THE ATHENIAN TRIREME.

The restoration of the Athenian trireme is one of the most important and controverted questions of arcbæology. The documents which may serve to solve it are numerous, and worthy of credence. Texts, inscriptions, and figured monuments have been discovered and described; the data gathered by savants, as evidenced by the beautiful work published by Mr. Cartault, increase every day; and yet no general solution has been found, and we are not certain as to the most essential point-the mode of propulsion. Sailors, in spite of books and images, deny the superposition of the rowers, and Hellenists affirm it under conditions that are contrary to the laws of mechanics and to the experience of men who follow the sea. Botb put forth hypotheses that their adversaries have no difficuity in combating, and the discussion remains sterile.
An attentive examination of a bass-relief representing the central part of an Aphraktos trireme, found by Mr. Lenormant, at the Acropolis of Athens in 1852 (Fig. 1), has suggested to me a new method. Witbout pretending to an exactness that the subject does not admit of, I will describe a trireme of the fifth century, such as the texts and figured monuments show it, according to my opinion. The trireme was a very long boat with flat bottom and sharp form, and sitting low in the water, as the use of a large number of oars required. In the direction of $f^{-t h e}$ length, we find three divisions, to wit: in the center, a rowing chamber, wherein was concentrated the motive power; and in front and behind, a prow and a poop, whose space was devoted to different uses. In the direction of the height, the volume of the hull was divided into two parts by a continuous and strong deck.
Beneath the latter was the hold, and, above it, a half-open space limited by the upper deck -a light structure forming only a maneuvering flooring and shelter. The central part of the bull was divided into three parts: the was divided into three parts: the
middle, in which were stored middle, in which were stored
water and provisions, and the water and provisions, and the
two sides, which the Greeks two sides, which the Greeks
called thalames, because they served as a refuge to the sick and to those who were wounded in combat.
The provision magazine was separated from the thalames by strong partitions (diaphragmata), which are mentioned in the texts, and concerning the role of which controversy has run rife. Tbe rowing chamber was fitted up with two kinds of benches-the thranites, öwing their name to the form of their supports, and the lateral or zygites, from their Greek name, zuga. All these benches, according to the texts, were immovable.
The figures show the details of these arrangements, and per mit the method of the four kinds of rowing in vogue among the Greeks to be under stood. In simultaneous or parade rowing the thranites, zygites, and thalamites were juxtaposed and interposed. The oars had but a limited sweep, and the purchase of the blades against the water was reduced.

In thranite or combat rowing the thranite oars alone were manned, and each of them was actuated by three men. The whole crew was employed; the bidden, as also tommun for bidden, as also communication with the center of the hold; and the thalames were open to re-
ceive the wounded rowers. The speed of the galley attained its maximum. Being given its probable dimensions and the number of the crew as stated by historians, such maximum may have reached 10 kilometers per hour.

In zygite rowing, or that em ployed in urgent missions, the zygite oars, which were sborter and lower than the thranite, were manned and actuated by two rowers. The crew was divided into two sets, which revided into two sets, which re-
lieved each other from time to lieved each other from time to
time. The galley was capable of making 120 kilometers in 24 bours. The thranite benches were removed, and moving about was easy.
In thalamite rowing, or the method used in fine weatber, only the thalamite oars were used, these being so light that they could be handled with ease by the youngest sailors. The
rowers, who stood upright in the thalames, followed a slow rhythm; the crew was separated into three or four divisions; the propulsion was continuous; and the unoccupied sailors found rest and shelter in the rowing chamber, which had become free.
It is easy now to appreciate the ingenuity of the arrange ments adopted by the Athenians to obtain all the advantage possible from the motive power; to understand the immobility of the benches, a feature so regrettable as regards $\left\lvert\, \begin{aligned} & \text { the strength of the vessel; and to comprehend the parade }\end{aligned}\right.$

Fig. 1.-BASS-RELIEF REPRESENTING AN APHRAKTOS TRIREME.
very probable that the internal partitions of which we have spoken were also constructed of several planes of crossed wood, and that the purpose of the whole was to give the trireme, at the expense of a delicate workmanship andaccurate measurements, a rigidity without which there could be no stanchness. The ribbands performed also another role; they served as defenses in boarding, and as bearing points for the hypozomes-the flat cables with which the trireme was enveloped, and the office of which was to deaden shocks. Independent of the channel-wales, there were strong cinctures below the water line that ended, according to ancient figures, at the rostrum; and, above the gunwale, there was a double ribband, called parodos, consisting of two plankings nailed, one of them inside, and the otber outside of the frame. It was within this interval, within this passage (which must not be confounded with the parodos that ran throughout the length of the rowing cham ber, between the bench supports) that the Greeks deposit ed their shields.

Above the parodoi there were knee timbers designed for supporting the upper deck--this latter being a light platform serving as a place for maneuvering and fighting, and having beneath it, in front, the cable bitts and the cook's room, and, behind, the officers' quarters. Around these principal rowing, which, moreover, had a useful purpose, since it |facts, which are known to us through texts or figures, are permitted of ascertaining at a glance that the materiel and grouped secondary features.
personnel were complete, and that the rowers had learned to We see the mainmast-the large mast that carried those Tho unison and with accuracy. ere pelago, and that are so useful for sailing large or down the tain analogies with ourown. The bottom of the ship con- wind toward a mooring-and the two extreme masts, one sisted of strong timbers to which were attached the ribs of which carried the jib, and the other that lug sail which forming the frame. Planks nailed to these ribs formed the was so remarkable for its cut and rig. We find in the stolos shell and received the calking. The sides of the vessel , that high stem to which the Mediterranean ships fix their

Fig. 2.-RESTORATION OF AN ATHENIAN TRIREME. studding-sail yard, and we imagine to ourseives tbe proreus standing upon the akrostolion, and leaning forward to question those below.
In front of the rowing cham ber, and near the hawse boles (ophthalmon), were the epotidesstrong pieces of timber serving the double purpose of supporting the anchors, and protecting the oars when the enemy endeavored to break these by boarding lengthwise,
For this reason, these timbers were strongly braced by beams running backward and abutting against the ribbands, so as to form a sort of grating. Behind, there was a sort of fan whose curved blades were connected by the flagstaff. This was the $a p h$. laston, which, although perbans too much embellished, was certainly useful to the trierarch, who, from this open shield, watched the maneuvers of the enemy while running counter to him. Near by was tbe crosspiece
presented a very peculiar aspect, which is at onee revealed |which controlled the two rudders. These latter, which were and explained to us by the bass-relief from the Acropolis. Strong horizontal pieces ran along the side at distances that permitted of the passage of the oars. These ribbands or wales were connected by diagonal pieces running from top to bottom and from prow to stern. These ribbands and diagonals, which were connected by mortises, were bolted to the ribs and formed a covering of invariable triangies. It is

Fig. 3.-GENERAL VIEW OF AN ATHENIAN TRIREME. which controlled the two rudders. These latter, which were conjugate, had the property (due to the arrangement of their bars) of revolving when pusbed against; and their blades,
which scarcely cut the water when the course was a straight one, dipped and sought of themselves more resistant strata when the pilot set them in action.
The trierarch's post was upon the upper deck, near the udders, whence, through wide apertures, he was able to
 see the rear of the rowing cham bee and the keleustes, whom ber, and the keleustes, who trans mitted his orders to the rowers.
The mode of clearing the decks, and the maneuvers, were of the simplest nature.
The yards and square sails were deposited on shore, and the foremast was taken out and arranged for maneuvering the delphins. It s probable that these latter, not so heavy as the legend supposes, were metallic cylinders terminating in sbarp cones, and guided in their fall by the cordage on which they bad been hoisted. In falling, they acquired great penetrating power, and entered the deck just as the sharp-nosed porpoise enters the water after one of his leaps. The tbranite oars were manned, the rowers being balf naked. The thalamites bad their shields at band, ready, on fixing them in the parodos, to perform the maneuver that Jason taught the Argonauts. The defense of the rowing cbamber was completed by leather curtains. The trireme bore down upon the enemy
and crossed him at a short distance; the soldiers and archers constant equilibrium between these two pressures, and, bemade use of their arms; and the oars on the side attacked were at once drawn in, their shanks slipping into thei straps, and the handles, guided by the thranites, passing over the heads of the group on the opposite side, leaving nothing outside but the blades protected by the projecting epotides. If the distance permitted of it, the sailors let the delphins drop. The crossing effected, the oars were again actuated, and the trireme, tbanks to her superiority in sail ing and evolution, getting the better of her adversary, drove her rostrum into the latter's side.
We have designedly left till now a description of the ros trum and its accessories-the principal weapon of the tri reme. This apparatus, which was placed very low, consisted of a bronze or iron fork whose branches were nailed to the ongitudinal pieces of the prow, which latter was continued by a projecting rod and ended in a triple point. Thus outlined and attached, the rostrum did not penetrate so deeply as it would if it had had to attack less tapering surface higher up. There was less danger of its getting caught, and of thus exposing the vessel that carried it, and that had be come immovable, to the attack of a second adversary; and the leaks that it opened were more difficult to stop. As an offset, if it had had to act alone, there would have been reat danger of the trireme's being exposed to a dangerous strain througb the action of transverse forces passing much beneath her center of gravity. This dauger was warded of by the Greeks by means of the proembolis, which was a pro jecting piece forming a continuation of the channel wales, and armed with one or several metallic points. These lat er came in contact with the surfacs above water almost a the same instant that the rostrum struck those below the water line. Tbey struck into the planking or wales, prevented too deep a penetration, divided the frame timbers that tended to bend the beak, and annulled the action of that which tended to capsize the vessel. The utility of the pro embolis was also very great during the course of a cruise; for by passing the hypozomes over its points, it became a safety buffer in cases of running afoul, and a protection for the cables. These precautions were not the only ones that the Athenians took against the dangers of havigation in squad rons. The points of the rostra themselves were sometimes trimmed with supplementary hypozomes offered by the ex pressed will of the people, that is to say, of the sailors. It must be observed that the intervention of such will was not an idle one, for the presence of submarine hypozomes rendered the work of the rowers very hard, and it was but just that those interested should be able to choose between fatigue and danger.
I have presented a general view whose parts are accurately arranged, whose details are borrowed from authentic docu ments that have been translated more or less freely, but al ways in the direction of practice and tradition. It is a solution which, by the fact alone that it is possible, seems to me ought to come near to the trutb; and so I hope that this study will prove one step toward the restoration of a type that passed for a chef d'œuvre among a people of high culture, fond of an institution to which it owed glory, riches, and supremacy.-Rear Admiral Serre, in La Nature.

apparatus for regulating the pressure in WATER CONDUITS

NEW EXERCISING APPARATUS

This improved exercising apparatus consists of a pair of horizontal parallel bars connected at one end by a third bar, and the three together supported by three legs suitably inclined and braced, one of them being under the center of the third or connecting bar and the others at the unconnected eud of the parallel bars, said bars and legs being contrived to be easily taken apart and put together, and when taken apart are quite portable, light, and pack away in a small space. The apparatus is specially designed to afford the means in any room at one's home for the exercise known as "dipping," as practiced in the ordinary gymnasium
This exercise, which, by the way, is a most beneficial one, consists in supporting the body upon the bands, which grasp the parallel bars, lowering the body by bending the arms until the chin is on a level with the hands, then raising the body by straightening the arms. This is repeated several times. The exercise develops the pectoral and triceps muscles very rapidly, and at the same time broadens and deepens the chest and throws back the shoulders, and has been higbly recommended by authorities on physical culture; and for the want of suitable apparatus two chairs have been recommended, the chairs being placed back to back a short distance apart ; but such device is so unsatisfactory that the exercise is generally neglected. This apparatus obviously overcomes all difficulties and affords entirely satisfactory means for practicing the exercise. An excellent exercise for the biceps and abdominal muscles may be obtained by grasping the bars from the under side and letting the body down toward the floor until the arms are straight, the legs, astride the back leg of the apparatus, forming a right angle with the body, and the knees kept straight, the raising the body by bending the arms until the shoulders are on a leve with the bars, lowering again, and repeating several times. The exercise of dipping cannot bebad from rowing-macbines, healti-lifts, or chest-weights. The nearest approach to it is found in the chest-weigbt ; but they have to be permanently fixed in the room where they are used, while this apparatus, which is specially adapted for the exercise, may be set up for use when required and be readily taken down and put away when the exercise is over.
This useful invention has been patented by Mr. Geo Worthington, of St. Denis, Baltimore Co., Md.

Flowers and Insects.

In these days, after the very elaborate and ingenious de monstrations of the relations of flowers and insects, it is scarcely any longer doubted that the intimate economy of both has been modified and adapted directly with reference to the needs and habits of each; that the flowers have de veloped color, scent, and intricate devices of form to attrac and to entrap the insects, in order that by their propitious visits they may be cross fertilized, improved, and more widely distributed; that on the other hand the insects have become modified in shape and instincts to adapt themselves more commodiously to the various flowers, a process that has secured in nature a great variety of forms and habits among insects, and that these introactive influences ar ceaselessly active.
Naturalists are inclined to think that the evolution of fowers, by which we now find three ways of fertilization I
created, viz., self-fertilization, wind fertilization (anemo-
phily), insect fertilization (entomophily), has followed exactly this last mentioned order. Tbat in earlier ages plants were all self-fertil zed, that wind fertilized plants mark the next steps in advance, perhaps, and that insect fertilized plants developed their beauty of color and form last of all in the struggle for existence At this point, Mr. Ed. Heckel, a French botanist, enters a protest, con tending that colors of flowers have not been evolved with any reference to the perceptions of insects. And he instances the brilliancy of the Alpine lowers, where he maintains there are oo insects or too few to affect the re sults claimed by the evolutionists.
But recently M. Ch. Musset has spent four years of close observation in these altitudes, and affirms that insects are not absent or even rare at elevations of 7,000 fcet above the level of the sea, and that the flower visitors, the Lepidoptera Hymenoptera, and Diptera, were more umerous than the other orders. Fur ther, the comparative rarity of insects at high elevations is exactly calculated to produce a sharper competition among he flowers, and lead to the production of more brilliant and conspicuous tints. M. Heckel still insists upon the insuffi ciency of the cause assigned, and o
APPARATUS FOR REGULATING THE PRESSURE IN WATER CONDUITS. M. Heckel still insists upon the insuff ciency of the cause assigned, and of
course he may be right, but the presumption is against him spring of pleasure," and is an economical investment, espe-
cially when one of the kind here described: Buy at a tin may be right, but the presumption is against him
at present. Hisown explanation seems at any rate deficient cially when one of the kind here described: Buy at a tin being that "the solar radiations are more intense than in the costing about ten, in which the smaller one can be set; five plains."
or six cents' worth of glue will mend a great many broken This might, it seems natural to think, affect the colors of articles, or will fasten the things that have become unglued. the insects as well as those of the flowers, but they are as a Put the glue in the small cup with a little water; put boil- rule somber and dark. At any rate, the brilliant skies of ing water in the larger one, and set the glue pot in it; in a Persia, Arabia, and the Sahara bave not produced a briling water in the larger one, and set the glue pot in it; in a
few minutes the glue will melt and be ready for use. $\begin{aligned} & \text { Persia, Arabia, and t } \\ & \text { liant flora and fauna. }\end{aligned}$

