
a weiekly journal of Practical inforuation. art. scievce. mechanics, chemistry and manufactures.

NEW YORK, JUNE 23, 1883.

MARINONI'S ROTARY PRINTING PRESS. \} 佥
The greatest progress that has been made in recent yeârs in the art of printing is in the invention of the high speed press provided with continuous paper.
娚ree Freatcob constructors, Messrs. Marinoni, Alauzet, and Derley; have brought this kind of apparatus to such a degree of perfection that the majority of foreign journals having a large circulation buy their presses in France. We reproduce in Fig. 1 a perspective view of the Marinoni

Fig. 2.-DIAGRAM OF \cdot THE PARTS.
receiving table), the two small rollers, $a a^{\prime}$, advance bver the rack, \mathbf{N}, and the sheets, instead of continuing to rodt ker into the accumulator, fall on the rack and are degoosited by it upon the receiving table, 0 .
The rack having fallen twenty times, and deposited five sheets each time, or one hundred in all, the table moves in such a way as to prevent the sheets subsequently deposited from getting mixed with them. When the rack has fallen wenty times, the table returns to its initial position.

The distributing rollers, D come in contact with the inking rollers, I, once during each revolution of the printing cylinders, and are mounted on racking levers provided with regulating screws that permit of easily regulating the amount of ink taken up The supports of the inking rollers are movable and can be made to approach or re cede from the distributing rollers, so as to still further vary the amount of ink taken up by them.
The distributing rollers supply the ink to a roller, E of large diameter, which, hav ing a backward and forward motion, begins to distribute the ink and to transmit it to a second roller, F, of the same diameter. This latter then spreads it over a metal
press, and in Fio diagram showing the parts of the lic cylinder, G, whichis of the same diameter as the print same. In ordeif to give a complete description of it we ing cylinders, and against which revolve three distributing cannot do better than to reproduce the very interesting study that has been made of it by Mr. Monet, a civil engineer.
The roller, J (Fig. 2), is placed in the machine in the state in which it is received from the paper manufacto y. The paper unwinds, runs over the rollers, e and e^{\prime}, which serve only for tautening it , and then passes between the two cylinders, A and B. The cylinder, A, carries the form and linders, A and B. The cy
B carries the blanket, and the paper thus receives its first impression. It afterward passes between the cylinders, A^{\prime} and B^{\prime}, and receives an impression on the other side the cylinder, \mathbf{A}^{\prime}, carrying the form, and B^{\prime} the blanket. Being now printed on both sides, it passes be tween the cylinders, $\mathrm{K} \mathrm{K}^{\prime}$ which cut it off and allow the sheet to slide between the corde of the rollers. These latte lead the sheets over the rollers $g h$, on which they wind, one over the other, when the rollers, $a a^{\prime}$, are in the position shown by un broken lines in the cut.
The part of the machine that holds the rollers, $g h$, and the different cords that wind over them is the accumulator, and it is in this part of the press that the sheets accumulate, one over the other, to any number desired.
The size of the rollers, $q h$, and their distance apart are so regulated that when the sheet reaches the accumulator, it falls exactly on those that bave preceded it. When the proper number of sheets is in the accumulator (4 or 5 being the number most employed for afterward facilitating the separation into packets on the

Fig. 1.-MARINONIS ROTARY PRINTING PRESS.

