strintific Ammitam.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
o. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.

 Ore copy, one year postage included....One copy, six months postage included
${ }^{53} 160$
Clubs.-One extra copy of The SCIENTIFII AMERICAN will be supplied bratis for every culd of tive subscribers at
samae proportionate rate. Postage prepaid. same proportionate rate. Postage
Roczit by postal order. Address

IUNN \& CO.. 261 Bro

The Scientific American supplemen

is a cistinct paper from the Scientific american. The supplement is issued weekly. Every number contains 16 uctavo pages, uniforin in size
with Scientivic AMErican. Terms of subscription for SvPPIEMENT, 55.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by Il news dealers throughout the country
will be sent for one year postage free. on receipan and Suppliment papers to one address or different addresses as desired.
The sifest way to remit is bv draft, postal order, or registered letter.

Scientific American Export Edition.

The SCimNTIFIC Anirrican export Edition is a large and splendid periadical, issued once a month, Each number ccntains, about one hundred
large quarto pages, profusely illustrated. embracing : 1, M ost of the large quarto pages, profusely illustrated. embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the Sci wntIFIC AMuRICAN, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the
world. Single copies 50 cents Manueacturess and others who desire to secure foreign trade may have large. and handsomely displayed announcements published in this edition at a very moderate cost. The SCIENTIFIC AM EIM ICAN Exnort Edition has a large guaranteed circulation in all commercial places throughout the world. Ad
CO.. 261 Broadwnerner corner of Warren street, New York.

NEW Y@RK, SATURDAY, MAY 26, 1883.

TABLE OF CONTENTA OF

THE SCIENTIFIC AMERICAN SUPPLEMENT No. 386,

For the Week ending May 26, 1883 .
Price 10 cents. For sale by all newsdealers

1. ELECTRICITY, LIGHT, AND HEAT.-Manufacture of Lead The Electric Lighting of the Paris fewers. The Electric Lighting of the Paris Sewers.- H Ilustration. The Magnetic Station of the St. Maur
A New Method of Solar Photography
Measurements of the Wave Lengths of Rays of High Refrang
bility in the spectra of Elementary Substances. By W. N. HAleT Ley and w. E. adeney.
II. TeChnolog f.- Portland Cement; its Manufacture and Uses. by Reginald e. Midpleton.-Materials used. Process of manu or chalk and clay.-Moulding.-German method.-Effect of the eather.-Manner of use.-Cost of rr anufacture.
How to Remove Bichromates tains from the Ha
Acetate of Soda and its Latest Uses..
Petroleum and Its Products.
Eye-Glasses.
III. ENGINEERING.-The London and Northwestern Railwa Company's Steamship Violet.-Several figures........................
IV. CHEMISTRY.-On the Liquefaction of Oxygen and Nitrogen, and the Solidification of Sulphide of
noblewsin and K. Oi
Colored Green Coffee.
Colored Green Coffee. .
NatURAL HISTORY, -New Buidding for the Victoria Roria
the Berlin Botanical Garden.-1 illustration ...
The Vineyards of California
The Evolution of the American Trotting Horse.- - fggres
Settling Swallows.
Culture of Small Fruits.
I. MEDICINE AND HYGIENE - On

ByR. M. N.
The Rights of the Insane.- By C:H. HUGHEs, M. D.................................
By $W M$. W
-By Wm. Wailace
vi. a RCHITECTURE.
Cuse at Reigate.-1 illustratio

Louis Maicke.-Portrait.

OPENING OF THE GREAT BRIDGE.

The time of our going to press slightly antedates the day of the opening of the great bridge connecting New York and Brooklyn; but our readers will be interested in knowing the intended order of proceedings.

The initial ceremonies have been appointed to take place in the Bronklyn station of the bridge on Sands Street, at 2 P. M., on Thursday, May 24, 1883.

The marshal of the day will be Major-General James Jourdan. The President of the United States and Cabinet, the Governor of the State of New York and staff, with others, will he escorted from the Fifth Avenue Hotel to the New York anchorage by the 7th Regiments, Colonel Emmons Clark commanding, and there received by the trustees and escorted to the Brooklyn anchorage, from which point the 23d Regiment, Colonel Rodney C. Ward commanding, will act as escort to the Brooklyn approach.
Seats will be reserved for the President and Cabinet, the Governor and staff, United States Senators, members of Congress, Governors of other States, members of the Legislature, the Common Councils of New York and Brooklyn, city and county officials of New York and Brooklyn, Army and Navy, the National Guard, the Press, especially invited guests, and the employes of the bridge.
At 2 o'clock the exercises will begin at the bridge station, Hon. James S. T. Stranaban presiding. The programme is as follows:

3. Presentation address in behalf of the trustees, William \mathbf{C}

Acceptance address in Kingsley, vice-president

- Low, Mayor
. Acceptance address in behalf of the City of New York, Frank

6. Oration.

Abram S. Hewitt
Abram S. Storrs, D D
...7th Regiment Band.
In the evening a grand display of fireworks from the bridge takes place, and also a reception, at the Brooklyn Academy of Music, to President Arthur and Governor Cleveland.

But these exercises, however interesting to the compara tively few who can witness them, will be as nothing compared to the great popular pageant, the sight of the millions of the two cities increased by the multitudes of strangers who will march over the bridge on the opening day.

PLACING THE STATUE OF LIBERTY.

Attention is called to the description and illustrations, published on another page, of the method proposed by Mr. John C. Goodridge, Jr., C.E., of New York city, to erect the Bartholdi statue of "Liberty Enlightening the W orld," and to build the pedestal upon which it is to stand. There is a reason for speaking first of the "erection of the statue," for that, by Mr. Goodridge's plan, will precede the construc tion of the pedestal.
Although no comprebensive or detailed plan lias been accepted and published for the work of building the pedestal and raising the statue, it is generally supposed that it is to be done in the usual way of constructing the masonry-by means of false work, or staging, extending not merely to the top of the pedestal; 150 feet, but also to the top of the statue, and beyond, another 150 feet or more. At the best, this will be a very costly job, requiring much time and money, probably more than the cost of the entire statue.
Mr. Goodridge, however, proposes to dispense with the staging, and be proposes also to remove the apprehensions of those who fear the weakening and overthrow of the statue from the effects of in its very exposed situation. It is claimed-and th good show of reason-
that the statue, being composed-nf plates of comparatively l light weight, and yet presenting a large surface to the wind will be unable to sustain itself on its proportionally narrow base, and will require some internal support to give it the required rigidity. This is considered in Mr. Goodridge's plan; and he also proposes to make the use of the statue a present possibility instead of a future probability. He would erect and equip the statue at once with the electric light; and bereafter carry up the pedestal, the statiue being lifted and taken up with the pedestal. The plan is simple, economical, and apparently very practical. This latterthe practical-is a quality for which the works
eugineer bave always been especially distinguished.

THE DRIVE WELL PATENT.

In a recent trial in the United States Circuit Court, Des Moines, Iowa, the judge decides that the original drive well patent of $\mathbf{N} . \mathbf{W}$. Green is null and void. This decision might be important if it were not contrary to a number of other previous decisions by eminent judges of the Dnited States courts, by whom the patent has heretofore been upheld. The present case will now go on appeal to the Su preme Court of the United States.
The invention of the drive well was made in 1861, by Nelson W. Green, an officer in one of the New York regiments then serving in the war. There was a rumor that the enemy bad poisoned the wells. To make sure of a pure supply of water for his own regiment and for the Union forces generally, wherever they might march, he cenceived the idea of driving into the earth small tubes of iron, perforated at the bottom, and of attaching a pump to the upper: end of the tube. He reasoned that, when the pump was
worked and suction produced, the water would rise in the tube, and thus serviceable wells might be made anywhere, by a few minutes' work, at small cost. His invention was found to be completely successful, was immediately adopted in the army, and our troops seldom lacked for good water wherever it was practical to drive down Colonel Green's tubes. From the army the use of the invention quickly spread through this country, then to foreign countries; it was adopted by the British army; it is now an adjunct of the military equpiments of all nations, and is in common use throughout the world.
The patent to Col. Green was not issued to him until 1868, owing to the inability of the inventor to attend to the business of taking the patent until after his relations with the army were finally closed. Such, in brief, is the history of the drive well patent. It is one of the most useful inventions of the day, and has conferred vast benefits upon the people of this country and the world in general.

When Col. Green received his patent, he became entitled to demand compensation for the use of his invention from that time onward for seventeen years, and be established a general tariff or patent fee of ten dollars for each well made in accordance with his discovery. Many thousands of the Green drive wells were put into use before his patent was granted; for such prior use he could make no claim; but for the continued use of these wells after the grant of the patent, he was entitled to demand payment.
There are regions of country where every farmer has from one to ten of the Green wells on bis premises; where, in fact, people have them in their kitchens, cellars, yards, and fields; wherever they want water, they drive a tube and put on the pump.
These people knew nothing about the patent when they put in the wells; and the appearance of the patentee's agents asking for ten dollars' payment on each tube, with threat of a law suit if the demand is refused, naturally excites sur prise and indignation. They feel as if their rights as Amer ican citizens were being invaded. What business, they ask, has the Patent Office to grant a patent to prevent us from pumping water out of the ground? We have always been accustomed to stick a tube with its pump into our cisterns and cellars to draw water; and we claim a free right to stick the tube into the ground and get water wherever we can. For reasons such as these many have refused payment; but the courts have decided adversely in various tes cases, and the legality of the patent has been fully sustained. But the costs of the law suits, and the expenses of collect ng the royalties have greatly diminished the patentee's re ceipts. The patent will expire by its own limitations on January 14, 1885. If the Supreme Court should teelde adversely to the patent in the present case, the inventor and his associates will probably lose more money than they have received from the invention. If the court sustains the patent; they may possibly realize a profit, as they will be enabled hereafter to collect damages from all who made use of the patent during its lifetime

USES OF PAPER.

Under the generic term of paper, other substances used in combination with paper pulp are comprehended in general descriptions and occasional notices. When some wonderful story is read of the substitution of paper for wood, stone, the metals, for mortar, and plaster, and concrete, and other compositions, the reader should not understand that it is the material defined by Webster as " a substance formed into thin sheets or leaves, made of pulp obtained from rags, straw, bark, or like materials, pressed and dried.'" Paper, or so many and so differing uses a sare attributed to it, must have something besides a vegetable pulp in its composition. In fact, the term "paper" is a misnomer for products that derive all their special qualities from foreign materials, held together hy the paper pulp acting as a matrix. Thus, asbestos, in filaments, or powder, may be mixed with paper pulp to form a convenient uninflammable and possibly an ncombustible material, shaped while plastic to convenience for special uses. So, clays in almost impalpable dust may become a part of the paper pulp production, and be a substitute for other materials. Other mineral substances may be mixed with the pulp, and, in short, there appears to be carcely any limit to the uses that may be made of paper pulp mixed with foreign substances, moulded and pressed to form.

BELT WIDTHS

An exchange says that " the true way to belt up machinery, and have it to do good service and last well, is to get a belt a little wider than your machine calls for; instead of getting a three-inch belt where you ought to get four, get five-inch instead, if you can possibly use it."
Indefinite advice of this character is of little value. Not only is it impracticable in most cases to substitute a fiveinch belt for a four-inch, but in most caser, also, the builders of machinery have adapted the width of the pulley faces to the work the machine shlould be called upon to perform. Of course, no more work can be got out of a five-inch belt on a pulley with four-inch face than from a four-inch belt, and all the overplus in width is a weight and drag to be carried. There was a time, in the early history of manufacture in this country, when the bome-made (shop-made) eather belts were run, at first, as wide as possible to allow for stretchand consequent narrowing. But boltmaking is ow an art, and the belts come from the factory fully stretched and of exact, unvarying width, a width that will
be retained as long as the belt lasts. If the transmitting doubted, too, if the rapidity of transmission by telephone, power of belts has not yet been formulated into unvarying ' where the message had to be written down at the receiving and trustworthy rules, under all circumstances of diameters station, would even approximate that of the Morse system. of pulleys, distances between pulleys, relative positions of Proper names, scientific terms, and phrases in a foreign pulleys-borizontal, vertical, or diagonal-enough is established to render unnecessary such a variation in the width of a belt for doing a certain amount of work as that of one inch in four.

How Cable Messages are Received.

Until the fore part of November the French cable, having its terminus at North Eastham, Mass., employed the flash system of signaling. Now the cable is worked duplex on the Sterns system, says the Journal of the Telegraph, using an automatic recorder, by which the wessages are received in ink on a narrow strip of paper.
By the system which has been displaced the messages were spelled out by flashing a ray of light back and forth across a standard line, the right and left flashes corresponding with the dots and dashes of the ordinary telegraphic alphabet
In this system the light is flashed by reflection from an extremely light mirror, which is turned to right and left by the opposing influences of positive and negative impulses. This system has the advantage of being operated with very slight electric impulses, but also the disadvantage of leaving no permanent record.
To secure the latter very important end the recording instrument has been adopted. The pressdispatch announcing the change states that in the new recorder the ink is discbarged by the agency of electricity and " not by capillary attraction as in other cable recorders." This statement is incorrect, electricity being now similarly emplnyed in the recording instruments used at Heart's Content, the Newfoundland station of the Anglo-American Company's cables.

A recent visitor to Heart's Content describes as follows the method of receiving messages at that poiat. The recorder is a horseshoe magnet, electrified by the usual circles of fine wire, and attracting a small metallic coil. The coil is bung between the magnetic poles, and by a light lever and a thread almost as fine as the strand of a cobweb is connected with a delicate siphon hung in a little reservoir of ink. The ink is electrified, so as to produce a repulsion of the particles, making it flow more readily through the siphon, which outside is about the size of a darning needle, and the interior tube scarcely larger than a hair. The lower end of the siphon rests against a paper tape playing perpendicularly through rollers. The whole machine is almost of gossamer fineness and flexibility, so as to minimize the electric strain necessary for working the cable.
Let us imagine now that a coming message bas been signaled from far across the ocean at Valentia. The operator at first opens the simple machinery that works the brass rollers. On the center of the tape, as it passes between the rollers, the siphon at first marks only a straight line. Suddenly the line swerves to the right or left. The message has started, and the end of the siphon has begun its record. Worked by two keys, and positively or negatively electrified, the coil swiags the siphon point now to one side, now 10 the other, along the tape. Responsive to the trained band of the operator, the filament of ink marks out*one notch, two notches, three notches; then suddenly it may be a bigb elevation or depression, until the delicate line traced on the tape looks like the tiny outline of a mountain range.
But it is a range whose every hilltop, peak, and valley means an alphabetical symbol to the telegrapher's eye. The recorder is the invention of the famous electrician Sir William Tbomson. How delicate an interpreter it is may be inferred from the fact that ten jars work 1,800 miles of cable between Valentia and Heart's Content, while twentyfive jars of the same electric power would be needed to work 350 miles of land wire; in other words, the recorder is more than twelve times as efficient for its purpose as the ordinary Morse instrument. The recorder traces its character on the tape about as fast as a slow penman copies a letter. Besides its delicacy of work, the recorder, as its name imports, bas the merit of leaving the record of the message.

Telegraph or Telephone.

Despite the fact that recent experiments have demonstrat ed the possibility of telephoning over long circuits, it is to be doubted if the instrument will be used otherwise than locally. It is too sensitive to induction, to atmospheric electricity, and to grounds for circuits exceeding a few miles in length. The experiments have been tried under the best, not under the worst conditions, and through a complete metallic circuit-in other words, a double line. It is hardly possible for the telegraph business of two large cities to be conducted by telephone by the senders of messages them selves, for five bundred wires might not suffice to prevent a block in busy hours, and merchants could not and would not wait.
To operate telephones as the telegraph is now used wouid be equally impracticable. Even were the instruments as little liable to disorder as the Morse, the greater danger of errors would weigh against them. There is no system of siguals as clear as the present Morse code as interpreted by the "sounder." Each letter of a word is given, and ordinarily gond operators seldom err in the record. By telephone it is the sound of a word, and not its rowels and consonants, which the operator receives, and a mistake can easily happen even under the best conditions. It is to be
language, etc., would have to be carefully spelled out, and even then would fall wide of accuracy.
By the Morse system good operators will receive at the rate of forty-five words a minute, which is almost the limit of rapid penmanship, and will often take a 2,000 word message without once interrupting the sender. The lines, too, will work in the heaviest weather, and are only interfered with by serious electrical storms, or by actual accident to the wires. Again, by the quadruplex system, four messages can go at once over one wire, while the long distance telephone requires two wires for one message. All in all, there seems to be but little prospect of the present series of experiments resulting in a practical good, however gratifying from a scientific standpoint.-N: Y. Sun.

New and Remarkable Chemical Experiments.
The liquefaction of oxygen gas aud nitrogen, the freezing f alcohol and sulphide of carbon, are the latest achieve ments of chemical science. This news comes to us from the laboratory of M. Wroblewski, in Cracow, Poland, who has given some interesting particulars in a dispatch to M.Debray published lately in Comptes Rendus. By the use of liquefied ethylene, M. Wroblewski and K. Olszewski obtained the reethylene, M. Wroblewski and K . Olszewski obtained the re-
markably low temperature of $-136^{\circ} \mathrm{C}$., equal to $-212.8^{\circ} \mathrm{F}$. markably low temperature of $-136^{\circ} \mathrm{C}$., equal to - $212 \cdot 8^{\circ} \mathrm{F}$.
Oxygen gas subjected to about this temperature, and compressed under a pressure of about 25 atmospheres or 375 pounds to the square inch, was readily liquefied in glass tubes, and formed a colorless and transparent liquid, very mobile, and resembling carbonic acid.
Nitrogen was also liquefied, forming a colorless liquid, Alcohol was solidified at -130.5 C . or $-2029^{\circ} \mathrm{F}$., forming a white body. Sulphide of carbon froze at about $-116^{\circ} \mathrm{C}$. or $-176.8^{\circ} \mathrm{F}$.
These are certainly very interesting and remarkable ex periments. Air contains by weight, approximately, 23 parts of oxygen and 77 parts nitrogen. It is common to compress it to a far greater degree than above mentioned. For motive power, in driving compressed air locomotives, a compression of the air to 1,000 pounds to the square inch is in some cases employed. The difficulty beretofore experienced in the liquefaction of oxygen and nitrogen has been to obtain a sufficiently low temperature in conjunction with compres sion. This obstacle now appears to be removed, and a variety of new and valuable observations concerning the nature of gaseous substances may be expected.

Artistic Type.

It must be confessed that while a modern press can turn out a vast number of volumes with great credit, scarce any book nowadays can vie in beauty with the old Aldine books, with many printed in Italy in the seventeenth and eighteenth centuries, or with those printed by our English Baskerville in the last century, between the years 1756 and 1775 . One reason of this is that our types are not so beautiful. In old days each type founder was desirous of getting designs for his letters from men of real artistic feeling; nor did these disdain to design a comma, any more than they would scorn to make a beautiful leaf or flower in a picture devoted to saints or historical personages. There is a tradition that Hogarth designed Baskerville's types, which is likely
enough; at any rate, they were the last English types of enough; at any rate
The best now existing are copies of copies. reproduced mechanically, which have long ceased to have the human brain infused, as it were, into the molten metal. The best existing types at this foment are French, and they, not ours, are the true descentants of Baskerville's; for at bis death in 1775 his types were sold to France, and used to print an edition of Voltaire, still well known, and most excellent in its workmanship. The modern French types of the best fonts are reproduced, as it would seem, from these, but with less of exact mecbanical copying and more of human variation and fancy. There could scarcely be a better work for the artistic future of books than that which might be done by some master of decorative art, like Mr. William Morris, and some great firm of type founders in conjunction, would they design and produce some new types for our choicer printed books - Fortnightly Review.

A Fish way for the Potomac River.

For the Potomac at Great Falls, in order to facilitate the novements of shad, an appropriation of $\$ 50,000$ has been made by Congress, and the United States Fish Commissioner, Professor Spencer F. Baird, invites suggestions as to the construction of a proper fishway. There are certain engineering difficulties which would have to be overcome, due to the rocky nature of the bed of the river and ice accumulations in winter. Maps of the river can be had of Professor Baird, necessary for a thorough acquaintance with the con tour and grade found at the falls.
The New York Belting and Packing Company, probably the most extensive manufacturers of rubber belting, packing, and bose in the United States, have just removed
to their new building, No. 13 Park Row, New York. The new quarters of the company bave been fitted up with special design for the business, and are most complete in every respect. They are located directly opposite the Post Office and Astor House.

Sunday in New York City.

A recent number of the New York Tribune contains an interesting article, showing bow Sunday is passed in the great city of New York, with its population now numberng a million and a quarter of people.
The church membership is given at nearly one half the population, or 600,000 members, of which 500,000 are by estimate credited to the Roman atholics, but of this there is no actual enrollment; there are 100,000 enrolled members among the Protestant churches. The Catholics have 190 churches, the Protestants, 310, total 500 churches. The Protestants have 365 Sunday schools, and 119,000 scholars attend. Catholic Sunday schools not given.
As to Sunday amusements in summer, about 75,000 persons leave the city for excursions into the country and the sea shores. The Germans, of whom there are about 250,000 in the city, visit the beer gardens in large numbers. Central Park receives 100,000 visitors on Sunday. Only one or two libraries are open on this day, at which the attendance is about 2,000 . As for drunkenness and other crimes, there is a trifling let up on Sunday; the average number of daily is a trifing let up on Sunday; the average number of daily
arrests is 193; the average for Sunday is 182 . Monday, 227 : On Sunday evenings there are a few concert halls and beer song places open, visited, in the aggregate, by about ten thousand persons.

Twenty-four osclock.

The Railwoay Reporter says that the Cleveland, Akron, and Columbus Railroad Company bave recently issued a new time card, based on ,the twenty-four hours systemthat of numbering the hours of the day from one to twenty. four, instead of making two divisions of twelve hours each designated or distinguished as Ante Meridian and Post Meridian-A. M. and P. M. At present still another designation is used, that of M. when 12 midday is to be distinguished from 12 P. M. The Reporter says that this company is the first to employ this continuous system; but in reality the method is a very old one, coeval with the history of clocks, and is still in use in some parts southeastern Europe. The Reporter adds, that "the day begins at midnight, as under the common system, but there is no possibility of confusion between forenoon and afternoon hours. The great advantagc of this scheme in a railroad time table will be seen at once: 7 A. M. and 7 P. M. are frequently misprinted or misunderstood, while no one will coufound 7 o'clock with 19 o'clock. Any watch or clock can be
adapted to the system by simply putting the extension of the hours in a circle just inside of those already on the face. The exterior numbers will then be consulted up to 12 o'clock (noon), and the interior ones for the remainder of the day.

Fuchsias.

Fuchsias like a rich soil, freely drained, consisting of urfy loam, old, thoroughly decayed manure, or leaf-mould in ahout equal portions, with a good sprinkling of charcoal dust and sand, and, if at hand, a handful of bone-meal may be added at the last shift. Should they be required to bloom for a long time and continuously, they must be well fed. They are often well grown under vines, the moist atmosphere necessary for their proper development and the partial shade of the vine foliage seeming to benefit them materially; bear in mind, however, that where the vines are closely trained and the foliage becomes dense, the shade will be too mucb for the fuchsias.

New Postage Rates.

On and after October 1, 1883, letter postage will be uniform at two cents for letters 10 any part of the United States. On and after July 1, 1883, money orders for $\$ 5$ and under may be obtained for three cents. The order will be payable to bearer, and will be good for three months from date of issue; after that time the bolder can get par value only by applying to the department a, Washington. On the same date the rate of money orders on all sums will be cbanged, and not exceeding $\$ 10$ be procurable for eight cents, and from that to $\$ 100$, the rate increasing up to 45 cents.

Luminosity of the Magnetic Field.-Professor W. F. Barrett, of Dublin, has been making some interesting ex periments to test the correctness of the discovery claimed to have been made by the late Baron von Reichenbach, viz., that a peculiar luminous effect, resembling a faint electric discharge in rarefied air, emarrated from the poles of a magnet, and was rendered visible in a perfectly darkened room. These new experiments confirm those of Reichenbach.
W. E. Sawyer the well known electrical inventor and writer, died at his residence in Waverley Place, in this city, on the 15 tb instant. Professor Sawyer's name is familiar to ur readers, as it has on several occasions been presented in our columns in connection with his inventions. He was a tireless worker in the field of electric illumination, and devised many novel things in that line.

New subscribers to the Scientific American and Scientific American Supplement, who may desire to have complete volumes, can have the back numbers of either paper sent to them to the commencement of the year. Bound olumes of the Scientific American and Scientifio American Supplement for 1882, may be had at this office, or obtained through news agents.

