and crossed him at a short distance; the soldiers and archers constant equilibrium between these two pressures, and, bemade use of their arms; and the oars on the side attacked were at once drawn in, their shanks slipping into thei straps, and the handles, guided by the thranites, passing over the heads of the group on the opposite side, leaving nothing outside but the blades protected by the projecting epotides. If the distance permitted of it, the sailors let the delphins drop. The crossing effected, the oars were again actuated, and the trireme, thanks to her superiority in sailing and evolution, getting the better of her adversary, drove her rostrum into the latter's side.
We have designedly left till now a description of the rostrum and its accessories-the principal weapon of the tri reme. This apparatus, which was placed very low, consisted of a bronze or iron fork whose branches were nailed to the longitudinal pieces of the prow, which latter was continued by a projecting rod and ended in a triple point. Thus outlined and attached, the rostrum did not penetrate so deeply as it would if it had had to attack less tapering surface higher up. There was less danger of its getting caught, and of thus exposing the vessel that carried it, and that had be come immovable, to the attack of a second adversary; and the leaks that it opened were more difficult to stop. As an offset, if it had had to act alone, there would have been great danger of the trireme's being exposed to a dangerous strain througb the action of transverse forces passing much beneath her center of gravity. This dauger was warded of by the Greeks by means of the proembolis, which was a pro jecting piece forming a continuation of the channel wales and armed with one or several metallic points. These lat ter came in contact with the surfaces above water almost a the same instant that the rostrum struck those below the water line. Tbey struck into the planking or wales, prevented too deep a penetration, divided the frame timbers that tended to bend the beak, and annulled the action of that which tended to capsize the vessel. The utility of the pro embolis was also very great during the course of a cruise; for by passing the hypozomes over its points, it became a safety buffer in cases of running afoul, and a protection for the cables. These precautions were not the only ones that the Athenians took against the dangers of navigation in squadrons. The points of the rostra themselves were sometimes trimmed with supplementary hypozomes offered by the ex pressed will of the people, that is to say, of the sailors. It must be observed that the intervention of such will was not an idle one, for the presence of submarine hypozomes rendered the work of the rowers very hard, and it was but just that those interested should be able to choose between fatigue and danger.
I have presented a general view whose parts are accurately arranged, whose details are borrowed from authentic docu ments that have been translated more or less freely, but al ways in the direction of practice and tradition. It is a solution which, by the fact alone that it is possible, seems to me ought to come near to the truth; and so I hope that this study will prove one step toward the restoration of a type that passed for a chef d'œuvre among a people of high culture, fond of an institution to which it owed glory, riches, and supremacy.-Rear Admiral Serre, in La Nature.

apparatus for regulating the pressure in WATER CONDUITS

NEW EXERCISING APPARATUS

This improved exercising apparatus consists of a pair of horizontal parallel bars connected at one end by a third bar, and the three together supported by three legs suitably inclined and braced, one of them being under the center of the third or connecting bar and the others at the unconnected eud of the parallel bars, said bars and legs being contrived to be easily taken apart and put together, and when taken apart are quite portable, light, and pack away in a small space. The apparatus is specially designed to afford the means in any room at one's home for the exercise known as "dipping," as practiced in the ordinary gymnasium.
This exercise, which, by the way, is a most beneficial one, consists in supporting the body upon the bands, which grasp the parallel bars, lowering the body by bending the arms until the chin is on a level with the hands, then raising the body by straightening the arms. This is repeated several times. The exercise develops the pectoral and triceps muscles very rapidly, and at the same time broadens and deepens the chest and tbrows back the shoulders, and has been highly recommended by authorities on physical culture; and for the want of suitable apparatus two chairs have been recommended, the chairs being placed back to back a short distance apart ; but such device is so unsatisfactory that the exercise is generally neglected. This apparatus obviously overcomes all difficulties and affords entirely satisfactory means for practicing the exercise. An excellent exercise for the biceps and abdominal muscles may be obtained by grasping the bars from the under side and letting the body down toward the floor until the arms are straight, the legs, astride the back leg of the apparatus, forming a right angle with the body, and the knees kept straight, the raising the body by bending the arms until the shoulders are on a level with the bars, lowering again, and repeating several times The exercise of dipping cannot bebad from rowing-machines, healti-lifts, or chest-weights. The nearest approach to it is found in the chest-weight ; but they have to bepermanently fixed in the room where they are used, while this apparatus, which is specially adapted for the exercise, may be set up for use when required and be readily taken down and put away when the exercise is over.
This useful invention has been patented by Mr. Geo Worthington, of St. Denis, Baltimore Co., Md.

Flowers and Insects.

In these days, after the very elaborate and ingenious demonstrations of the relations of flowers and insects, it is scarcely any longer doubted that the intimate economy of both has been modified and adapted directly with reference to the needs and habits of each; tbat the flowers have de veloped color, scent, and intricate devices of form to att ract and to entrap the insects, in order that by their propitious visits they may be cross fertilized, improved, and more widely distributed; that on the other hand the insects have become modified in shape and instincts to adapt themselves more commodiously to the various flowers, a process tha has secured in nature a great variety of forms and habits among insects, and that these introactive influences are ceaselessly active.
Naturalists are inclined to think that the evolution of flowers, by which we now find three ways of fertilization created, viz., self-fertilization, wind fertilization (anemo-
phily), insect fertilization (entomophily), has followed exactly this last mentioned order. That in earlier ages plants were all self-fertil ized, that wind fertilized plants mark the next steps in advance, perhaps, and that insect fertilized plants de veloped their beauty of color and form last of all in the struggle for existence. At this point, Mr. Ed. Heckel, a French botanist, enters a protest, contending that colors of flowers have not been evolved with any reference to the perceptions of insects. And he instances the brilliancy of the Alpine lowers, where he maintains there are no insects or too few to affect the results claimed by the evolutionists.
But recently M. Ch. Musset has spent four years of close observation in these altitudes, and affirms thatinsectsare not absent or even rare at elevations of 7,000 feet above the level of the sea, and that the flower visitors, the Lepidoptera Hymenoptera, and Diptera, were more numerous than the other orders. Further, the comparative rarity of insects at high elevations is exactly calculated to produce a sharper competition among he flowers, and lead to the production of more brilliant and conspicuous tints. M. Heckel still insists upon the insuffi ciency of the cause assigned, and o
APPARATUS FOR REGULATING THE PRESSURE IN WATER CONDUITS. M.
th the water which is
thowing a re-eneing of the main water conduit flowing out, and opens the valve, c, thus allowing a re-enrance of the air.
Any air that may accumulate in the conduit during its ordinary daily operations disengages itself in the same way automatically: As this air always flows to the highest points, it will collect in the cap, h, and finally, when its pressure has become greater than that of the water, depress the piston, a, and open the valve, c. There will thus be a
 cially when one of the kind here described: Buy at a tin sbop one small tin cup, costing five cents, and a larger one costing about ten, in which the smaller one can be set; five or six cents' worth of glue will mend a great many broken articles, or will fasten the things that have become unglued. Put the glue in the small cup with a little water; put boil ing water in the larger one, and set the glue pot in it; in a few minutes the glue will melt and be ready for use.
course he may be right, but the presumption is against him
at present. His own explanation seems at any rate deficient, being that "the solar radiations are more intense than in the plains."
This might, it seems natural to think, affect the colors of the insects as well as those of the flowers, but they are as a rule somber and dark. At any rate, the brilliant skies of Persia, Arabia, and the Sahara bave not produced a brilliant flora and fauna.

