THE CLOCK OF STRASSBURG.

The late transit of Venus curiously proved the accurate calculations of the ancient makers of that famous horologi cal curiosity, the Strassburg clock. A few days before the transit, the American Register tells us, visitors to the cathe dral, inspecting in the planetarium attached to the clock noticed that one of the small gilt balls representing Venus was gradually moving toward a point between the sun and the earth, and on the day of the passage the ball stood ex actly between them. Old Conrad Dasypodius, the Strass burg mathematician, superintended the manufacture of the clock and its accompanying planetarium some time between 1571-74, the dates differing according to various authorities and it is interesting to note that, after three hundred years of existence, the clock faithfully fulfills the calculations of its dead inventor.
A correspondent sencts the foregoing, which is quoted from the London Graplic, expresses doubts of its correctness, and asks for information. One of our astronomical cor respondents sends us the following notes
The construction of a machine which would exhibit accurately the motions, distances, and magnitudes of the planets, and could be kept in running order for three hundred years, is an impossibility. Such a piece of machinism would require the skill of the Great Architect of worlds.
The history of the Strassburg clock and the planetarium connected with it bears witness, like everything else, to the imperfection of workmanship, and the frequent necessity of changes and repairs.
The clock stands in the cathedral, and dates back to 1352, when it was put up under the patronage of Berthold de Buchek, at that time Bishop of Strassburg. As time passed on, the clock got out of order, and in 1547 three distin gushed mathematicians were commissioned to put it in re pair. They all died before the work was finished, and Con rad Dasypodius undertook the responsible task, which be completed in four years. Theclock worked well until 178\%, the year of the Great Revolution, when it struck for the last time.
It was left undisturbed for nearly fifty years, and fell into a dilapidated condition, mournful to behold. An effort was then made for its restoration. This was found to be impossible, for the works were rendered almost useless by rust and verdigris. Finally, Schwilgue, an artist and mathematician of Strassburg, undertook to repair, modify, and re instate the clock. He commenced the task in 1836, and, after working four years, completed it in 1840.
A mythical story is told of him, which does not redound to the honor of his fellow citizens. It is said that be had engaged to construct a similar clock for the capital of one of the Swiss cantons, and that his tingrateful townsmen put out his eyes to prevent bis fulfllment of the contract.
Schwilgue placed the mechanism of the old clock in the old casing, after skillful improvements and alterations, where it continues to be a source of proud satisfaction to the inbabitants of Strassburg, and an unfailing object of attraction to travelers from all quarters of the globe. Besides the remarkable performances connected with the regular clockwork, it shows the siderial time, the movements of the planetary system, and the precession of the equinoxes. It is claimed that the mechanism is so perfectly elabo
it marks the 29 th of February in every leap year.
it marks the 29 th of February in every leap year.
It is not impossible that the planetarium may have marked the transit of Venus on tine 6th of December last, for ir the inclination of the orbits of Venus and the earth to the ecliptic is accurately represented, Venus must sometimes be at a point directly between the earth and the sun, and consequently make a transit over his disk. The possibility of such an occurrence probably never entered the mind of the ancient Cunrad Dasypodius; much less had he power to make the accurate planetary arrangements to bring about a result, after a lapse of three hundred years, depending on contingencies then unknown. It was not until the seventeenth century that Kepler so far improved the planetary tables as to predict that a transit of Venus would occur on the 6th of December, 1631.
We have no means of knowing what improvements Schwilgue made in the ancient piece of mechanism, but it is safe to say that absolute perfection was not attained. If
Venus did actually wheel into line between the earth and sun on the 6th of last December, we are inclined to think it must have been a simple coincidence rather than a result of profound mathematical calculation. If such were not the case, why did we hear nothing of the transit of Venus in 1874, nor of the six transits of Mercury that have tak place since the planetarium was put in order in 1840?

Insects and plants.

The tenth of the course of the Saturday lectures under the auspices of the Biological and Anthropological Societies of Washington was delivered by Professor C. V. Riley, his subject being "Adaptation and Interdependence between Plants and Insects.'
The first part of the lecture consisted in a popular exposition of the more curious and striking fac that have of late years been ascertained in reference to the mutual adaptation between Howers and insects, and particularly to the movements, structure, digestive powers, and other peculiarities of insectivorous plants Tbis partof the lecture was illustrated observations.
The second part of the lecture was devoted to some The second part of the lecture was devoted to some
general conclusions which the facts naturally led to. Here
the chief aim seemed to be to emphasize the principles of
evolution as applicable to the development of special or peculiar structures. The attention and approval manifested by the audience were noteworthy as indicating the increasing acceptance by the intelligent masses of the more modern biological ideas.
We give some of the closing words of the lecturer, who described many of the actions of insects as rational and the movements of plants as voluntary: "It may be that plants can appreciate neither pleasure nor pain, and that all their actio are reflex and automatic, but, if so, then so are the majority of the movements, not only of the lower, but lakewise of the higher animals. It may be that all the actions of insects and the lower animals are instinctive; but I prefer to believe, and feel convinced, that many of them are rational.
"Allowing all the nower they deserve to radiation, light, heat, electricity, etc., and they yet fail to explain these plant motions which I have called voluntary, and which are performed independently of those influences. Darwin, in the last published work of his life, felt obliged to use the word perceive in reference to many of these movements, and it is
difficult to conceive of irritation without sensation.
" Protoplasm is, so far as we know, the basis of both vital and psychic phenomena, and the manifestations of sensation and consciousness are of the same nature throughout the organic world. They differ only in degree, and it wi!l ever remain, perbaps, a matter of opinion and faith as to just where volition and consciousness begin, or, to use another figure, just how much concentration or massing of the protoplasm or how much organization of structure is necessary to intensify those phenomena into consciousness. One thing is certain and profoundly significant, viz., that the lowest organism and the first existant on our planet possessed at some stage of development-whether in the embryonic, the larval, or the sexual state --the power of independent mo-tion-activity. It matters little whether we call them animals or plants; they were, and their present representatives yet are, perbaps, combinations of both. They represented the potentiality which has developed on the one side the most complex animal intelligence, and on the other the highest vegetative organization.

One thing at least I hope I have demonstrated, viz. that the study of nature loses nothing of interest by the developmental principle that her manifestations are due to secondary laws; that in tracing the origin of things, as they now exist, from pre-existing things the mind is but grasping at the method by which the Creator works. There must ever remain to the philosophic student of life upon our planet a sense of his nescience of the ultimate first cause-the lnflnite; and the highest induction as to this infinity is perfectly consistent with the theory of evolution so irresistibly impressed upon those who study aright the great book f Nature !"

Incidents in a Philosopher's Boyhood

Prof. Joseph Henry, one of the most eminent of American scientists, died May 13, 1878. On Thursday, the 19th day of the present month, his memory is to be honored by the unveiling at Washington of a magnificent bronze statue, made by W. M. Story, and costing $\$ 15,000$.
Among the interesting reminiscences of his boybood is the story of his first pair of boots--a true story, often told by himself in later years.
When he was a boy, it was the universal custom to have boots made to order, and his grandmother, with whom he was living, indulgently allowed him to choose the styie for himself. There was no great variety of styles. Indeed, the choice was limited to the question of round toes or square toes. Day after day Joseph went to the cobbler's and talked over the matter without coming to a decision, and this even after their manufacture was begun, until at last the shoemaker, fairly out of patience, took the decision into his own hands and made a most remarkable pair of bootsone boot round toed, the other square toed.
Later in life Prof. Henry of ten came deliberately to his decisions, with the advantage that he seldom if ever had occasion to abandon them.

Whiie Juseph was a schoolboy he acquired a taste for reading in this peculiar way: One day he chased a pet rabbit through an opening in the foundation wall of the village meeting-house. While crawling about among dirt and rubbish a gleam of light enticed him through the broken floor, and he found himself in a room containing the open bookcase of the town library. The title of one of the books struck his fancy and he took it down. It was Brooks' "Fool of Quality," and he read, coming again and again through the hole in the floor, until access by the door was finally granted him. From this first book that he ever read with relish, he passed on eagerly to other works of flction in that library.
A few years later, in a way almost equally accidental, his mind was turned to an entirely different class of reading.
Contined at home by a temporary illness, he took up a book casually left on the table by a boarder, and entitled "Lectures on Experimental Philosophy, Astronomy, and Chemistry, intended chiefly for the Use of Young Persons. By G. Gregory." It began with a few questions: "You not go stone, or shoot an arrow into the air; why does it

Why does flame or smoke always mount upward, though no force is used to send them in that direction? And
when you reverse it or bold it downward?
Again, you look into a clear well of water and see your own face and figure, as if painted there. Why is this? You are told it is done by the reflection of light. But what is the reflection of light?"
The trifling incident of taking up this book may be said to
have turned the whole course of this lad's life.
After his death this book was found in Professor Henry's library with the following entry upon the fly-leaf, written in his own band:

This book, although by no means a profound work, has, under Providence, exerted a remarkable influence upon my life. It accidentally fell into my hands when I was about sixteen Jears old, and was the first work I ever read with attention. It opened to me a new world of thought and enjoyment; invested things before almost unnoticed with the highest interest; fixed my mind on the study of nature, and caused me to resolve at the time of reading it that I would immediately commence to devote my life to the acquisition of knowledge."
Many young men quit school at sixteen years of age. They should take a lesson from Joseph Henry, and regard education as not completed, but just begun.

C. P. Osborne.

Fishing by Electricity.

According to a correspondent of the Philadelphia Press, the cléctrical apparatus of Professor Baird's expedition is very complete. The search light is one of the most novel of the wonderful inventions of the nineteenth century. It consists of three Edison electric lights of 16 candle power each, inclosed in a hermetically sealed glass case, which is surrounded by a glass globe, and capable of resisting the pressure of the water at a great depth. It is proposed to sink the lamp and illuminate the sea by turning on the light. This, it is expected, will attract the fish, and a net ten feet in diameter at its mouth placed below the light will be drawn at the proper time, and the unknown fish of the lower waters will be caught. "It is an improvement," said one of the officers of the ship, "on the method of the Indian who searched the rivers at night time with a burning pine knot in the bow of his canoe and a spear in his hand, but the idea is really stolen from him.'
Paymaster Read has the most perfect arrangements for his work. He will be able to photograph fish and shells, as soon as they are taken out of the water, by a vertical camera. This is necessary, as in some cases the air changes the form of some of the curiosities of the sea. The sea water will also be brought to the surface from any depth desired for analyzation. During the trip of the Albatross from Wilmington an arc light has been first successfully operated on an Edison circuit, and an invention has been completed for lighting the surface of the sea, which will be useful for signaling and for the prosecution of all kinds of work at night.

An Internal Mite in Fowls.
Professor Thomas Taylor, microscopist of the Department f Agriculture, had occasion recently to dissect a sick chicken, and he found that all parts of the lungs, the bronchiæ, and the linings of the thorax and abdominal cavities were covered more or less thickly with a mite. An examination we were requested to make showed it to be in all respects identical with Cytoleichus surcoptoides, Mégnin. This parasite is known in Europe to inhabit the air passages of gallinaceous birds, giving the transparent and membranous lin. ings of these passages the appearance of gold beater's skin speckled with flour. It is likewise found in the bronchial tubes and their divisions, and even in the bones with which the air sacs communicate. Mégnin believes that while the mite may be extremely numerous, so as to cause mucous irritation and induce asphyxia ad congestion by obstruction of the bronchiæ, and that birds may thus die, yet it is incapable of causing, as Gerlach and Zundel believe, enteritis or inflammation of the peritoneum.

Talking One Thousand Miles.

We recently described some extraordinary telephone experiments on the Postal Telegraph Company's line between this city and Cleveland, O., a distance of six hundred and fifty miles. This experiment was so successful that it was expected the distance could be greatly extended. The Postal Telegraph Company's wire now reaches Chicago, which is distant one thousand miles, and we are informed that telephonic communication has been carried on for some days between this city and Chicago: the transaction of business over the line by this means being an every day occurrence. The instrument used in this experiment is the Hopkins telephone, described in our former article.
Mount Etna is in eruplion, pouring out from the central crater a stream of lava. Vesuvius is in its usual passive state, although there is always a subterranean stream of lava flowing. Visitors are conducted by guides to the spot where the liquid fire may be seen through an aperture in the solid crust of lava... The column of smoke constantly ascends, and at intervals at night there is a brilliant light.
New subscribers to the Scientific American and Scientific American Supplement, who may desire to have complete volumes, can have the back numbers of either paper sent to them to the commencement of the vear. Bound volumes of the Scientific American and Scientific American Supplement for 1882, may be had at this office, or obtained through news agents.

