articulated a rod, \mathbf{M}, consisting really of two threaded rods connected by a nut, o^{\prime}, thus permitting the length of this piece to be regulated with accuracy. This rod articulates at its other extremity with the pin of a very small crank, p, belonging to the shaft, N , which revolves in the brackets, F^{s}, and which is arranged parallel with the axis of the mean position of the carrier. On the end of this shaft, \mathbf{N}, there is fixed a pinion, N^{\prime}, whase teeth engage with an endless screw fixed on the driving shaft, K. It results from this arrangement that the rod, \mathbf{M}, communicates to the axle, g, an alternating motion, carrying with it the whole mechanism of the carrier, and thus determining its oscillatory motion; but, at the same time, the forced gearing of the pinion, J, with the fixed rack, J^{\prime}, causes the former to make a partial revolution, which it transmits to the socket, d, and the drill that it holds. Fig. 8 is a geometrical diagram of this motion, showing the displacement of the pinions on the rack, the angular motion that results therefrom in the carrier, and the extent of its revolution. We have said that the interdependence between the motion of the sector, I^{\prime}, and the socket, \boldsymbol{d}. resulted from the connection between the disk, e, and the first sector, I. But this disk has still another important function. Its connection with the sector, I , results from a spring nut, q, bolted upon a projection belonging to the sector and eutering a notch in the circumference of the disk, e. As there are, in reality, two like notches, diametrically opposite, this disk thus serves as a divider for changing the position of the drill and presenting the two halves of its extremity to the grinder with precision. Its longitudinal position for the two phases of this operation is likewise secured by means of a sort of alidade, \mathbf{O} (Figs. 1 and 2), mounted at the extremity of the carrier, H.-Machines, Outils et Appareils.

First Use of Anthracite Coal.

Anthracite coal was discovered io Pennsylvania soon after the settlement of the Wyoming Valley, but its first practical use was by Obediah Grose in his blacksmith shop, in the year 1768. In 1791 Philip Ginter discovered anthracite coal on the Lehigh. In 1802 Rovert Morris, Lehigh. In 1802 Rovert Morris, pany and purchased 6,000 acres of the property on which Ginter discovered the coal. The coal company was called the Lehigh Coal Mine. This company opened the mine and found the vein to be 50 feet thick and of vein to be 50 feet thick and of
the very best quality of coal. the very best quality of coal.
The company made every effort to secure a demand for the coal, but without success, and having become thoroughly disgusted with their speculation, leased the 6,000 acres of this mammoth coal field to Messrs. White \& Hazard, of Philadelphia, for twenty years, at an annual rental of oue ear of corn. Messrs. White \& Hazard tried to use the coal in the blast furnace in 1826, but failed; the furnace chilled. In 183: Neilson conceived the idea of the hot blast for saving fuel, and in 1833 David Thomas adopted the idea of the hot blast and anthracite together. White \& Hazard had, previous to luminous spectra, or microscopic objects. This art, so valuthis, formed a company and bought the property. In 1839 able, is likewise called upon to lend its useful aid to the Thomas made the use of anthracite for making pig metal natural sciences. Such a reflection recently arose in our a success, by which the twenty ears of corn were transferred mind on examining a remarkable photographic collection into $\$ 20000000$. And this is the early history of the great due to the talent of M. Pierre Petit. This collection inLehigh coal mines of the present day. I remember well the banquet given by Burd Batterson and Nicholas Biddle at Mount Carbon in 1840, at which time they paid William
 mium they had offered for the first successful use of anthracite coal as fuel in the blast furnace. But David Thomas was the lion of the day.-Pittsburg Commercial.

The Treatment for a Cold.

The Monthly Magazine (London) reports Dr. Graham as saying that it is not a correct practice, after a cold is caught, to make the room a person sits in much warmer than usual. to increase the quantity of bed clothes, wrap up in flannel, and drink a large quantity of hot tea, gruel, or other slops, because it will invariably increase the feverishness, and, in the majority of instances, prolong rather than lessen the duration of the cold. It is well known that confining inoculated persons in warm rooms will make their smallpox more violent, by augmenting the general heat and fever; and it is for the same reason that a similar practice in the present complaint is attended with analogous results, a cold being in reality a slight fever. In some parts of England, among the lower order of the people, a large glass of cold spring water, taken on going to bed, is found to be a successful remedy, and in fact many medical practitioners recommend a reduced atmosphere and frequent draughts of cold fluid as the most efficacious remedy for a recent cold, particularly when the patient's habit is full and plethoric. Dr. Graham further says:
Dr. Grabam further says:
It is generally supposed that it is the exposure to a cold or
wet atmosphere which produces the effect called cold, whereas it is returning to a warm temperature after exposure which is the real cause of the evil. When a person in the cold weather goes into the open air,-every time he draws in his breath the cold air passes through his nostrils and windpipe into the lungs, and, consequently, diminishes the heal of these parts. As long as the person continues in the cold air, he feels no bad effects fromit; but as soon as he returns home, he approaches the fire to warm himself, and very often takes some warm and comfortable drink to keep out the cold, as it is said. The inevitable consequence is, that he will find he has taken cold. He feels a shivering which makes him draw nearer the fire, but all to no purpose; the more he tries to heat himself, the more he chills. All the mischief is here caused by the violent action of the heat. To avoid this when you come out of a very cold atmosphere, you should not at first go into a room that has a fire in it, or if you cannot avoid that, you should keep for a considerable time at as great a distance as possible, and, above all, refrain from taking warm or strong liquors when you are cold. This rule is founded on the same principle as the treatment of any part of the body when frost bitten. If it,were brought to the fire it would soon mortify, whereas, if rubbed with snow, no bad consequences follow from it Hence, if the following rule were strictly observed-when the whole body, or any part of it, is chilled, bring it to its natural feeling and warmth by degrees--the frequent colds we experience in wiuter would in a great measure be preented.

the jardin des plantes reproduced by

 photography.Photography is rendering incomparable services to all the sciences. Astronomy, physics, and chemistry are drawing sciences. Astronomy, physics, and chemistry are drawing
on its resources every day to fix on the negative stars,
curacy and sharpness; and they do the greatest credit to the alent of the operator, and will, we believe, render true services to naturalists.-La Nature.

Garnets.

The color of the garnet is blood or cherry red; when mixed with blue it passes into crimson and violet red, and when tinged with yellow into hyacinth red; it is also met with of a reddish brown color, liver-brown, and black, also greenish black. It occurs in mass, disseminated, in angular fragments, or crystallized. Its primitive figure is the rhomboidal dodecahedron, which, when somewhat lengthened, presents the appearance of a short six-sided prism, the faces of which are parallelograms terminated by tribedral summits with rhomboidal faces. Sometimes the original faces of the dodecahedron entirely disappear, and the.result is a solid bounded by 24 equal and similar trapeziums. Sometimes all the sides of the primitive dodecahedron are replaced by lengthened hexagons, whence results a solid bounded by 12 rhombs and 24 hexagons. Other more complicated figures, but which cannot be rendered intelligible by mere description, originate from the mixture of the two preceding modifications. The size of the crystals is subject to great variations. Some are no larger than a pin's head, while others are four inches or more in diameter. The external luster is casual, but generally glistening; the internal lusteris brightshining, vitreous. Its fracture is perfectly conchoidal, passing into imperfectly conchoidal, coarse grained, uneven, or splintery. Its fragments are indeterminately angular and sharp edged. In sometimes occurs in granular or lamellar distinct concretions. It varies from transparent to translucent on the edges. Its hardness is superior to that of quartz. Its specific gravity is from 3.7 to 4.2 .
It is often magnetic, and is fusible without much difficulty before the blowpipe into a black enamel. When strongly heated in a charcual crucible, it affords a gray dusky glass full of grains of iron, often amounting to 10 or 12 per cent.
This mineral has been repeatedly analyzed by Klaproth, Vauquelin, and other able chemists, but without much agreement in the results; and as in general the same method of analysis has been adopted, the remarkable differences which lave occurred can only be attributed to a real variation in its composition; they all agree, however, that it contains a large proportion of iron, and possibly this ingredient may be the one which principally influences its crystallization.
The Bohemian garnet has been analyzed by Klaproth, with the foiliowing results: Oxide of iron, $16 \cdot 5$; oxide of manganese, 0.25 ; silex, 40; alumina, 2.85 ; lime, $3 \cdot 5$; and magnesia, 10. VauqueJin's analysis of the same stone gives the following: Oxide of iron, 41: silex, 36; alumina, 22; and lime, 3. The Sirian garnel;, according to Klaproth, contains: Oxide of iron, 36 ; oxide of manganese, 0.25 ; silex, 35%; and alumina, $27 \cdot 25$. The most beautiful and valuable garnets are the oriental. They come principally from Pegu; and the town of Sirian having been formerly the chief mart for them, they are hence by corruption known among lapidaries by the appellaticn of Sirian garnets. They appear to be the carbuncle of the ancients; their color is crimson, verging into a very red violet; they are transparent, and have a conchoidal fracture. Of their geological situation we are entirely ignorant.
Next in estimation to the oriental is the Bohemian garnet. It is met with in the Mittelgebirge of Bohemia and in Saxony; its color is blood red, verging into yellow; it never occurs crystallized, but only in rounded and angular grains; it is transparent, and its fracture is conchoidal. It occurs in floetz-trap and in alluvial land, formed by the decomposition of this class of mountains; it is also met with in serpentine. of this class of mountains; it is also met with in serpentine.
Common garnet occurs almost always in primitive rock, especially in micaceous schistus, chloritic slate, and serpentine; it is sometimes so abundant as to constitute the principal part of the rocky mass in which it is found, which is then an excellent flux for iron ores on account of its fusibility and the large quantity of this metal which it contains. The oriental and Bohemian garnets when cut and polished are very beautiful, and were formerly (particularly the first) in high estimation, but by the caprice of fashion their employment, and consequently their value, have since much declined.-Glassoare Reporter.

The new elevator just erected in Detroit is one of the largest in the country. It is of brick, is 311 feet long, 93 feet wide, and 136 feet high. It has a capacity of $1,300,000$ bushels. The belting is of rubber. The main belt is 48 inches wide. The elevator bucket belts are 20 inches wide The machinery, it is said, has a capacity to handle in ten The machinery, it is said, has a capacity
hours all the grain the elevator can store.

