics of the old Norse colonies which were founded in the eleventh century, and which gradually passed into oblivion after a historical existence of several hundred years, their principal records being found in the Icelandic sagas, and a memory of them in occasional historical references. The poet Montgomery, in one of his longer poems, gives a semi-historical account of the Greenland settlements and their destruction based on the theory of a cataclysm of intense cold.

[Translated from the Revue industrielle.]

RADIAL TUBULAR BOILER, BY L. HERVIER.

The engravings represent a unique steam boiler, in which the tubes are exterior to the boiler proper, and are double, providing an annular space around the central tube for the action of the heat, and also an annular spr.ce between the double walls of the boiler, the actual generation of steam taking place in the tubes and the annular chamber, the upright cylinder, corresponding to the upright boiler in general use, being mainly a water receptacle.
Fig. 1 shows the boiler, with a portion of its enveloping masonry removed to exhibit the tubes. The upper portion

DOUBLE BOILER TUBE.

of the figure is a steam dome, from which steam is taken for use, and to which the safety valve and steam gauges are attached.
The lower portion, or the boiler proper, is double, the exteior walls receiving a large number of tubes, shown in section in Fig. 2, which project radially into the flame space of the furnace. These tubes are open at the boiler end, and closed at the outer end, and are secured firmly in the shell of the boiler by means of conical rings, as seen in Fig. 2.
The inner concentric shell is also pierced for tubes of a smaller diameter, which project into the closed outer tubes, and are open at their ends. These are fastened by being expanded at their inner ends in the usual way. The arrows in Fig. 2 show the course the water takes in its expansion by heat. It passes from the interior cylinder through the small tubes into the annular spaces surrounding them, and back through the larger tubes to the annular space between the outer and inner shells of the upright boiler or cylinder.
The inventor says that the projecting tubes, being exposed to the direct heat of the furnace, soon bring the boi'er unde

HERVIER'S TUBULAR BOILER.

water, because the steam does not pass through the body of the water in the interior of the boiler; but the mixture of water and steam which fills the annular envelope is less dense than that of the central portion, and as a result the steam rises in the annular space very rapidly, the water being displaced and drawn through the smaller internal tubes, as seen in Fig. 2.
This circulation is quite regular, and it favors the production of steam, and it hinders the deposition of scale, compelling it to settle through the body of cooler water to the bottom of the cylinder, whence it may be removed by a convenient hand hole.

The Refuse of Furnaces for Building Purposes. On the utilization of the refuse material from blast furnaces for mortar for building purposes, Mr. W. Mattieu Williams, F.S.A., relates some interesting experiences. It is far.from a new idea to make a conglomerate from the slag of a furnace for building purposes, and Mr. Williams thinks he has heard of its use in finer work, and he concludes from the chemical nature of the cinder heaps found around furnaces that their composition renders them well suited for many purposes where lime mortar is now used.
The slag refuse is composed of silicates of lime and alumina, intermingled with silicates of iron, manganese, and maguesia in variable proportions. When the silica is in excess they are glassy; when the proportion of lime is greater cess they are glassy; when the proportion of lime is greater
they are earthy. These earthy cinders pulverize spontaneously, and are those which, I believe, have been used directly for cement; but I should expect the best result from the glassy cinders (or "slags," as they are improperly called), as these contain sufficient silica to combine actively with the lime of mortar and thereby harden efficiently.
While on the subject I may mention a little device which I adopted in building the brickwork setting for the retorts, premising, however, that I began at this work quite as a novice, a purely amateur builder. At first I contracted in the usual manner with the bricklayer, at so much per cubic foot measured all over, I finding all materials, he only doing the work. The work was badly done in spite of all my vigilance, and the discharging of three or four bricklayers in succession, the fault being that the bricks were not laid closely enough, and the thick joints of mortar crumbled when the whole structure was heated. At last I found a remedy for this which was very simpie. Instead of finding all the materials I only found the bricks, leaving the contracting workman to supply his own mortar, and of course paying him accordingly. The difficulty of making each brick to rest in firm contact with its neighbor with no more mortar between each than was necessary for filling up inequalities of surface, immediately disappeared.

Ready-made Houses.

The Northwestern Lumberman (Chicago) predicts, from the large number of inquiries regarding the ready-made house business, that it will eventually become a. large industry and consume a large amount of lumber.
A gentleman visited the Lumberman office recently who wanted from twenty-five to fifty houses for a colony that is about starting to Dakota. Such houses for the people settling in that territory, and often in other sections, are just what is needed. In many parts of Dakota it is impossible to buy lumber, and often when lumber can be obtained the services of a carpenter are hard to secure. A ready made house can be shipped to its destination and erected by any man of ordinary ingenuity. It saves all bother of running around the country after building material and men to put it together. A gentleman called at the office of the same paper a few days ago who wanted a house to set up on a lot in the city limits. He could rent the lot during the summer for a small sum, and thus avoid paying big rent, and at the same time have a house of his own to live in that could be handily moved whenever it was desired to do so. A late inquiry from Philadelphia was made regarding ready-made houses for export, and the same day came letters of inquiry relating to the same subject from West Virginia and New York. These letters, and hundreds of others, show that the ready-made house business is not carried on extensively enough to meet the demand. There is no good reason why a manufacturer of knock-down houses should not use $100,000,000$ feet of lumber yearly in this city alone.

The Chicago Cable Roads.

By the courtesy of Superintendent Holmes your correspondent was allowed to examine the cable system of street railroads in operation at Chicago. There are four lines operated from the station on State Street, and one branch line on which the cars are moved by horses after leaving the cable. The cables enter the station at right angles from the street and pass around the driving drums, of which there are two of fourteen feet diameter for each cable. The drums are geared directly to a shaft operated by two engines of 1,000 horse power each, moving the cables at a speed of seven and eight miles an hour. The cables run over rollers in the tube laid between the rails, and are raised rollers in the tube laid between the rails, and are raised
about eight or ten inches by the clutch when griped. This causes a slackening and tightening of the cables, and requires an automatic take up of the slack. For that purpose, at the station the cables pass around a tension drum carried by a sliding carriage that is connected to a weighted chain, which draws the carriage back more or less according to the slack on the cables. There is a constant back and forth movement of the carriage varying from six inches to three feet, the longer movement being when the most trains are running. The longest cable is operated a distance of two and a half miles, that being the length of the line.
These roads are no doubt a success on the point of economy, and there is no reason why the system should not entirely supersede horse roads. For some reason, injuries by running over persons bave been frequent, though why it should be so more than with horse cars is not apparent, as the speed is not greater and the stoppages can be made as quick. It may be from the fact that there is no driver at the front of the grip car to watch passers by, the gripping lever being at the middle of the car.
W.

Metallic Nickel and its Uses.

Nickel belongs, says the Metallarbeiter, to the metallic elements that cannot be chemically decomposed into its constituents, such as gold, silver, platinum, iron, copper, tin, mercury, lead, zinc, aluminum, etc., as distinguished from composition metals like brass, bronze, red metal, German silver, argentan, Britannia metal, etc., which are composed of different substances of unlike chemical and physical properties. Unfertunately the names of these compounds, or alloys, are entirely arbitrary, and owing to this uncertainty it would be very desirable to introduce a nomenclature founded on their composition.
A comparison of the properties of nickel with the other metals will furnish an indication of the uses to which this metal may be applied. The specific properties of nickel are the following:
Conductivity for electricity: nickel, $18 \cdot 11$; iron, $16 \cdot 18$; copper, $99 \cdot 9$; silver, 100.
Specific gravity of nickel, $8 \cdot 90$; that of iron, $7 \cdot 84$; copper, 8.95 ; platinum, 21.50 ; lead, $11 \cdot 40$; silver, 10.55 ; gold, 19:50. These numbers show how many pounds a pint of each metal would weigh.
Nickel melts at $1,400^{\circ}$ C. (2,552 ${ }^{\circ}$ Fabr.); ;ron at $1,500^{\circ}$ to $1,600^{\circ}$; steel at $1,300^{\circ}$ to $1,400^{\circ}$; copper, 900°; yold, $1,250^{\circ}$; silver, $1,000^{\circ}$; platinum, at $2,500^{\circ} \mathrm{C}$.
Its strength is equal to that of hard iron.
The chemical symbol of nickel is Ni ; atomic weight, 58.7 , which means that in chemical compounds of nickel 58.7 parts of nickel are combined with the atomic number of the other substance. For example, the oxide of nickel contains one equivalent each of nickel and oxygen.

Hence the equivalent of the oxide of nickel is....47.
Nickel ranks between silver and gold in oxidizable qualiies, but nearer the latter.
Nickel ore is found in Germany, Sweden, America, New Caledonia (a French island in Australasia), and in Austria. The ore generally contains iron, copper, and cobalt. Cobalt and its preparations, as well as copper, are by-products in the nickel preparation; the cheaper iron occurring as an impurity is thrown away.
Metallic nickel has been known quite a long time, but did not find much technical use until Dr. Fleitmann, a pupil of Liebig, succeeded in preparing it in a very pure state economically. The valuable properties of nickel were then first recognized, and to-day castings are made of it, and it is rolled and drawn, while it was not long ago considered to
be infusible and incapable of being drawn. This was due be infusible and incapable of being drawn. This was cue a lack of suitaile apparatus for melting it, which have since heen brought to a high degree of perfection, owing to the heen brought to a high degree of
advance made in the iron industries.
Owing to its relatively poor conductivity for electricity, nickel will find a limited use in electro technics, especially as a substitute for lead in Faure's secondary batteries (accumulators). Nickel is a better conductor (13•11) than lead $(8 \cdot 32)$, is lighter than lead, and does not oxidize so much.
Since nickel has the strength of iron, the strongest metal, while it is as unoxidizable as the noble metals, even excelling silver, it will evidently find extensive use in the future, since it possesses the properties of a noble metal at comparatively low price, and even excels silver in its reaction oward oxygen, and far exceeds all the other noble metal
in strength. Of course, when these properties are recogin strength. Of course, when these properties are recog.
nized the increased use of the metal will raise its price, if nized the increased use of the metal will raise its price, if
the production of nickel does not keep pace with its increased uses, which is very doubtful.
For years the use of nickel was limited almost entirely to the manufacture of pinchbeck, and afterward to other nickel alloys, new silver, China silver, alpacca, alfenide, argentan, now euphemistically baptized "nickelin," th quantity of nickel varying in them from 6 to 31 per cent.
The price and fineness of the composition depend on the quantily of nickel in it, so that first quality of argentan (nickelin) with 31 per cent of nickel would follow the Chinese new silver with 368 per cent. It would be desir able if the manufacturers would state the percentage of nickel for the guidance of buyers, whereby they might to a certain extent combat the competition of those who prefe to make these nickel alloys without any nickel in them.
The next advance in point of time, that recognized the inoxidizable quality of nickel, was for nickel plating the more oxidizable metals, like brass, pinchbeck, zinc, iron copper, etc. In nickel plating, nickel anodes and nickel salts are employed. Articles suspended in the bath, to be
plated, are called cathodes. The object of the anode is to replace the nickel taken out of the bath by the cathodes under the action of the galvanic current.
Aside from the electromotive power employed, whether
battery or dynamo-electrical machine the discussion of battery or dynamo-electrical machine, the discussion of which would be foreign to our present paper, the purity of
the anodes and of the nickel salts that the bath is made of are of first importance in determining the quality of the plating. To obtain good results red and blue litmus paper should always be at hand to test the acid or basic nature of the nickel bath. It may be observed that the white nickeling enerally preferred is obtained by acid baths, while a basic bath gives a darker colored coating; hence, in the latter case ammonia or the liver of sulphur is added to the nickel
bath if the so-called "black" nickel is wanted. Acid baths redden blue litmus, basic batbs turn the red litmus blue.

Complaint is often heard against white nickeling not succeeding. This may be due to the current, that is too weak or too strong, or to the composition of the bath, but frequently the cause is to be sought in the nickel film being too thin, so that the metal beneath, which is generally brass, shows through. In the case of iron this is not so striking, owing to the similarity in the color of iron and nickel. But here there is another disadvantage of thin nickeling, that the iron rusts. There is always danger of rusting, even when well plated, if the iron has been cleansed in acid. This evil may be entirely overcome by using the sand blast instead of acid pickle. Another advantage gained is that the surface is roughened and the nickel adheres to it better, while subsequent polishing is unnecessary.
Experience has shown that scythes cannot be put in pickle before nickeling, as they soon become checked or cracked in the bath. The author had some scythes polished with sand blast and then nickel plated with entire success. This would seem to solve the problem of how to best protect scythes from rust, for the innumerable experiments and attempts to protect them with varnishes have always riven negative results.
The nickel plating of sheet zinc has already become quite extended, so that it has become a commercial article. (Where?)
The use of nickel for protecting other metals is far more extensive in America than in Germany. The nickel steel factory at St. Veit, near Vienna, deserves mention as a model establishment. The articles made there are very handsome and at a reasnnable price. This large establishment has a fifty horse power steam engine, three electro dynamos, and one hundred and five nickel baths.
One difficulty often met with in nickel plating brass and zinc should not go unmentioned. These and other metals which are flexible, yet only slightly elastic, do not quite return to their original shape after the bending force has been removed, while nickel is so elastic that it endeavors to reurv to its former position.
This is frequently the cause of nickel plate getting loose when deposited on these metals. A thin layer of nickel sticks better, but, as already mentioned, does not prevent the other metal from showing through, while it offers little or no protection against oxidation.
In concluding the subject of nickel plating we may refer o a quite extensive fraud. We frequently see on price ists, business cards, labels, and in show windows the expressions, watches with nickel works, nickel attachments, watch clains, genuine nickel, warranted nickel, etc., yet they have no nickel about them except a thin plating. The public can protect themselves to a certain extent by testing with a magnet, which attracts iron and pure nickel. Nickeled iron and steel might deceive any one, but the fraud is usually with brass, pinchbeck, etc., hence the magnet test suffices to show whether it is pure nickel or some cheaper metal.
In recent times the valuable properties of metallic nickel -its strength and permanence-are utilized in many other $\stackrel{\text { ways. }}{\text { We }}$
We shall now attempt to lay before our readers the new and more important uses of solid nicket, following the order of their introduction.
Oxide of nickel now finds a modest but increasing use in the enameled glass and ceramic industry.
The introduction of the regenerative furnace in iron making afforded the means of casting nickel, that had long been considered infusible. It was also found that the addifurnaces a little tin would render nickel fusible in ordinary furnaces.
At present cast nickel is used for different articles which combine in them the strength and malleability of soft cast iron with the permanence of the noble metals. Malleable nickel castings are used also for surgical instruments, arness ornaments, art castings, spurs, etc.
Nickel coins contain 25 per cent nickel and 75 per cent copper; they have recently been introduced in Mexico, and it is proposed to adopt them in Servia. (They have long in Germany) in Germany.)
Dr. Fleitmann's discovery makes it possible to roll it out into extremely thin foil, and draw it out into very fine wire. Rolled nickel anodes consist of chemically pure nickel; stil Fleitmann makes cast anodes that are very pure, although they cost less than the rolled ones.
The price of nickel foil is intermediate between real silver and German silver. From a hygienic aspect nickel is as harmless as iron, whereas German silver requires to be wel ilvered $t \mathrm{~m}$ make it harmless.
Fine nickel
Fine nickel wire is used for lace and dress ornaments, while nickel filigree is used for ladies' ornaments.
The use of nickel for technical articles is also quite extensive, and wire nails of nickel are in the market. Pure nickel is also used for ornaments and enamels. It is particularly adapted to Emaille cloisonne with difficultly fusible luxes.
By far the most important use, because the most extensive is for covering sheets of other metals. In the method de vised by Fleitmann, and named after him, slects of iron, or opper and nickel alloy, receive a thin skin of nickel applied In all the metalling.
In all the metallic branches of industry, there is a tendency to use iron and steel, the cheapest and strongest of all metals, for various utensils, and to prevent their oxidation
by covering them with more
which nickel holds the first rank. For this purpose the nickel may be deposited by the galvanic current, or by Fleitmann's method.
The nickel copper alloy, with 10 per cent. of the former and 90 of the latter, plays a very modest part in this as compared with iron.

Copper in the United States.

At an extraordinary general meeting of the Arizona Copper Company (Limited), whicb was lately held in Edinburgh under the chairmanship of Sheriff Guthrie Smith, some very interesting statistics in reference to the production and price of copper in the United States were mentioned by Mr. James Duncan Smith, S.S.C., one of the directors of the company, who had just returned from a visit to the company's mines and smelting works. Commencing with the year 1872, when the production of copper in the United States was $28,000,000$ pounds, he said it had risen to 88,000 , 000 pounds in the year 1882. Over the eleven years the quautities produced were as follows:

Year.	Quantity, pounds.
1872...	.28,000,000
1873.	.31,000,000
1874.	.34.000,000
1875.	.37,000,000
1876.	.40,000,000
1877.	.42,000,000
1878.	.43,000,000
1879	..46,000,000
1880.	.57,000,000
1881.	.70,000,000
1882	.88,000,000

The consumption of copper in the United States in 1872 was $34,000,000$ pounds, and the quantity went on increasing until last year, when the consumption was $77,000,000$ pounds. At first it was necessary to import copper, but almost nothing has been done in that direction for several rears. The great increase in consumption commenced in 1880, when it reached $62,000,000$ pounds, as against 34,000 ,000 pounds in 1872 . This was due to the development of electric lighting business- $62,000,000$ pounds in 1880; $63,000,000$ pounds in 1881; and $77,000,000$ pounds in 1882. The average price in 1872 was 35 cents per pound, and taking the following years, the averages ranged as follows: $27,221 / 2,22,20,18,16,181 / 2,20,171 / 2$, and last year, $181 / 2$ cents. The highest price last year was $201 / 8$ cents, and the lowest $173 / 4$ cents per pound.

Discoloration of Brick Walls

Within late years the great popularity of brick as a buid ing materiat and the great nirerese in The number of brick edifices which have been erected have brought into prominence a matter which could not have escaped the notice of
the most casual observer, namely, the disfigurement of brick walls from a coating of white powder resembling in appearance hoar frost or mildew.
These deposits are usually formed in rainy weather, and for a long time it has been a mooted question how this sub. stance comes to be collected, what it is, and what can be done to remove it or prevent its formation. The rains of this spring seem to have been especially favorable to the forming of these deposits, and old buildings even, which hitherto have never been defaced by this substance, have this year given up their ruddy appearance for a paler and less attractive
complexion. Dr. Joseph Leidy, President of the Academy of Natural Sciences, in speaking of this subject recently said:
'The efflorescence is simply ordinary Epsom salts or sulphate of magnesia. The sulphurous acid, which results from the burning of coal, combines in the presence of moisture with the magnesia in the mortar or from the clay in he bricks. It was decided that it emanated from the former source. The sulphate of magnesia dissolves in the water, which runs over the bricks, and, evaporating, leaves the deposit. Some walls are covered with a black substance which seems at a distance to be smoke. This is a fungus, which flourishes in damp places, and is materially different from the white sulphate." Dr. Charles M. Cresson explains in a similar way the method by which the substance is deposited on the walls, but expresses the belief tbat it is sulphate of potash. Edwin F. Durang, the architect, said that sulphurous acid acting on the mortar decomposes it to sucb an extent that chimueys had often to be rebuilt on account of it. He thought the efflorescence was sulphate of lime.

Liquefied Carbonic Acid.

The use of liquefied carbonic acid in the preparation of carbonated beverages is recommended by Mr. Apotheker Volk, of Ratzeburg, who states that experiments have proved it to be the purest, most suitable, and best method of impregnating mineral waters. It is also claimed that by using the carbonic acid in this form the more expensive part of the apparatus now used in the manufacture could be dispensed with. . It is evident, however, that even should a sufficiently cheap supply of pure liquefied carbonic acid be forthcoming, special precautions will have to be adopted as to the containing vessels and the manner in which they are stored, as the gas requires at $0^{\circ} \mathrm{C}$. for its liquefaction a pressure of 35 atmospheres, which increases rapidly with a rise of temperature. It would be worth while to carry the experiment a little further and try the soldified acid, the relatively slow evaporation of which, even when exposed to the air, might facilitate manipulation.

A BEAVER COLONY.

The beaver is one of the animals which constantly advancing civilization is gradually exterminating. In earlier times the beaver was found almost everywhere, even in the southern regions of Europe, but at present they are only found in large numbers in the northern part of America, also in southern Siberia, and on the shores of rivers flowing into the Caspian Sea.
The beaver (Castor) belongs to the race of mammals of the order of rodents. These animals furnish the beaver fat, an animal substance which is secreted by them in glands or pouches, and the pelt also is valuable. In earlier times the fur of the beaver was used for the inest hats.
The products of the American beaver are not so valuable as the Russian, yet the American beaver trade, especially of the great Hudson's Bay Company, is a remarkably profitable industry.
Beavers are especially interesting, for of all the mammals they show the most mechanical instinct in building their habitations, and the Λ merican beavers have the reputation of being by far the most ingenious builders in the whole family.
Our illustration represents a beaver colony of northern Minnesota, and the industrious animals are employed in constructing their water castles. They are remarkably shy, and laoor only in the night, so that it is very difficult to surprise

The Rabbit Pest in New South Wales.
The keeping of rabbits of any kind is now prohibited by law, there being a penalty of $£ 100$ for every offence proved. This may seem severe, but it is stated that the rabbit pest can be traced, in a large measure, to a few rodents which were thoughtlessly let loose. It is marvelous how rapidly their numbers become multiplied in the pastoral districts, in several of which they have completely eaten out the sheep. In reference to the ravages of these unwelcome animals, Mr. Maxwell, of Cobar, says: "Once rabbits get on a run, it is a constant outlay. In a small paddock of 40 acres I have seen three men constantly killing four and five dozen per day for months together, and still they kept coming. That was twelve years ago. They tried killing for several years. Before rabbits came we used to have 70 to 80 percent of lambs, and ran three sheep to four acres. In less than three years we could not rear a lamb, and it took four acres to keep one sheep alive, and all our cattle died.

- Then we fenced with paling and kept them out of the run and kept killing-that is, trapping, shooting, hunting with dogs and ferrets, and poisoning. The brutes kept coming most of the time into the little paddocis, as it was the sweetest feed. There are still rabbits on the place, and men have to be kept to keep them down." At first Victoria was the principal sufferer, but, somehow or other, the rabbits have crossed the Murray, spreading devastation and pani
the noise is natural to these frogs, or assumed to decoy the chickens within their reach, we know not; but they constantly make a chuckling sound so exactly like a hen calling her chickens for food that we have seen whole broods deceived, and rushing toward the sluit where they supposed the hen to be. The frogs are very wary, and it is difficult to find them unless by the screams of their victims. We have lost large numbers of small chickens in an unaccountable manner, and feel sure now that these frogs must be answerable for very many of them, as there are no rats bere, and the chickens are carefully housed at night.'"

Gluttonyin a Fros.

A rather interesting incident occurred while I was a student in the Sheffield Scientific School of Yale College. In the Peabody Museum we bad a large wire cage containing nume
On one of our excursions I brought in a number of frogs and other animals, and going to the cage dropped the contents of the jar, frogs and all, down among the animals at the bottom. The large frog, which had been confined there for some time, caught one of the small ones before it reached the bottom of the cage, and swallowed it with as great ease as he would have captured a fly. This quickly done, he

BEAVERS AT WORK.
these architects at their labor and find out the secrets of their method of construction. The individual dwellings consist of rounded hills, which are composed of pieces of wood, stone, and mud, and are divided in the inside into two apart. ments, an upper dry room and a lower one filled with water. The single habitations are united by a solid dam, for which whole trees are used as the building material.
The beavers gnaw with their powerful teeth the trees standing close by the shore, near to the ground, and when they have gnawed the trunk nearly through they so direct it by a peculiar trick that, as the tree falls into the water, the stream carries the trunk downward, and it is brought into the right position.

In early times travelers who were not punctilious in re gard to the truth, and who gave free rein to their fancy, told wonderful stories in regard to the skill of these architects, and though many of these storics have been shown to be false by observation and research, yet it still remains a fact that the beavers are really the most ingenious builders to be found in the whole animal kingdom.-From Um die Welt.

The Rubber Plant in Mexico.-Mexico is making a study of the culture of the rubber plant. The hardiness of the plant is said to be such that its culture is exceedingly simple and inexpensive, where the climate and soil are suitable. In much of the Mexican coast region the only expense is the weeding required when the plants are young, to give them a clance to grow and strengthen.
throughout the southwestern portions of the colony, and ruining the prospects of numbers of hardy settlers. How far the Rabbit Nuisance Act will aid in abating the evil remains to be seen, but if it fails the situation will be one of the gravest character.-Ill. Sydney News.

Bird-Eating Frog.

The following curious narrative is taken from the Cape Times, March 27, 1883: " A lady living in the George dis strict supplies the G. R. Herald with the following particu ars of the remarkable habits of this creature:
" 'I have much pleasure in furnishing all the information we have regarding the large frogs which have proved so destructive to our young. chickens. A water sluit runs
round our terrace, and passesthrough the ground over which the poultry range, and in this the frogs harbor. The first time our attention was drawn to their bird eating propensity was by the cries of a small bird in a fuchsia near the stream. Thinking it had been seized by a snake, several hastened to the spot, and saw a beautiful red and green sugar bird in the mouth of a large greenish frog; only the bird's head was visible; and its cries becoming fainter, the frog was killed and the bird released. Its feathers were all wet and slimy, and for some days after we could distinguish it in the garden by its ruffled plumage.
'Since then the same species of frog has on several occasions been killed with young chickens half swaliowed, and unce a duckling was rescued from the same fate. Whether
sat and looked about with an arr of satisfaction for a moment, then sprang upon another of medium size, caught and swallowed it as quickly as the first. This done, there was another pause of a couple of minutes, and then, with another quick bound, he seized and swallowed a third frog, equal in size to the second; this accomplished there was another pause of about five minutes, and then another quick, savage bound for a fourth victim, this time for a frog two thirds the size of himself. Each of the three was seized and swallowed head first, but the fourth effort was not so successful as the others, for this he only managed to get into his mouth as far as its hind legs, when there was a pause and a struggle. The unfortunate frog in the mouth of the large one persisted in holding its hind legs out sidewise, at right angles to its body, as if conscious that these tactics would prevent the other from swallowing it; and at the same time the large one used its front feet, at times one, and again both, to straighten out the hind legs of his victim so that he might be able to swallow it; and while this struggle was going on, he made frequent efforts to use the sides and bottom of the cage as an object against which to pres the otber frog, so as to aid his efforts to swallow it. The struggle, however, after lasting a number of minutes, ter minated in favor of the smaller frog, for by : desperate efforts it managed to elude the grasp of its assailant; but while the battle did last it used both its muscular and vocal powers to their utmost to thwart the murderous de signs of its enemy.-B. F. Koons, in American Naturalist.

RECENT INVENTIONS

Door Bolt.

This is an arrangement of bolts, wheels, or disks and rods, in which the wheel of one part of a double door has an angular recess formed in its side to receive the angular end of a bolt of the wheel of the other part of the door, so that the bolts of one part of the door will be locked by the bolts of the other part of the door. In the bolt operating wheel is formed a recess to receive the end of a locking lever, held against the wheel by a spring to adapt the bolts to serve as outside fastenings. This device is applicable to safe, vault, and other strong doors, as well as to ordinary doors. It is also equally well adapted to single and double doors. This useful inven tion has been patented by Mr. Charles Clark, of Smyrna, Tenn.

Improved Velocipede

This is an improved arrangement of foot treadle mechan ism for applying the power for propelling velocipedes and other vehicles. An improved arrangement of steering appa ratus is also included in this invention. Ratchet wheels are placed on the axle of the driving wheels, and pawls are connected with the foot treadles, so that the treadles will act on the axles through the ratchets and pawls, instead of cranks, as commonly arranged. By this means dead centers are avoided, and the wheels may continue to run when
the treadles have ceased to act, allowing the operator to stand on them without working the machine, thu saving the trouble of stepping off in any case when it may be preferred to allow the machine to continue its motion by momentum or ntherwise. This arrangement enables the operator to govern his action to suit his preference with respect to the throw or range of his tread. Mr. William B. Denton, of Wichita, Kin., is the patentee of this invention.

Baby Jumper.

This consists of a wire suspending device forming a neat, simple, and efficient seat frame, back rest, and arm sup ports, together with an arrangement of seat body adapted to the frame, the whole making a very convenient, neat, and inexpensive jumper. It will be seen that by the bow shape of the wire loop, the seat falls directly under the point of suspension and thus balances properly, and also that by such form of the wires the seat is more accessible than when suspended by hangers of cords and other devices falling in straight lines. The device is made by simply shaping a single wire. When the child is seated securely in the jumper, and when the spring is not forcibly expand ed to raise and lower or "jump" the child, the elasticity of the spring will give the jumper all the advantages of an easy chair for the comfort of its occupant. The devic is neatly made and japanned or nickled. The inventor fur uishes a simple attachment for young babies to sleep in, which can readily be applied to the jumper. This inven tion has been patented by Mr. M. M. Raymond, Corry, Pa.

Eosine Photo Plates.

At a recent meeting of the Photographic Society of France, M. Vidal exhibited his experiments with gelatino bromide plates containing eosine. These plates were prepared by MM. Clayton and Tailfer. The sensitiveness to certain rays has been greatly modified by employing the eosine, especially for the yellow.
The isochromatism, without being perfect, is progressing by the means proposed. We can now obtain the respective value of violet, blue, green, and yellow rays. As to the red rays, they are still refractory, but it is to be hoped that ere long they will be subdued, so as to give every satisfac tion to artists, who will then be enabled to see their pictures reproduced by photography with all the real effects of light and shade.
M. Vidal gave a warning to the Bank of France that it is now very easy to imitate their bank notes by means of eosine plates. He (M. Vidal) had reproduced a bank note in a very satisfactory manner by covering the note with a very thin film of yellow gelatine. The blue lines of the bank note are of a bluish-yellow tint and are very non-actinic, whereas the yellow comes out admirably, and the negative leaves nothing to be desired.
M. Gobert, an official of the bank, followed M: Vidal through all his explanations, and said that this subject merited all the attention of the governors of the Bank of France.
M. Lugardon, of Geneva, was present at the meeting, and
exhibited some very remarkable instantaneous proofs of birds, dogs, horses, and other animals. The developer which gave him the most satisfaction for these instantaneous pic tures is that of Herr Wild, which permits the development to be continued for more than half an hour without inconvenience.
Dr. Eder says that the formula of Herr Wild is very good, and that he obtained by its agency more softness and detail in the shadows than by the use of potassium bromide. Herr Wild takes 1 gramme of iodine and dissolves it in 200 c. c. of alcohol; he then adds 200 c . c. of water to the whole. Five to ten drops of this solution are added to the 50 c . c. of the ordinary oxalate of iron developer.

Dates.

The date is the fruit of the Pconia dactyfera, the Byled-e-Djerid of the Arabs. The palm date has a naked and cylindrical stem; it grows in Asia and in certain provinces in Africa, and is abundantly used by the natives, and is as indispensable to them as the cocoanut to the savages of Oceanica.
The flowers of the date are inclosed in a long spathe and change into an oblong fleshy fruit, yellow in color, of which the thick skin is readily preserved by drying. It incloses a cylindrical, deeply furrowed nut, hard and corneous, which contains an oily and sugary substance. Each date tree car ries a variable number of clusters, and these in maturity attain a length of about a meter, and a weight of ten or twelve kilogrammes. When the fruit is to be preserved, it is gathered before reaching maturity and dried in the sun. Their cultivation requires fresh water and a hot sun. Ther are more than thirty varieties of dates, among which the male date, dakkar, or menakker, is pre-eminent. All thes varieties have the same botanical characters, their trunks re semble the underground stems of ferns, their leaves are pinate and luxuriant. Dates are planted in two differen ways: the first consists in sowing the seed and transplanting he tender shoots at proper intervals, the second in planting he young buds which appear at the foot of the adult tree or row from the axils of the leaves
The palms and their congeners belong to the warm regions of the earth; they are found in India, Persia, etc. In Europe their sole representatives are the Chamcerops humilis, and the cultivated date palm, whose fruit does not ripen naturally. The date is common in Spain, where it is cultivated upon a great scale for its fruit. The tree grows extensively in Provence; there are numbers at San Remo, at Bordighiera, and in their vicinity; they are cultivated principally for their palms, which are bleached and which are also sent to Rome and throughout Italy, to be used in processions through Holy Week. The Jews also use them at the festival of the Passover.
The gathering of the dates takes place in autumn, two or three times, and is over in tbree months. They are dividec nto three sorts according to their state of maturity. Exposed o the sun upon mats they become at first soft, then fill with juicy pulp, then thicken and are no longer liable to change The best dates come from Africa by the way of Tunis; they re as large as a finger and of an orange hue; their flesb is solid, vinous in taste, sweet, and somewhat viscous; they contain a nutritive principle helpful to horses, used on long journeys, and also useful in fattening cattle. The fruit is softened by boiling in water, and goat's milk is added. The Arabs in their pilgrimages across the desert make a species of bread from them, and use the pulp, extracted by pressure in earthenware colanders, for butter and sugar.
The fruit of the date tree contains mucilage, a gum simiar to gum arabic, albumen, crystallizable sugar (cane ugar), parenchyma, pectose, citric and tartaric acids, coumarine, and water.
The dates of the Pharmacopœia in France are disgusting o eat, containing always the eggs and excreta of insects They are not those which formerly enjoyed a great reputation as a remedy for phthisis, and as a nourishment to prolong life. Plutarch tells us that the master of Hippocrates lived long time though touched with pulmonary phthisis, through the use of these dates and persistent exercise.
All parts of the date tree are used; the young branches re cently cut furnish a milk which is both healthful and agreeble; this milk or sap when fermented affords an alcobolic drink named lakhby, or palm wine. Crushed dates with water also afford after fermentation the same decoction Frequently the bark and fibrous portions of the young sprout are removed to obtain the white substance within, which is eaten; the young leaves and the male flowers are also eaten when seasoned with citron juice, or arranged as a palm salad it forms a palatable disb. The Chinese use the date nuts in their writing and printing inks, and also as a dentifrice. The dried leaves are also used to make carpets and various ther objects even in construction.
As the use of spirituous drinks is strongly prohibited by the Mohammedan religion, the date wine passes among the devout under the name of a remedy to rectify the crudities of he stomach. Formerly, to assist in curing certain maladies, the rich added to this liquor certain aromatic principles, and the poorer classes Persian absinthe. The nectar of dates that the sovereigns of the Congo drank a century ago, was he alcoholic product of fermented dates.-Journal d' $\# y$ siene.

Prof. Palmieri announces the existence in the lava of Vesuvius of a substance giving the spectrum line of " helium," an element hitherto recognized only in the sun.

Boiler Explosion at Minneapolis.

To the Editor of the Scientific American :
The boiler in the machiue shop of H. E. Penney, No. 315 Third Avenue, So. Minneapolis, Minnesota, exploded at fifteen minutes before 12 M., June 20 . No one was hurt except one boy about seventeen years of age, who was at work at the pump near the rear end of the boiler. He was buried in the debris, but was got out within a few minutes somewhat bruised and burned. The rear end of the building, which was of brick, was demolished and most of the debris fell in on to boiler and engine. The boiler lay parallel with engine, and when the explosion occurred it left its bed and went sideways, apparently turning over once, and stopped directly on top of engine, breaking the fly wheel and other parts of engine. The boiler was a common tubular boiler about 30 inches diameter and 10 feet long, and contained 17 3 -inch tubes. The second sheet from front tore across about the center of one side of boiler and then tore nearly around the boiler, as shown by sketch, which is intended to represent the boiler as it would appear if the ruptured sheet was bent back into place. The initial point of rupture was evidently at a, and the sheet containing dome went

round the boiler until it was nearly torn from the boiler leaving about one foot of the sheet not broken. The owner, Mr. H. E. Penney, says he had gone into the engine room and looked at the steam gauge, which indicated 60 pounds steam pressure, and had turned to go out when the explosion occurred, blowing him out of engine romm into machine shop. The boiler is four years old, and made by Messrs. Glenn \& Lusk of this city from one-quarter inch boiler plate, purported to be of 60,000 pounds tensile strength. I send herewith a piece from the side of the ruptured sheet, that you may examine for yourselves.
E. O. McGlauflin.

Io the Editor of the Scientific American.
I notice in the Scien'rific American, June 2, 1883, an inquiry by C. D. \& Co. as to the safe velocity at which a grindstone may be run, without danger of rupture from centrifugal force. Thinking it may be interesting to divers readers of the Scientific American, I send the following simple formula for calculating the strain per square inch resulting from centrifugal force in a cylinder, or cylindrical wheel, evolving upon its axis. Also, the velocity required to produce a given strain per square inch.

Making $V=$ peripheral velocity in feet per second,
$\mathrm{G}=$ specific gravity of material,
$\mathrm{C}=$ the constant number $222 \frac{386}{1000}$,
and $S=$ strain per square inch, tending to part the cylinder through any section made by a plane coinciding with the axis,
Then $S=\frac{V^{2} G}{C}$, whence $V=\sqrt{G} \frac{C}{G}=$ peripheral velocity producing a giveu strain equal to S upon each square inch f section, as above. Or, to state the same verbally:
The strain per square inch equals the specific gravity of material multiplied by the square of the peripheral velocity, and divided by $222_{1036} \frac{380}{1000}$. And the peripheral velocity resquired to produce a given strain to the square inch of section equals the square root of the quotient of 222_{1000}^{336} times the given strain divided by the specific gravity of material. Fence, knowing the cohesive strength of the material, and the specific gravity, the speed may be limited to any required margin of safety.

Albany, June 6, 1883.
S. Whipple.

A New Market in New York.
The new Washington Market building, New York city, will cosit $\$ 250,000$ and cover an area of $54.0 c 0$ square feet It will be built of iron and glass, one story in height, having frontages of 186 feet on West Street, 235 on Fulton Street, 255 on Vesey Street, and 175 on Washington Street. 'J he roof will be of glass with a large dome in the center. The general height from floor to roof, except under the dome, will be 24 feet, but the standholders will not be allowed to run up their partitions more than 18 feet, thus insuring light from the roof over the entire building and a good circulation of air.

ENGINEERING INVENTIONS A flue plugging device for mending the flues of locomotive and other engine boilers when they
become ruptured, and which may be accomplished by this implement whine the boivr is in use, has been Mr. Charles Weik, Jr., of Bristol, Pa., the patentee of an improved car coupling. The draw-
head is provided with a sliding block upon which the coupling pin rests before the coupling is effected. When the cars are brought together the slididg block is
depressed by the action of the connecting link, and the pin drops int
cally couvled.
'An improved steam brake for locomotives III. The mechanism by means of which of Belleville, plied to the brakes consists of a steam cylinder open at one end and closed at the other, and provided with a
piston to wlich is attached one end of the chain which actuates the brake. Whereare when steam is admitted the piston will be projected and the brake set.
Mr. W. P. Senour, of Pimento, Ind., is the patentee of an improved car door and fastening to be
used on common freight cars in which grain is to be carried in bulk. In this improvement an inner car door is provided which effectually prevents the loss of the rrain in case the outer one becomes lose or gets
jarred open. A fastening is applied to it which is quite ingenious, and is so constructed that it cannot be workMr. Wm. J. Carey, of Millvale, Pa., has recently patented a supplementary fastening for car
doors to render them more secure against the jarring doors to render them more secure against the jarring
open of the door while the car is in transit. The invent. or provides a hinged brace which is made to prop the while it does not take the place of the ordiuary lock
and hasp fastening, but acts as ausiliary theereto, rendering increased security to freight car doors.
One of the most simple car coupling devices One of the most simple car coupling devices that has recently been patented is that of Mr. A. We
Case, of South Manchester, Conn. The invention co ists in coupling heads having their sides beveled to dappt to overlapeach other, and in unequal armed U-
shaped coupling rods having curved bars attached to the ends of their long arms. The said rods couple the cars by the coupling he
An improved governor for steam engines has been patented by Mr. William Knowles, of Bolton,
County of Lancaster, England. Instead of employing the ordinary ball governor for controlling the action of the throttle valves and cut-offs of the engine, Mr. Knowles has interposed between the main governor
and the valve a regulating governor which operates antomatically, and serves to adcelerate the action of the variation in the speed of the engine.
A novel car truck has been patented by Mr. Austin A. Brooks, of Eau Claire, Wis. The object of the invention is to prevent serious accidents when car
or locomotive trucks run eff the track, by providing bevel guard wheels which are secured to the same axle with the rails in case the tread wheels jump the track. rom dropping in case of breakage. The liability of car being overturned by derailment, or smashed up in case
In sinking driven wells where the water bearing stratum is more than twenty feet below the sur face, it is customary to excavate the earth down to that istance, and then to drive the pipe from the bottom o Conis excavation. Mr. Jehyleman Shaw, of Bridgeport, this method which avoids the necessity of excavating In some cases a large pipe is driven the whole distance o the water bearing stratum, while in others both a large and small pipe suitably coupled together are employed,
as well as a pump valve or plunger that is adapted to ork both upon the suction and lift principles.
Mr. Jacob Ruhle, of Pittshurg, Pa., has re cently patented some new improvements in draught and rawhead attachments for railway cars, by which much stronger draught attachment is obtained, labor is econo mized in making the attachment, and the whole draught also claims that much advantage is obtained and ex pense saved by dispensing with the follower plates
for the springs, and likewise a large number of bolts. for the springs, and likewise a large number of bolts.
Cars may be coupled while standing without risk of in jury to life or limp, and the same
A balanced rotary val
A balanced rotary valve is the subject of Mass. 'The invention consists in a double valve carried by a single stem and formed with ports combined with
a body or case for use witb regulators for either steam, water, or caire for use witb regulators for either steam,
aplicable for any situation where balanced by the pressure of water or other fluid, and conpressure, 'The valves may be rocked by slight uariation pressure. The valves may be rocked by slight variation nected in a water supply pipe for regulating the discharge and pressure, and having the stem connected pressure diaphragm in any suitable manner.
A simple and seemingly practicable automat ic car coupling for either passenger or freight cars
has been patented by Mr. Charles H. Schaaff. of Alexandria, Va. The drawhead is provided with a sliding hook over which the connecting link passes in coupling
the cars, dispensing thereby with the ordinary coupling car, and connects with the slidiny hook in the end of the whereby when the lever is elevated the hook will be projected from the drawhead, and will thereupon as-
sume a pendent position and che cars will be uncoupled. Although the uncoupling cannot be effected by any jar the car can receive, nevertheless the mechanism is so complete that it may be readily
hand, by simply raising the lever

MECHANICAL INVENTIONS.

A stop motion mechanism for knitting mahines is the subject of a patent granted to Mr. William stop knitting machnes automatically should a hole oc

Mr. Lewis E. Williams, of Peekskill, N. Y
Mr. Lewis E. Williams, of Peekskill, N. Y. is the patentee of an improved burglar alarm and door
bell, in which a yong is attached to the lock spindle inside of the house, so that the turning of the knob to
open the doors at the same time operates the hammer and sounds the aiarm.
An ingenious device for maintaining power for clock springs has been patented by Mr. Francis T Marchand, of Annapolis, Md. This invention consists
in an improved gearing for the springs of clockwork in an improved gearing for the springs of clockwork
and all spring actuated mechanism, and is designed to and all spring actuated mechanism, and is designed to
prevent the retardation of the mechanism while being spring, whether fully or partially wound
Mr. John Stracban, of New York city, has oblained a patent for an improved method of bushing the flue openings of steam boiler heads, which consists in an unflared ring of soft metal, and driving this ring panding the ring in the opening, whereby the inuer walls of the ring will always be in the form of a true circle insuring
flues.

Mr. Joseph Marion, of Brooklyn, N. Y., has patented an improvement in oil stoves for family use consisting of an open bottom or tray upon which is placed asbestos fiber or similar material, to which the
oil is supplied for burning. The supply of oil to the asbestos is regulated by the weight of theoil on the tray. A valve and counter balanced weight regulate
and effectually seal the pipe and prevent any flow of as to the tra
A machine for starting and sizing hats has been patented by Mr. William Simmonds, of Yonkers, which are driven by gear wheels. The movable roll er is held back by springs and drawn forward by cords and a treadle connected with the bearings. To the vat
beneath the frame is attached a table provided with an edge flange to receive the hat a table provided with an prevent them from falling into the va
A superior automatic safety brake for elevators has been patented by Mr. Wright J. Seaton, of
Wyandotte, Kas, This brake is arranged to act autoWyandotte, Kas. This brake is arranged to act auto
matically should any accident cause the carriage to fall, and provision is likewise made whereby in case the brake should fail to act automatically, it may be set by a person in the carriage. The brake may also be used
for regulating the descent of the carriage independently of the machinery for operating the carriage
A machine for trimming lumber has been patented by Mr. W. B. Swartwout, of Three Rivers,
Mich. This invention is an improvement Mich. This invention is an improvement upon a machine patented November 29, 1881, by same inventor,
which was designed for cutting lumber or boards into standard lengths, certain of the saws being thrown automaticaly out of action according to the length of the lumber. The object, however, of the present improve-
ment is to provide for throwing the automatic mechan ment is to provide for throwing the automatic mechan ism into or out of action by hand or foot.
An improved rotary filing machine, the object of which is to make a uniformly smooth surface on metal articles especially applicable for making rules has been patented by Mr. De Loss H. Stephens, of Riverond the frame which upries the slide the rule is placed, outer edge of the wheel, and the joint to be filed is carried against the wheel, where the cut will be made in
lines nearly parallel with the sides of the rule. The slide actuated by a foot treadle.
An improved apparatus for the disintegray been patented by Mr. Theophile Harang, of New Orleans, La. The object of the invention is to so treat the ders of cane leaves, sorghum, or other plants as to ren-
der them useful for any of the purposes to which other non-saccharine fibrous materials are used. After the crushing and compressing operations to which the in solution, and steam are brought into use to complete A magnetic separator, intended for separating iron sand from common sand, the object being to obtain as large a percentage as possible of the ore free rom other sands, has been patented by Mr. Josepu La in an endless traveling apron combined ition consis magnets placed at an inclination, so that as the sand is fed to the side of the apron the magnetic particles will
be retained thereon and carried forward to the disbe retained thereon and carried forward to the dis-
charge end, while the common sand will fall through

An improvement in an attachment termed a "beamer," used in connection with weaving, has been patented by Mr. Edward Cadigon, of Adams, Mass. A comb of metal or wood, with an equal number of teeth
to the vertical rows of threads in the beamer, and to the vertical rows of threads in the beamer, and
operating in connection therewith, is the nature of this improvement. By this arrangement the strips are located close to the side of the copper, so that the copper
and the strips can be threaded at once, and thus save he second operation of threading the harness, as in the
Messrs. Anton Prier, Charles Doherty, and Pierce E. Everett, of Kansas City, Mo., are the patentees of a self-closing faucet which consists of a stem and supporting the upper end of the valve stem, with a lever resting upon the end of the valve stem, so that when the lever is moved so as to force the valve downward, the water will be allowed to pass from the pipe and be discharged, and whenthe lever is released, the ex-
pansive action of the spring will cause the lifting of the pansive action of the spring will cause the lifting of the valve and its stem, and thus automatically stop the flow
of water.
An improved surgeon's operating chair, which is so constructed that the patient may be brought
into any desired position, has been patented by Mr. F.

Adon Krill, of Burton, \mathbf{o}. This chair is of simple co readily chanded to suition the the various parts may b fact it is capable of about as many adjustments as a chair one of our contemporaries mentioned the other day, in which it said: "A man has invented a cbair that
can be adjusted to 800 different positions. It is designcan be adjusted to 800 different positions. It is design-
ed," the wag adds, "for a boy to sit in when he goes to

An improved mode of protecting super heatiing pipes has been patented by Mr. Magnus Gross of New York city. The invention consists in coating
the pipes inside and outside with dry plumbago, covering the pipes singly with strips of hair felt coated upon the inner side with plumbago paste, covering the felt with strips of asbestos paper coated upon the inner side
with plumbago paste and washed upon the outer side with plumbago paste and washed upon the outer side
with a misture of plumbago, pulverized fire clay, and with a misture of plumbago, pulverized fire clay, and
water. The hair felt and asbestos paper is secured in water. The hair felt and asbestos paper is secured in
place with wire. It is claimed that a pipe so prepared place with wire. It is claimed that a pipe so prepared
is practically indestructible, as it cannot be injured by is practically indestructib,
fire, gases, or steam vapor
An improved apparatus for regulating the feed water supply of steam boilers, whereby the level point, has been patented by Mr. George C. Pyle, o Dayton, \mathbf{O}. This contrivance is so constructed tha when the water in the regulator reaches the level re
quired, the float will automatically open the valve of the escape pipe, and the water instead of flowing from the pump into the regulator, will pass off by the escape
valve, but if the water falls below the proper level the escape valve will be closed, and the water will flow into the regula
sired level.

A machine for dampening or wetting grain, to prevent pulverization during the grinding
process has been patented by Mr. John Miller, of Milton, Oregon. This invention provides for the accu rate regulating of the degree of wetting, and also o regulating the supply to the grinding mill, according to
its capacity, so that there shall be no accumulation o its capacity, so that there shall be no accumulation of
the wetted grain, beyond what is necessary to moisten the hulls. 'To insure the even moistening of the grain, a regrinding, after the grain has passed direct from the dampening machine through the grinding mill a revolv ing table with raking attachment is provided for stir ng the grain after the water has been applied
The fact of a new ice creamer having been invented is in itself a refreshing announcement these hot
days. But more than that, Messrs. William Rogers and Thomas A. Maher, of New Orleans, La, have patented ful article, by which the old and tiresome method of rotating thecan is avoided. The ice freezing vessel in the new invention is provided with a central ice chamber open throughout its full diameter at both ends. Expe
rience has satisfied the inventors that, from the large rience has satisfied the inventors that, from the large
amount of freezing surface to which the cream is exposed, by simply charging the freezer with ice and salt and placing the cream therein, the latter will be thus avoiding much labor.

AGRICULTURAL INVENTIONS

Mr. John T. McIntire, of Purdy, Tenn., is the patentee of an improved cultivator in which the to the elevation and inclination desired, the handles be ing likewise so arranged as to be shifted, so as to enaLetters patent have been granted to Mr Laurens S. Wheeler, of Independence, Kan., for an
improved harrow which is made in two sections nected together side by is made in two sections conbetter accommodate itself to the uneven surface of the A bin

A binding attachment for harvesters has been patented by Mr. Edward Ebi, of Cedar Rapids,
Iowa, which consists of an apparatus to be used in Iowa, which consists of an apparatus to be used in conas they are discharged from the platform of the harvester and deliver them to the binder arm of binding ma chines.
A simple cultivator, adjustable according to the work to be done, has been patented by Mr. G.
W. Hammond, of Earl Park, Ind. It is so constructed that the machine is drawn overevery other row and cul tivates the entire space between that row and the adjacent one upon each side, so that the machine will culti-
vate four rows at each round. The machine may also bill the plants more or wide or narrow rows,
The patent of Mr. William S. Prosser, of Auburn, Cal., relates to an improved method of feeding straw as fuel to the furnaces of traction engines. The
invention consists in a device to be applied to combined "headers" and "thrashers" that are moved over the field and which cut and thrash the grain at one opera-
tion. A straw feed box is provided with reciprocating flexible bars, which connect the straw direct from the the power for driving the machines.
An improvement in steam plowing machines has recently been patented by Messrs. J. D.
Malone and J. F. Hamel, oi Pittsburg, Pa., which is intended to simplify the process of plowing on a large scale. The angine and boiler, which are mounted in the
usual way on a truck frame. are provided with a crank shaft and pulley, so that when the machine is not in use for plowing, it may be used for a variety of other pur-
poses. A very ingenious arrangement of what the patentees term "pushers" is employed for lifting or buoying up the machine ard preventing th
from'becoming embedded in the soft ground.

miscellaneous inventions.

Mr. W. H. Stuckey, of Covington, Ky., has a a building and provided wlth an electric appliance by which a latch is raised and the fire escape released, and put in position for use.

Mr. T. H. Chubb, of Post Mills, Vt., is the watentee of an improved fishing rod tip, the end of at the side for the line to run through. Provision is
and Mr. Edward P. Waters, of Roseville [ill, he patentee of an improved hame tug which consist of two plates having their ends bent around the cross bar of the buckle, and riveted together for holding the
hame clip or eye and the trace keepers, whereby the tu hame clip or eye and the trace keepers, whereby the tug ordinary hame tugs
very simple and inexpensive bulletin oard has been patented by Mr. Charles H. Tessy, o red with cloth which is coated over with shellac o varnish, for making the fabric translucent. Thes he shape of an ordinary hen coop.
Mr. S. S. Ward, of Greenfield, Mass., is he patentee of an improved carving fork guard conprongs when not in nse, but is extended and held by spring at right angles to the prongs when in use, thu the other hand should slip.
Mr. Thomas Sturgin, of Fairview Town inp, Mercer County, Pa., has obtained a patent for a may be raised vertically or may be swung open in the may be raised
ordinary way. This gate is adapted especially for use
in cold regions where the ground is liable to be covered in cold regions where the ground is liable to be covered Mr. George Maris, of New York city, has btained a patent for an improved pestle handle. Th pestle, which is made of Wedgwood or porcelain, etc.
is provided with a hard rubber handle which is screwed and cemented on the pestle. The advantages of thi handle are that it is light, is not affected by acids, an as long as the pestl smooth su
Mr. Peter E. Crist, of Brighton, Ill., has patented a new surgical apparatus for fractures, con sisting of a device for supporting the shonlder in prope position in cases of fracture of the clavicle or colla
bone, so as to hasten the renniting of the broken bone It consists in a forked crutch-like support for suppor constructed as to permit an adjustment of the crutch.
Mr. John Curtin, of Marion, Vt., has se cured a patent for an improved hub attaching devic which relates to that class of sleeins for vehicles which
are made of has a cylindrical stud and a half circular flange attache to it with a spiral ended conical nut, and two or mor
conical edges for holding the parts together in a subconical edges for
stantial manner.
A practical time signal for signaling standard time simultaneously over a series of telephone cir
cuits has been patented by Mr. John M. Oram, of Dal las, Texas. This time signaling instrument is provided with several sets of contacts and with two or more conductors of electricity ?ppon the same actuating arbor d with an independent generator
Mr. Horace E. Henwood, of New York city, is the patentee of an improved thill coupling. A
ball is formed upon the neck iron of the thill, and connects with the axle of the vehicle by concave shape coupling allo ins the ball and socket arrangement th while in use they securely hold the thills to the asle, and do not rattle.
To prevent injury to the interior fittings of rapping rapping the curry comb upon the wood work while Sammis, of Brooklyn, N. Y., have patented the attach ment of elastic cushions to the sides of curry combs,
which not only prevents injury to the stable, but faciliwhich not only prevents injury to the stable,
tates the removal of the dust from the comb.
Mr. Henry Roth, of New York city, is the patentee of an improved reflector and signal frame for
car lamps, the object of which is to provide reflectors and signal frames for car lamps constructed in such a manner as to be more effertive in lighting the ends and platforms of railroad cars than heretofore. A series of
reflecting glasses are so arranged within the frame that reflecting glasses are so arranged within the frame that
when the lamp is placed in position inside of the car, it when the lamp is placed in pnsition inside
illuminates both the interior and platform.
Mr. Daniel F. Beatty, the enterprising organ and pianoforte manufacturer of Washington, N. J., has, tained a new patent for swells for reed organs. The intention of the inventor by his improvement is to produce a full volume of souni and regulate the swell at
the will of the and the will of the operator. The swell is so combined with
the action of the instrument and under such control of the organist that he may obtain the most perfect grad-

Mr. Theodore P. Case, of Powell, O., has obtained a patent for an improved vehicle tongue for sleds which is so constructed that it may be secured in the object being to facilitate the loosening of the runThis may be accomplished by securing the tongue rigidly to the sled, when a lateral pressure may be ap-
plied to the runners for their dislodgment. When this as been accomplished the tongue is rendered flexible, Mr. Tobias Hamilton, of Centerfield, O., is the patentee of an improved life boat which consists in
an approximately spherical shell segmentally cut away at its two sides, walled in at the chord of each segment by a vertical plane, and each of the segmental spaces
floored over, forming a tight hull. The boat is provided with propeling wheels journaled in the vertical walls. The inventor claims that a boat of this style dred and twenty-tive persons with enough water and provisions for several days, and may be propelled bs
four men at the rate of six miles an hour.

The Charge.for Insertion under this'head is One Dollar a line for each insertion : about eight words to a line.
Advertisements must be received at publication office Advertisements must he received at publication office
asearly as Thursday morning to appear in next issue.

Cotton Belting, Rubber Belting, Leather Belting, Linen

 Wauberer Hose. Greene. Tweed \& Co., New York. Wanter.-To manufacture smalltent. Hall \& Son, Prompton, Pa.
D. A. Smith, of Greencastle, Pa., will sell either par or his entire patent for improved windmill, on easy
terms. This is a splendid chance for capitalists. See
tllustration in the terms. This is a splendid chanee for capitalist,
filustration in the Scirntific No. 9 , last volume.
Our goods rank first for quality, safety, and durabili
ty. Please compare them with any othor make, and i not found better and cheaper, quality eonsidered, we will bear the expenses of the tr
Emery Wheel Co., Lehighton, Pa.
Metal Pattern Letters to put on patterns
all sizes. H. W. Knight, Seneca Falls, N. Y
Wanted.-Light castings to make-Sewing machines, Wanted.-Light castings to make-Sewing machines,
car boxes, school furniture. water closets, etc., etc. We
do good work. Lehigh Stove Manuf. Co., Lehighton, Pa The following letter will be of interestto railroad com anies and others using steam:
 Dear Sirs : The Westinghouse air pump on Engine 7
was packed with Asbestos Wick Packing Nov. 11,188 Was packed with Asbestos Wick Packing Nov. 11, 188%
Since that time I have run the engine 27.900 miles on passenger trains. The packing was examined to-day, an
apparently will be good for a year longer. The stuffin apparently will be good for a year longer. The stuffing
box nuts have been screwed up one-quarter turn on the air cylinder, and one turn on the steam side during tha noticed it leak any.
Yours truly, C. B. C
Yours truly, C. B. Conger,
Engineer Engine 73.
Soapstone Packing, Empire Gum Core, and all kind Soapstone Packing, Empire Gum Core, and all Kind.
Engine Packing. Greene. Tweed $\&$ Co., New York. Contracts taken to manuf. small goods in sheet o cast brass, steel, or iron. Estimates given on receipt of
model. H. C. Goodrich, 66 to 72 Ogden Place, Chicago. Brush Electric Arc Lights and Storage Batteries Twenty thound Are Lights alrend sola. Our larges Storage Battery is the only practical one in the market Brush Electric Co., Cleveland, 0 .
Engines, 10 to 50 horse power, complete, with govern-
or, $\$ 250$ to $\$ 550$. Satisfaction guaranteed. More than eight hundred in use. For circular address Heald \&
Morris (Drawer 127), Bald winsville, N. . \mathbf{x}. Best Squaring Shears, Tinners', and Canners' Tools Lathes 14 in. swing, with and without back gears and
screw. J. Birkenhead, Mansfield, Mass. screw. J. Birkenhead, Mansfela, Mass.
Five foot planers, with modern improvements. Geo
Lincoln \& Co., Phoenix Iron Works, Hartford, Conn The Best.-The Dueber Watch Case.
If an invention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent, $\$ 0$. Various other foreign patents mayalso be obtained. For instructions address Munn \& Co., Scievtific
Agency, 261 Broad way, New York.
Farley's Directories of the Metal Workers, Hardware
Trade, and Mines of the United States. Price $\$ 3.00$ Trade, and Mines of the United States. Price $\$$ each. Farley, Paul \& Baker, 530 Market Street, Phila Improved Skinner Portable Engines. Erie, Pa
Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y. Steam Pumping Machinery of every descripN. Y. Steam Pumping
tion. Send for catalogue.

Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, polishing compositions, etc. Com-
plete outfit for plating, etc. Hanson \& Van Winkle. plete outfit tor plating, etc. Hanson \& Van Win
īewark, N. J., and 92 and 94 Liberty St., New York. Lists $29,30 \& 31$, describing 4,000 new and 2 d -hand Machines, ready for distribution. State just what machines
wanted. Forsaitb \& Co., Manchester, N. H., \& N. Y. city. "Abbe" Bolt Forging Machines and "Palmer" Power Hammers a specialty. Forsaith \& Co., Manchest
Raiiway and Machine Shop Equipment. Send for Monthly Machinery List 121 Chambers and 103 Reade Streets, New York $25^{\prime \prime}$ Lathes of the best design. G. A. Ohl \&
East Newark, N. J. "How to Keep Boilers Clean." Book se
James F. Hotchkiss, 84 John St., New York. Wanted.-Patented articles or machinery to make
and introduce. Gaynor \& Fitzgerald, New Haven. Conn. Water purified for all purposes, from household supplies to those of largest cities, by the improved filters
manufactured by the Newark Filtering Co., 1 ri Commanufactured by the
merce St.. Newark, N. J.
Latest Improved Diamond Drills. Send for circular
 Am. Twist Drill Co.,Meredith, N. H., make Pat. Chuck American Fruil Drier Free Pamphlet Seead 114 Brass \& Copper in sheets,wire \& blanks. See ad.p. 413. The Chester Steel Castings Co., office 407 Library St., 15.000 Gear Wheels. now in use, the superiority of their ,astings over all others. Circular and price list free. Diamond Engineer, J. Dickinson, 64 Nassau St., N.Y. The Improved Hydraulic Jacks. Punches, and Tube Tight and Slack Barrel Machinery a specialty. John Greenwood \& Co., Rochester, N. Y. See illus. adv. p. 414. Gear Wheels for Models (list free); Experimental
Work, etc. D. Gibert \& Son, 212 Chester St., Phila., Pa. Sewing Machines and Gun Machinery in Variety. The cratt \& Whitney Co., Hartfon, Conn 20.000 Duc Spherical Elevator Buckets, sizes $31 / 2$ to 17
inches constantly on hand Telegraphic inches, constantly on hand. Telegraphic orders filled.
T. F. Rowland, sole manufacturer, Brooklyn, N. Y. First Class Engine Lathes, 20 inch swing, 8 foot bed, Straight Line Engine Co., Syracuse, N. Y. See p. 413.

Ice Making Machines and Machines for Cooling
Breweries, etc. Pictet Artiticial Breweries, etc. Pictett Artiticial Iece co. (Limited.
Greenwich Street. ${ }^{\text {P. O. Box } 3033 \text {. New York city. }}$

Presses \& Dies. Ferl. Machinery for Light Manufacturing, on hand and
buitt to order. ङ. E. Garvin \& Co., 139 Center St , N. y Drop Forgings. Billings \& Spencer Co. See adv., p. 382 See New American File Co.'s Advertisement, p. 372. Woodwork'g Mach'y. Rollstone Mach. Co. Adv., p. 382. Split Puleys at low prices, and of same strength an appearance as Whole Pulleys. Yocom
Works, Drinker St., Philadelphia. ''a.
Supplement Catalogue.-Persons in pursuit of infor mation on any special engineering. mechanical, or sciel entific amilincan Suppliment sent to them free The SUPPL,Emevt contains lengthy articles embracin cal science. Address Munn \& Co.. Publishers, New York Steam Pumps. See adv. Sinith, Vaile \& Co., p. 382. C. B. Rogers \& Co.. Norwich, Conn.. Wood Workin Machinery of every kind. See adv., page 397. The Sweetland Chuck. See illus. adv., p. 398. Catalogues free.-Scientific Books, 100 pages; Electri
al Books, 14 pages. E. \& F. N. Spon, 35 Murray St., N. Y. KnivesforWodworking Yachinery Boorbind., N.

NEW BOOKS AND PUBLICATIONS

agazine of American History. Fo

 June. Historical Publication30 Lafayette Place, New York.
The second historical paper on Wall Street appears in this number, reaching down to the time of the occupa the illustrations are quaint reproductions of century old scenes. An account of recently found manuscripts of Benjamin Franklin and a finely engraved portrai
the philosopher add to the interest of the number. The Strength of Materials. By Thomas Box. E. and F. N. Spon, L
35 Murray Street, New York.
The author says. in his preface, that two special ob jects have been kept in view throughout the work-tha
the rules and data shall be correct and trustworthy and that their application to practice shall be clearly understood; for which purpose every rule has been illustrated by example worked out in detail. Where theory did not bear the test of experiment, the theory was cast
aside and rules from the empirical tests substituted. I aside and rules from the empirical tests substituted. It
appears to be a very thorough and practical book and appears to be a very thorough
has a copions reference index.
A Century of Roundels, and Other Poems. By Algernon Charles Swin. New York
This is a volume of something more than 100 pages containing one roundel on each leaf-a blank page be-
tween-the paper being "hand wove," given with am-tween-the paper being "hand wove," given with am-
ple margin. Admirers of Mr. Swinburne as a lyrica writer will be gratified with this collection, as he has been very exact in modeling each page poem on a cer
tainlyrical rule, and shows all his peculiar faculty in tainlyricalrule, and shows all his peculiar faculty in the use of words to produce a rhythmical effect. Areatise on Electricity ANT Mag-
netism. By E. Mascart and J. Joubert.
Translated by E. Atkinson. Thomas De
La Rue \& Co., 110 Bunhill Row, Lon-
v
This volume is the irst of two, and is based on a
course of lectures delivered by Professors Mascart and Joubert in the College of France on the theory of elecsider this volume as an "Essay on the Mechanica sider this volume as an "Essay on the Mechanical
Theory of Electricity." It is divided into four parts: staticalelectricity; electrical currents: magnetism, and electro magnetism. The problems are fully elucidated by text, and are so arranged progressively as to lead the
student gradually from the rudiments on to a tho-
rough understanding of the theory, so far as it is treated in this volume.

Huct (huries

HIN'IS 'IO CORRESPONDENTS.
No attention will be paid 10 communcations unless
accompanied with the full name and address of the writer.
Names and addresses of correspondents will not be Wiven to inquirers.
Werenew our request that correspondents, in referring
to former answers or articles, will be lind enough to to former answers or articles, will be kind enough to
name the date of the paper and the page, or the number of the question.
Correspondents wiose inquiries do not appear after Correspondents winose inquiries do not appear after
a reasonable time should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them.
Persons desiring special information which is purely
of a personal character, and not of general interest, of a personal character, and not of general interest,
should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannol be expected to spend time and labor to obtain such information without remuneration.
Any numbers of the Scientific American Supple-
ment referred to in these columns may be had at the MENT referred to in these col
office. Price 10 cents each.
Correspondents sending samples of minerals, etc., for examination, should be careful to distinctly mark o fication.
(1) J. M. asks for a receipt for making
common gold solder. I make plain rings with gold:

common gold solder take of the composition used for
the rings 10 dwt ., pure tin 1 dwt . This will make a the rings 10 dwt ., pure tin 1 dwt . This will make
solder that will flow easier than the stock composition If it does not flow easy enough, add a little more tin If you wish the solder of exactly the same color as the and substitute z dwt. tin in place of 2 dwt. silver. metal and only suitable for very low compositions.
(2) G. W. F. asks for a receipt for mak ng a black copying ink to be used on a hektograph I am not allowed touse colored inks, but can use black. Water.... 14 parts. Glycerine.
This will ma 4 parts.
This will make a black ink suitable for use with the
hektograph. In order to make it copy adid more gly hektograph. In order to m
cerin, gum arabic, or sugar.
(3) C. P. writes: I would like to know if i is better to paint a tin roof. If so, what kind of paint
do you use? A. Use a metallic paint, such as an iron side paint.
(4) I. B. T. asks if there is any solvent for celluloid from which it will deposit unchanged o ned in hot water so as to be worked under the roll or by press? A. There is nothing in which celluloid can bedissolved and reprecipitated without its being altered
Celluloid can be softened somewhat by treatment with Celluloid can be
hot oil or water.
(5) W. A. C. asks: What is the specific ravity of ivory, and what does an exact cubic inch the weight of 1 cubic inch.
(6) W. W. S. H. asks: What is the horse power of an engine, cylinder 12 inches diameter by 20
ches stroke, making 120 revolutions, steam pressure inches stroke, making 120 revolutions, steam pressure
120 pounds? A. About 120 horse power. (7) J. A. asks: 1. How can I prepare some ane chromo pictures I have for framing without glass?
A. Use ordinary picture copal varnish. 2. Give me good varnish for fine engravings, so that they too may erally framed without glass. A. attached to cotton or linen cloth? A. They can be pasted on mounts if desired.
(8) H. S. W. asks how hollow rubber balls are made. A. Two flat (round, or pear shaped) pieces frubber of suitable size are cut, and after being ce The balls thus formed are placed in a mould and heate in a vulcanizer. The water expands and presses the
(9) J. W. H. writes: I frequently have
small castings of iron which I would like to make small castings of iron which I would like to make
malleable, or by some simple process tonghen them malleable, or by some simple process tonghen them.
Can you help me? A. If the castings are hard or chilled upon the edges, they can be annealed by packing in a cast iron or sheet iron box or old crucible, with fine so that the air does not get to the castings, heat the whole to a low red heat and keep at that temperature for one, two, or three hours, according to the size of the
pieces of castings to be annealed. Then withdraw from the fire and let the whole cool gradually; unpack when nearly cold. The manufacture of regular mallea-
ble castings cannot readily be conducted on a very small scale.
(10) C. S. F. writes: 1. It has been stated to me that an engine would not exert the same tractive
force to start a load as it would after i. started,that a loco motive would not exert as many pounds of force in the coupling link when standing with the steam turned on as after it had got in motion. A. It will do so unless the drivers slip. 2. That a one horse power engine would not start a street car that one horse would start
How is it? How many pounds of tractive force do quire them to draw the car throuch the trip whet quire them to draw the car through the trip whethe
they are weak or strong, so the labor required of eac must be precisely the same. A. The tractive force of
the engine is not exerted in the same way as with a horse. The horse power of an engine is based on what
a horse can do for eight hours continuously and not what he can do for a jerk; for an instantaneous pull a
horse could probably do three times as much as on continuous work.
(11) J. B. asks: What is the name of the stone used in the first cut in concaving razors? A
The razorgrinder's first cut stone is called the "Wick ersly stone." It comes from Wickersly, Eng.
(12) S. S. B. asks whether Babbitt metal is now more generally used in the main journals of en-
gines than brass. A. Yes, taking all classes of engines. gines than brass. A. Yes, taking all classes of engines.
2. I run an engine 16 x 28 with a 7 inch shaft, 80 revolutions, and 70 pounds pressure; the main pillow block has a cast iron cap (no Babbitt) with cast iron side
pieces filler with Babbitt places in small rectangles, pieces filled with Babbitt places in small rectangles,
bottom of journal all Babbitt. Is this a better journal than one containing brasses side and bottom? A. No; good b
best.
(13) J. G. writes: We are constructing a yacht as follows: Two cigar shaped barrels, placed side
by side, will constitute the hull. Each will be 20 feet by side, will constitute the hull. Each will be 20 feet supplemented with a pointed piece of solid wood. The beam is 10 feet. What will it carry, and how much will will displace, as an elliptical spindle, 0.91 ton, and as parabolic spindle 0.96 ton.
(14) J. L. G. asks: Could an arrangement be made on the principle of the injector that would fill compressed with air and furnish air enough to run possible to make such au arrangement? A. It is possible to make a water injector that would compress air
to a moderate pressure, but would probably cost more than to use the water directly for power. Compressed air is now furnished by hot air engines for use at a
distance. Water blowers are used in Europe for fur naces where great pressure is not required. They are sing gravity or the natural descent of water for the nitial power
(15) J. B. H. writes: I had a silver headed cane; in order to reduce the size of it I put it in nitr cid until it was about one-half the size. Now, wil
you please tell me what to do, so as to get the silve which was taken off. There are about three-quarters of n ounce of the silver dissolved in 4 ounces of acid? A Precipitate the silver with dilute hydrochloric acid o sodium chloride, and fuse the resulting precipitate with kaline carbonate ina sand crucible.
(16) L. F. M. M. asks whether milk, fresh or boiled, has any constipating effect. A. The effect of
milk upon the human system depends largely upon the milk upon the human system depends largely upon the
individual peculiarities of the person. Its general individual peculiarities of the person. Its genera effect is a constipating one,brought about by the casein
contained in it, which is not easily digested, and also by the production of a large amount of mucus, wuich has a similar effect.
(17) C. E. H. writes: I am building a new rick house, and should paint one side to protect it nd paint by putting on one coat of crude petroleum and another coat of oil paint. Will this do as well as the ordinary way of two coats of paint? A. The use of petroleum is not to be recommended. It is difficult on drying, and a coat of paint cannot be satisfactarily
put over it. It is best to use two coats of paint. put over it. It is best to use two coats of paint.
(18) D. Writes: I find in No. 22, Jun d, on inquiry for method of drilling glass. "Glass ca din by using a saturated solution of gum camphor in
alcohol and equal part spirits turpentine; keep this alcohol and equal part spirits turpentine; keep this
about the cutting edge of drill, and in filing glass keep the file wet with it" Can you give me a formula fo white or nearly white varnish for maps on common
drawing paper? A. Dissolve shellac by heat in 8 part of water and 1 of pearlash. Precipitate by chlorine and dissolve ia rectified spirit. The following is re ommended for drawings: Dextrine 3 parts, alcoho ne-kalfpart, water 2 parts. The drawings should be r rice boiled and strained through a cloth
(19) W. D. G. writes: I read of a " gauge cock and low water alarm" which depends for it stant at 212° while that of the steam is higher. The
 always supposed, and do still, that the water and steam in a boiler both attained the same degree of heat; wil you please inform me through yomr Notes and Querie which is correct? A. The water and steam inside th boiler are nearly of the same temperature. The water in
the alarm part of the nuge cock has little or no circulation from the boiler, and remains cool until low wate
(20) C. H. F.-1. We would pri recomend you to risk strengthening your boiler by patch mend you to risk strengthening your boiler by patch
ing up with braces. Get a new one of copper made by ing up with braces. Get a new one of copper made by
a coppersmith, No. 16 cepper, brazed. 2. A good strong metal for a small engine may be made with an etrong
alloy of
zinc.
(21) A. H.-The method of making rubber stamps is described as follows: Have a vulcanizing
apparatus with a thermometer and a lamp under iu apparatus with a thermometer and a lamp under iu,
such as dentists use; have an iron printing frame, in such as dentists use; have an iron printing frame, in
which you lock up the type for allthe names which which you lock up the type for allthe names which
you wish to reproduce in rubber, and of such a size that the plaster mould made from it can be placed inside the vulcanizer. This mould is made like an ordinary stereotype mould, by first oiling the type and then pouring the plaster over it; when set, take it off care-
fully, and do not let it dry, but proceed at once by plac. fully, and do not let it dry, but proceed at once by plac-
ing on top of the mould a piece of sheet rubber (vuling on top of the mould a piece of sheet rubber (vul-
canized rubber). Then have two iron plates, one for canized rubber). Then have two iron plates, one for
placing on top of the sheet rubber and one below the placing on top of the sheet rubber and one below the pressed together and squeeze the rubber on the mould. Back up the rubber with a few sheets of paper. so as to prevent it from sticking at the back of the iron plate. After screwing down sufficiently immerse the mould and rubber in the water in the vulcanizer, screw the cap on, and heat to 300° Fah., then let it cool, open the vul-
canizer, take out the mould and rubber, and remove canizer, take out the mould and rubber, and remove
the rubber carefully from the mould. This will be easily done if you have put the mould while still wet in the vulcanizer. Cut up the rubber so as to separate
the various names, glue them to handles, and your rubthe various names, glue them
ber hand stamps are finished.
(22) A. W. B. writes: I have found it very difficult to make a perfect matrix for rubber stamps. What is the best material to use? Have used plaster, pure, but it is apt to break the fine lines. Is anything
used to toughen it? What can be used to make the used to toughen it? What can be used to make the
type leave the plaster freely? Is pure rubber used, and type leave the plaster freely? Is pure rubber used, and
if so, how? I have dissolved it in bisulphide of carbon, shape, as I think the in getting it isher than bisulphide, so that it does not seem to enter into the lower parts of the letters. I mean that when it hardens it has formed a sort of thick skin over the monld, but seems to rise away from the lower parts of the letters. did not know but some composition was used that could be melted and poured in hot. A. The plaster
mould is best made by taking the very finest of plaster of Paris and sprinkling it into water, and stirring until the mixture is of the consistency of thick cream. the mould or type is oiled with a little sweet oil or boiled linseed oil, the type can be readily removed.
Vulcanizéd rubber is used. See the process as given Vulcanizéd rubber is used. See the process as given
in detail elsewhere in this number. It must be underin detail elsewhere in this number. It must be under-
stood that experience or proper manipulation is essenstood that experience or proper manipulation is essen-
tial to good results. See page 3794, ScIENTIFIC AmERIdpplement, No. 251
(23) E. C. asks: What is the mixture of metal for the manufacture of chilled cast iron rollers
used in roller mills; alsothe method of chilling them? used in roller mills; alsothe method of chilling them?
A. Chilled rolls are generally made from "charcoal pig"No. 3, but some roll makers claim to have some
special combinations known to themselves only. The
chilling is done by casting the metal in contact with an chilling is d
iron mould
(24) C. H. S. asks: What is "rectified" whisky? Wherein does it differ from "distilled, is the more wholesome? A. Rectified whi ky is gene rally passed over animal charcoal, while distilled whisky does not pass through this process. It is sim ply distilled directly from the mash. The distilled whisky is apt to be the cheapest, and as regard whole
somesess it is entirely dependent upon the quality.
(25) A. J. B. writes: How can I melt rub ber? A. Heat the rubber by steam or over a water bath till the rubber melts,and let it run into hot water, where
it will collect at the bottom of the vessel, while the it will collect at the bottom of the
vapor will prevent it from burning.
(26) I. N. G. writes: I have a private telephone line half a mile in length, using three of Bell's hand telephones without microphone or battery. notice that in time of lightning it passes in on the
wire sufficient to ring the bells at each station. I supposed it was owing to the heavy magnets in the signal bells, and I arranged a simple "cut out," by which the bells and telephone might be disconnected entirely in a moment, and thought that would leave the wire fre from any attraction for lightning, but when all instruments are off, the lightning during rain storms will snap and crack from the ends of the wire inside a this, and is there any special danger orway to avoid it? A. You should provide a lightning arrester of approved form for each end of your telephone line. The magnets have little or nothing to do with the effects
you mention. It is advisable to keep away from the you mention. It is advisable to keep
telephone during a near thunderstorm.
(27) F. M. S. asks: I have a graphoscope lens 7 inches diameter, 40 inches focus; what sized lens would I require for eyepiece to make an achromatic
telescope, and what should be the length of tube? A. Supposing that your graphoscopic lens is a single crown of good quality and accurate finish, you will need a
concave fint lens about 3 nches diameter and 30 inches focus, placed about 25 inches from the object glass; this distance must be ascertained by trial, as the effect of the flint lens depends upon its dispersive power. The focus should be at from 50 to 60 inches. For the eyepiece use
the Huyghens form, field glass 3 inches focus, plano the Huyghens form, field glass 3 inches focus, plano
(28) O. C. L. asks (1) how I can cheaply prepare the porous cells used in batteries? A. No porous cell is of much account unless made or clay and properly baked. You can purchase porous cells for Whalch would oive the best current for the electric light a chromic acid battery of M. Trguve's solntion and same construction, or one using porous cells, same size carbons and a like solution in porous cells? A. The purpose. $\overline{3}$. Taking the better one of the above batteries, how many would it require for one and two
lights respectively, carbons $9 x 6 \times 1 / 4$? Would the effect for lighting purposes be increased by dividing the same amount of material and making a greater number of cells? A. All this depends on the kind of light yon
propose to make. A small incandescent light can be run with 4 or 5 such cells.
(29) J. A. C. asks: What size of reservoir at an elevation of 75 feet will produce a 6 horse power at a distance of 600 feet for twenty-four hours, and what
size pipe to convey the water? A. You would require reservoir 85 feet square, 16 feet deep, capahle of hold $\operatorname{ing} 2,250$ cubic feet of water, which will furnish you with 6 horse power for twenty-four hours withont adai inches in diameter with 75 feet fall
(30) A. M. I. asks: Can you give me in structions how tomake the simplest galvanic battery
adapted for medical use? A. See article on galvanic batteries, Scientific American Supplement, Nos 157 158 , and 159 , for complete description of all sorts of bat
(31) E. M. B. asks what is the best non-con ducting covering for steam pipes. A. The following table gives the results of a series of experiments by
Mr. C. E. Emery, for the New York Steam Company

Material
Hair felt.
Mineral wo
Mineral wool No. 2
Mineral wool No. 2 and tar
Saw dust. .
Mineral wo
Charcoal.
Pine wo
Loam...
Gas works lime, slaked
A sbestos...
Coal ashes.
Coal ashes
Air space, $2^{\prime \prime}$ deep..
(32) L. M. K. asks for a receipt for a cheap coating to put on cast iron that has to be submerged in water, that it may not rust or make the water taste taining sulphur water it rusts very badly and spoils the water. A. There is provally nothing better than red oxide of iron or Prince's metallic paint and good boiled linseed oil, for iron work in water. Dry in an oven so as to make it hard, or a coat of good japan varnish stands well if baked hard. It is used on what is called enameled pipes for water. If the water has much sul-
phur, it will be dificult to thoroughly protect the iron.
(33) W. asks: Will you kindly inform me through your paper how I can clean the willow work on the baby carriages now so commonly used. After they have been used a short time they get sun burat or soiled by the exposure to weather. A. If you are certain
the soiling is not due to dirt from the atmosphere, etc. settling on the wood, then we recommend you to try some bleaching process. Either by using a chlorine
k!each or burning sulphur in a closed chamber, or per-
haps by using hydrogen peroxide (Soientific AmeriOAN SUPPIEMENT No. 339). The size of the carriages is an objection, but we think
process will be a bleaching one.
(34) E. T. S. writes: Please inform me through your paper where I can find a full description of the manufacture of turpentine and resin, from sa,
dust saw dust and refuse by a sweating process yielding 14 gallons of spirit, 3 to 4 gallons of resin and a quantity of tar per cord. The spirits obtained in this manner possess a different odor from those produced by distil lation. The article on tarpentine in Spons' Encyclo pedia of the Industrial Arts, page 1686 et seq, will give some use
abroad.
Minerals, etc.-Specimens have been re cived from the following correspondents, and examined, with the results stated:
C. P. C.-The samples sent are not at all character appear to be as follows: No. 1 is a quartz minetal containing some flecks of black mica. No. 2 is a hornblendic mineral with some pyroxine. No. 3. Hornblende with traces of pyrite. No. 4 is a siliclous conglome schist or slate No 7 is a mixture of different silicates probably felspar and hornblende. No. 8 is a piece of hornblendic rock.-J. S.-The sample is pyrite (iron sulphide), a mineral which usually carries gold, the amount of which can only be determined by a fire assay.-W. M.-This sample is a little below what is
sold as second quality. Its value is dependent upon sold as second quality. Its value is dependent upon the supply. When the first quality is hard to procure
this variety will bring within 25 per cent of the value of the better varieties It sells at from 10 cents to $\$ 2$ according to the size of the sheets.-J. R. W.-The specimen is magnetite (iron oxide) and is a valuable ore of iron. The crystals resemble the ore which is mined at Port Henry, N. Y.-H. S.-No. 1 is a variety of horn blende called pearl stone. No. 2 is a silicious clay, sort of conglomerate. It may carry metal, and therefore
recommend you to have it assayed. No. 3. Yeilow clay, too hard to grind cheap enough to compete with other varieties.-L. J.-The mineral is galena (lead sul phide). It may carry silver. This must be determined by assay.-W. C.-From a superficial examination of the sample, we are forced to conclude that it is of in-
ferior value.-F. C. Y.-The sample is a sulphide of iron, probably marcasite; it may carry gold. An assay would determine this.-J. D. M.--1 D.-The sample is pyrite (iron sulphide).

COMMUNICATIONS RECEIVED.
On Steam Boiler Furnaces. By J. M.
On Microscopes. By .
On Microscopes. By S. R.

INDEX OF INVENTIONS

For which Letters Patent of the United June 19, 1883, AND EACH BEARING ThATC DATE. [See note at end of list about copies of these patents.] Advertising card, H. R. Grace.
Alarm. See 'Telegraph alarm. Amalgam, retorting, C. A. Stetefeldt....
Ax and tool handle guard, G. P. Murrill . 279,866 Bag. See Paper ba
Bale bands
Atkins

Bars, machine H. Wells

Battery. See Galvanic battery. tric battery.
Bearing, anti-fr
Bed spring , Bee hive, J. H. Burrage
Belt, electro galvanic, G. E. Pal......
Belt fastener, J. B. Conrad
Berths, governor for swing. W. Wells Berths, governor for swing,
Blind, Venetian, J. S. Smith. Block. See Building block. Pulley block
Board. See Telephone Board. See Telephone swit.
Boat. See Dumping boat. Boat. Bnee socket, D. True (r)
Bobbin spindle and support t Bobbin spindle and support
Boiler. See Coffee boiler. Boiler. See Coffee boiler.
Book bolder, I. S. Mudgett.
Boot or shoe counters,
Coté for forming,
Boot or shoe heel protector, H. K. K. Forbis
Bottle and jar stopper, N. Tho .
Bottle and jar stopper, N. Thompson
Bottle filling apparatus, J. D. Roberts
Bottle eilling machine, E. D. Lloyd
Bor
Bottle stopper, E. L. Lloyd........
Bottle stopper, E. L. Lloyd..........................
Box. See Lunch box. Packing box. Paper box Pepper
fing box
Bracelet, Atwood \& Lester.
Brake. See Car hand brake. Wagon brake.
Bran or flour packer, H. G. Hall Bran or flour packer, H. G. Eal
Bran packer, J. E. Belt
Breastpin, ornamental. J. Hoagland.
Brick, metallic pallet for, J. M. Blair
Bride rosette. G. Walker.........................
Brushes. machine for milling bone blanks for
Building block or brick, J. L. Smithmeyer. Button fastener. F. D. Ford.
Button, separable, T. Jarvi.
Button, separable, D. Jarvis.................
Cake, device for ornamenting, A. J. Fish..
Coline Cake, device for ornamenting, A. J. Fish..........
Calipers, adjusting mechanism for, J. J. Byrne..

Can, M. T. Barrows
 Can, J. A. Frey....

Cannon, breech loading, A. Dickerman
Car coupling, W. H. Heaver
Couph, A. Huth..
Car coupling, C. A. Huth...
Car coupling, W. H. Lucan..
Car coupling, D. C. McCallum
Car coupling, J F. Pryor
Car coupling, J F. Pryor...
Car coupling, B. F. Teal....
Car coupling. S. G. A. Urqu
Car coupling, J. D. Vance.
Car door lock. J. H. Fisher
Car draft attachmer
Car draft attachment, str
Car hand brake. T. Hunt
Car, railway. J. Parkinson

Car signal, revolving, scho
Car wheel chill, J. N. Barr Car wheel chill, J. N. Barr...................... 2799,52
Cars, machine for unloading platform, G . P. Merrill 279,578 Cars, machine for unloading railway, A. Hall..... 279,868 Carriage iron, J. B. Birdsell.
Carrier. See Cash carrier. Coal..........
Rein carrier. Shaft carrier.

Case. See Sewing machine Cash carrier, G. A. Badger...
 ase. Stamp case.

 Casket rest, J. Carroll......Chain cutter, F.L. Magaw............................... 2
Chain or belt, driving, L. H. Goodwin............
Chair. See Rocking chair.
Chair. See Rocking chair.
Clamp. See Flanged clamp. Floor clamp. Sew-
ing macbine attachment
ing machine attachment clamp.
Cleaner. See Cotton gin clea
Clock, calendar, J. E. Young
........
279,501
279,850
troyd...................................... Coal crushing rone
Coal hod, c. Hoff...
Cock, ball, J. Zane.
Cock for engines, cylinder, J. B. Haight
cock valve, water, F. W. Kelly
coffee boiler, H. \& J. Kassen

Coking coal dust for
J. W. Pittinos..
Collar fastener, W. W. Hayton
Corking machine, F. G. Riley
Corn from the cob, machine for cutting green,
A. Smith

Cotton gin cle
Crowson.
Cotton picking

Crane, traveling. F. K. Kem pson..............
Cream, apparatus for souring, Madsen \& Nielsen.
Curtain fixture. W. P. Putnam.. 279,801, Curtain ixture, W. P. A.
Curtain ring,D. D. Nugen
Cushion. See Pincushion.
r.tter. See Chain cutter. Feed cutter. Hog nose cutter.
Damper forfurn
Damper for furnace or stove pipes, N. A. Boynton Denpers, apparatus for opening, J.H. Haldeman 279.867 Disinfecting apparatus, Hadden \& Wood..........
Disintegrating grain, etc., apparatus for, F. TagDisinteg
gart.

Door hanger, J. D. Wilber
Dredging and excavating machine, R. E. E. Rose.......
Dredging machine, elevator, J. Kennedy..........
Drier. See Fruit drier.
Drilling machine J
Drilling machine, J. C. Smith.
Driving mechanisms, gallows frame for portable,
 Dumping boat or scow. J. W.
Dust pan, W. M. Valentine..
Dye vat, machine for handling yarn in the, R. L.
Electric arc lighting system. R. J. Sheehy................................8982
Electric circuit cut out, A. L. Bogart............ 279,634 Electric machines, combined current indicator
and commutator adjuster for dynamo, R. J.
and commutator adjuster for dynamo, R.J.
Sheehy..
Electrical conductors, un
ing. J. E Hamilton.
Electrical instrument protector,M.D. \& T. A Con
Electrical switch board plug, E. Flint, Jr..............................2799513
Elevator. See Hay elevator
Elevator, S. W. Hoag, Sr.
End gate, D. Arnold..............................
Engine. See Gas engine. Pumping engine.
Engine. See Gas engine.
Envelope, P. L. Cuskley.
Fan wheel, W. Schmolz.
Fan whee, N . Schmolz.
Feed cutter, H. A. Buck.
Feed waterheat

Fire escape, S. J. Anderson.

Fire escape, H. Greene...
Fire escape, G. H. Hume..
Fire escape, J. Letzkus...
Fire escape, P. P. Ripley
Fire escape, E. Wilson...
Fireproof garment. J. Smith.
Fish trap, C. Fisher .
Fish trap, C. Fisher
Flanged clamp, E.
Flask. See Dental flask.
Floor clamp. S Raymond
Flour packer. C. F. Walters
Fly shep, J. F. Lockwood....
P. Kilcullen
Fruit drier, A. Crawford...
Fruit drier, J. M T
Fruit drier, J. M. Teasda
Fruit jar, H. Cain.....
Funnel,
Galvanic battery, Kauffer \& Se
Gas burner check, W. G. Pugh.
Gas engine, H. S. Maxim...........................
gite. See End gate. Hatch gate. Hatchw
gate. Railway stock gate. Safety gate.
Gate, B. Smith.

Grate, automatic adjustable, t.A. Knox...........
Grinding mill. U. H. Odell..............
Guard. See Railway safety guard. Spinning
uard. See Railway sat
frame thread guard.
Gun. air, W. T. Chamberlain
Gun stock, S. N. Stevens
Guns and projectiles, charging, w. T. Chamber-
lain...........................
Hanger. See Door hanger. Shaft hanger.
Harness loop, J. S. Ginger ...
Harness loop. . F. G. Stender
Harrow, J Y. P.
Harros, J. Y. Payton.
Harrow, wheel, T. A. Sweet
Harvester rake trip mechanism, w. F. Burdit
Hat. J. P. Beatty..................................
Hat or cap lining, c. Simis.
Hat
Hat scalding and felting machine
Hat sizing machine, A
Hatter's tank, R. Drake
Hatch, elevator, W. Stevens..
Hatch gate. elevator, w. Ste
Hatch gate. elevator, w. Steven
Hatchway gate, w. Ste
tehway gate, w. Stevens...........
Hand cotton press, S. Donaldson
279.538
279,841

279,540
279,561
2799,540

Hay elevator and carrier, F. B. Strickler
Hay rake and loader, J.'1.' Hart.....
Heater. See Feed water heater.
Heating and lighting, hydrocarbon apparatus for F. H. Holmes.
Hinge, H. C. Lewis

279766
2799755
20957
Hinge, adjustable, M. Camp..7985
Hog nose cutter, W. B. Lyon........ 297979
Hog nose cutter, W. B. Lyon....................... 299,
Hoisting apparatus, T. W. Capen.... 29,70
Holder. See Book holder. Parcel holder. Sad
iron holaer.
Horse power, W. B. Ingersoll....... 279,764
Horseshoe, adjustable, P. Hicks................ 279,758
Horseshoe, adjustabie, P. Hicks................... 2797775
Hub for couplings or pulleys, R. Whitehill...... 279,62
Hub, vehicle wheel, M. Tidd......................... 2i9,992
Ice, apparatus for melting anchor, A. H. Martine. 2799901
Ice scraper L. Haliowell.
Ice scraper, L. Haliowell.............................. 27
 . 2799,653
$.279,532$
$.10,344$
Insulator, electrical, D. M. Steward (r)....
Iron. Carriage iron. Vehicle chafe iron.
Iron in the Bessemer basic process, obtaining
purifled, J. Reese.................................279,596
Jack. See Lifting jack. Screw jack.
Knife. See Mincing knife. Pocket knife.
Knife. See Mincing knife. Pocket knife.
Knife grinder and sharpener, horizontal, M. o.
Millar....................................78,
Milar.. 279,88
Lempster \& $\&$ Hortape, combined fireman's.
De................. 279,545
Ladder, flexible, V. Cravens................................... 2799545
Lamp; electric arc, H. Ansot 279.893
279.517

Lamp, electric arc, H. Ansot 279.51
Lamp, electric arc, R. J. Sheehy.................. 279824
Lmp, incandescent, G. Richter.... 279,811
Lamp, incandescent, G. Richter..798811
Lathing, metal, A. R. Hancock........................... 27977974
Leather spitting machine, McDonald \& Beggs..
Lifting jack, T. D. Sloat..
279.6718
279,831

Lock. See Car door lock. Satchel lock.
Log canter, G. Mee.

Loom picker staff check, J. S. Richardson......... 279,597
Lounges, combined leg and clasp for folding, F.
E Campbell...................... 279.53
E. Campbell... 279.536
Lubricator, C. F. Bowman

Lubricator, W. L. Parker............................. 279.59
Mandrel for bending tubes, E. S. Leaycraft....... 279.57
Mechanical movement. R. Larter
2................
279,571
Mechanical movement, o. c. White......................279,897
Mill. See Grinding mill. Roller grain mill. Saw
mill.
Mincing knife, C. Gilberts. 279,64
Moulder's jointless plate, W. s. Withers............. 297976.627
Motion, device for converting, W. T. Kellogg..... 279,651
Motion, device for converting, W. T. Kellogg..... 249,05
Motor. See Spring motor.
Motor. See Spring motor.
Music leaf turner, A. T. \& D. T. Fox. 279,737
Naildriving machine, e. Merritt.............................279,579
Napkin ring and menu holder, F. Ratcliff....... 279,805
Napkin ring and menu holder, F. Ratcliff.
Necktie fastener, G. w. Bowers...........
Needle for fancy work, J. S. Blinn
Oil, manufacture of linseed, H. A. Davidson.
Oii, manufacture of linseed.
Ordnance, G. A. Cassagnes.
Ore separator, dry, M. B. Dodge
Ore separator, wet, M. B. Dodge
Ore separator, wet, M. B. Dodge.
Oyster dredge, E. Paterson......

Paddle wheel. feathering, L. C. Fogg................ 2799,65
Pan. See Dust pan.
Paper ba, J. Ponderdonk................ 279.556 to to
Paper box, D. Heston.........
Paper box, H ,
.279 .589 to $2759, .599$
Paper pulp, etc., mould fortmanufacturing stop-
pers and bungs from,
Paper weight, E. F. Pflueger........................
Elliott.......................ays in stores, G. R.
Pavement foundation, Bryant \& Tostevin.........................7979701
Pepper and salt box and napkin ring, combined,
F. Ratcliff
F. Ratcliff.......................................
otographing changing or moving objects.

Pincushion, F. Ratcliff.............................. 2799800
Pipe coupling, E.S. Leaycraft................. 279,57
Plaiting and scalloping device, combined, J. s.
Plane, bench, , R. R. \& A. E. Rust 2799885
Planter check rower, corn. . . D. Benner........ 279992
Planter check rower, corn, F. B. Kendall.......... 279.760

Plow and pulverizer, combined, C. E. Sackett. ... 279,818
Plow, gang, W. Kimmel
Plow, gang, W. Kimmel.............................
Pneumatic tubes, delivery switch for, E. S. Leay-
craft....................................
craft....................... 27
Pole, vehicle, C. Comstock.....779,710
Pot and kettle, D. Snyder 27971
ower from a central station, system for trans-
mitting, J. L. Boone 279,69
Press. See Hay and cotton press. Power press.
Projectie, air, w. T. Chamberlain.............. 279,533
Protect. See Boot or shoe heel protector. Elec-
Protector. See Boot or shoe heel protector. Ele.....
trical instrument protector. Link protect
Pulley block, T. R. Ferrall...................279.553,
Pulp and fiber, machine for reducing wood to, G. 279,5511
29981
Pump, M. E. Mo...............
Pump piston, A. S. Parke.
Pumping engine, J. Waters
Quilting machine, A. Beck............... 2799,63
Radiating apparatus, steam and water he
Cresin
Radiator for furnace................................... 27972
Rail spike, H. W. Fowler.............................. ${ }^{279,736}$
Railway fros, etc.. safety guard for, J. F. Webb. 279,849
Railway safety guard. B. Briody..
Railway stock gate, E.
Railway time recorder, Dean \& Whiting......
Rake. See Hay rake.
Razor.strop, J. R. Torrey279.615, 279,6.
Recorder. See Railway time recorder.
Rein carrier, check, L. E. Champlain............. 279,70
Ring. See Curtain ring. Napkin ring.
Rock......... 279,70
Rocking chair chir. . Niemiler...................... 279.87
27. A. Stiles. 2798
Rocking chair. G. A. Stiles.
Roller. See Coal crushing roller.
Roller. grain mill. O. W. Tr
Sad iron holder, J. Jo Neil
Safety gate, A. B. Flach (r)
Sand band, White
Sand band, White \& Hitchcock
Sash balance. J. Bavier
Sash fastener, S. R. Harrah.

MESTON OYNAMO-ELECTRIC MACHINX

Electroplating and electrotyping, refer to all the principal Stove Manufacturers, Nicke
and Silver Platers in the country. Over 1,500 now in use Are also manufacturers of l'ure Nickel Anodes, Nickel Salts, Polishing Compositions of all kinds,
and every variety of supplies for Nickel, Silver, and and every variety of supplies for Nickel, Silver, and
Gold Plating; also, Bronze and Brass Solutions. Com-

HANSON VANWINKLE \& Co. SOLE AGENTS NEWARK, N. J.

DRAEENTV PROOVF

Sample and Circular Free by mail

U. S. MINERAL WOOL CO., 22 Courtlandt St, M. Y WATCHMAKERS.

ERICSSON'S New Caloric Pumping Engine, Dwellings © Country Seats

 WANTED-A First-class Mechanical Engio

PATENTS.

MESSRS. MUNN \& CO., in connection with the pub cation of the Scientific American, continue to ex
mine Improvements, and to act as Solicitors of Patent rty-eight years experience, and now have unequaled facilities fo the preparation of Patent Drawings, Specifications, an he prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs. Copyrights for Books. Labels, Reissues, Assignments, nd Reports on Infringements of Patents All busines intrusted to them is done with special care and prompt ness, on very reasonable terms.
A pamphlet sent free of charge, on application, con taining fill information about Patents and how to pro cure them; directions concerning Labels, Copyrights, Designs, Patents, Appeals, Reissues, Infringements, As We also send. free of charge, a Synopsis of Foreign
tents, etc. Patent Laws, showing the cost and method of securing patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents, 26t Broadway, New York. BRANCH OFFICE - Corner of F and 7th Streets
Washinglon, D. C.

CTVIGEECGANCAL, AND MINNGEEN-

Twenty Years with the Indicator.

James River Timprovempnt.- S.
U. S: ENGINEER OFFTCN, , \% Saratoga Street,

告THE RIDER HOT AIR COMPRESSION Pumping Engine, For city and country residences where
it is is quired to raisea supply of water.
Simple, Economical, Effective.
Sind No skill required to run it. We can
refer to our customers of eight ye:urs
s. CAMMEYER \& SAYER,

UNTITMERSATI

 $\stackrel{\text { © }}{\boldsymbol{E}} \quad 10$ Barclay St., N. Y. City.

Our 10-HGorss Spark-Arresting Threshing

SPEAKING TELEPHONES.

 the american bela telepiove conipany W. H. Forines, W.R. Drivyr, Theo. N. VAIL,

ROOT'S NEW RON BLOWER
 IRON REVOLVERS, PERFECTLY BALANCEL, P. H. \& F. M. ROOTS, Manufacturers, © CONNERSVILLE, IND.

 SEND FOR PRICED CATA

WITHIRRBY,RUGG \& RICHARDSON Manufacturers
of Patent Wod Working Machinery of every

SPECIAL NOTICE.

 A POCKET MANUAL FOR ENGINEERS. tol
 A pocket manual of useful information for mechanicil
ensineers. steam users , and mechanics containin 224

NEW HAVEN MANUFACTURINGCO.
MAGHINE TOOLS
Lathes, Planers, Drills, Shapers, etc.
uLUSTRATED CA'TALOGUE ON APPLICATION. Remington Standard Type-Writer.
 WYCKOFF, SEAMANS \& BENEDICT, 281 and 283 Broadway, New York

Bailicimo R
FIRE-PLAOE HEATERS

Mantitimise Mid
SENDTOLONDON,BERPYEORTON THEBESTBANDSAWBLADE RUPTURE
 MANHOOD!

A Bonk for Every Man!
Young, Middle-Aged, and Old.

동urtituments.

PATENT DRILL BRACE.

 not needed, for drillinge removed in one second when
The Bit Brace is made of steel, highly polished and
heavily nickel-plated with heavily nickel-plated, with a coocobola handle and
lignumvite head. It has sto sets of forged stel jaws,
which will hold

 to revolve the sweep.
Many attempts have been made to imitate the out-
side appearante of our Barber Improved Braces, but side appearance of our Barber Impo imitate the out-
no one dares to use our Patent $J_{\text {aws, }}$ as seaces, but cut, and no brace is good withoutthem. Ween uaranttee
these tools to be perfect in every respect, and that they
 Millers Falls Cor 74 Chambers St., New York.

COLUMBIA BICYCLES AND TRICYCLES.

HOTOGRAPHIC OUTFITS for A mateur

The " MONITOR."" $\begin{gathered}\text { Best Roilier Feeder } \\ \text { in the world. }\end{gathered}$

yet obtained. Does
not
Sudeneak
Sunder Chan
nit
Also liatent
EJECTORS
Water Elevitors,

Steam Fitters' \& Plumbers' Supplies. RUE'S LITTLLE GIANT INJECTOR JOHN S. URQUHART, Successor to
ALBERT BRIDGES, 46 Cortlandt Street, New York.

HW.JOHISS

 AS8EMTOS
 ASBESTOS BUIILDING FELT
H. W. JOHNS M'F'G CO. 87 Maiden Lane, New Y ork,
 HREPROER COATNNNS,
Descriptive price lists End samples free.

Pyrometers.

Beprint YourOm
Y)

RUBBER BELTING, PACKING, HOSE. Steam Packing, Chatis Caskets and Rings, Piston Packing, Leading Hose, Steam Hose,

Suction Hose, Pump Valves, Ball Valves,

N PATENT RED STRIP RUBBER BELTINC.

 Car Springs, Wagon Springs, Wringer Rolls,Grain Drilitubes, arain Drill Tubes,
Corrugated Rub ber Matting
量
ROOFINC.
ROqWa=
 SOUTHWABK FOUNDRY \& NACHIVE COMIPANY
430 Washington Avenue, Philadelphia, Engineers \& Machinists Blowing Engines and hydrauic Machiuery.
Sole makersof the
Porter-Allen Automatic (Gut-uff Steam Eugine

Double Screw, Parallel, Leg Vises.
 NOISELESS ROTARY FANS.

CORNELL UNIVERSITY
MECHANICAL ENGINEERINC,
EI.ECTRICAL ENGINEERING,
CIVIL ENGINEERING, CIVIL ENGINEERING,
AND ARCHITECTURE ENTRANCE EXAMINATIONS BEGIN AT
A.M. JUNE 18 and SEPT. $18,18 \times 3$. For the UNIVERSSTY REGISTERR containing full state
pents regarding requirements for admission courses of study, degrees. honors, expenses, free scholarships THE PRESIDENT Of CORNEUI UNIVEISITY, Ithaca, N.Y

MREROPE

 Address JOHN A. ROEBLING'S SONS, Manufactur res trenton, Nope for convering power, long distancessend for circular.

patent quick SHAPERS Can be Changed while in Motion.

 I A Rikils -COURLINS ENGINE

For cleaning Boiler Tubes. Saves its cost every time
s used ; indorsed by best Engineers.
Asbestos Materials. Fiber. Millboard,

Worling Models

WILEY \& RUSSELL MANUF'G CO.,

Lightning Screw Plates and Bolt Cutters

Penasylvania Agricultural Works, York, Pa

HARTFORD
STEAM BOILER
Inspection \& Insurance COMPANY
N. B. FRANKLIN,V. Pres't. J. II. Malde, Pres't. J. B. PILRCLS. Sec'y.

F. Brown's Patent
FRICTION CLUTCH.
$\underset{\substack{\text { Send for IILustrated catae } \\ \text { logue and Discount Sheet }}}{\text { Chen }}$

A. \& F. BROWN, 43 Park Place, New York.

Sulisp puli juble

Srientific American

FOIR 1883.

The Most Popular Scientific Paper in the World

This widely circulated and splendidy yllustrated paper is published weekly. Every number contains six een pages of useful information, and a large number o original engravings of new inventions and discoveries,
representing Engineering Works, Steam Machinery ew Inventions, Novelties in Mechanics, Manufacture Chemistry, Electricity, Telegraphy, Photography, Archi All , Agriculture, Horticulture, Natural History, etc. American a popular resume of the best scientific in ormation of the day; and it is the aim of the publishers to present it in an attractive form, avoiding as much as his journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in Terms of Subsere it circulates. TIFIT AMERICAN will be sent fore one year -52 numberspostage prepaid, to any subscriber in the United States
or Canada, on receipt of three dollars and twenty cents by the publishers; six months, $\$ 1.60$; three months, $\$ 1.00$.
CAN CAN be supplied gratis for every clubof five subscriber
at $\$ 3.20$ each; additional copies at same proportionat
rate.
One copy of the Scientific Amirican and one cop of the Scientific American Supplenent will be sent for one year, postage prepaid, to any subseriber in the
United States or Canada, on receipt of seven dollars by the publishers.
The safest way to remit is by Postal Order, Draft, or
Express. Money carefully play Express. Money carefully placed inside of envelopes securely sealed, and cerrectly addressed, seldom goe
astray, but is at the sender's risk. Address all letter astray, but is at the sender's risk. Address all letter

MIUNTIT \& CO
261 Broadway, New York. To Joreign Subscribers.-Under the facilities of
the Postal Union. the ScIENTIFIC AMERICAN is now sent the Postal Union. the Scientific Americal is now sent scribers in Great Rritain. India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany British colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States ; Japan, Brazil, Mexíco, and all States of Central and South America erms, when sent to foreign countries, Canada excepted,
$\$ 4$, gold, for Scientipic AMERICAN, one year: $\$ 9$, gold for both Scientific American and SUPPLEMENT for one year. This includes postage, which we pay. Remit

PRINTING INKS.

