THE GREAT RUSSIAN TELESCOPE.

We have seen the wonders of the starlit sky through the $\begin{aligned} & \text { glass bore the testing process with triumphant success, and } \\ & \text { is pronounced by the makers to be the best that bas left }\end{aligned}$ largest and best refracting telescope in the world; but the their hands.

wonderful instrument is not destined to remain in this coun- But the supremacy of the Russian telescope as the largest try. The most important part of it, the object glass, with of its kind in the world will be of short duration. The the cell that holds it in place, will soon be on its way to the same trial mounting will be used by the Messrs. Clark for Russian Observatory of Pulkowa, located on the Pulkowa	same trial mounting will be used by the Messrs. Clark for
testing the thirty-six inch object glass which they bave en-	hills, nine miles south of St. Petersburg, and commanding gaged to make for the Lick Observatory of California. a fine view of the capital. The observatory was built and The pier of the temporary structure is twenty-seven feet richly endowed by the Czar Nicholas in 1839, and has won in height; the tube is forty.five feet in length, with an aperhigh renown on astronomical annals for the work it has ture of forty inches in diameter. Figures, however, give a already accomplished under its first director, the eminent faint idea of this giant structure. It must be seen looming astronomer Wilhelm Struve, as well as under his son, Otto up under the sky before its buge dimensions can be realized. Struve, who became director in 1864, upon the death of his \mathbf{A} view of the heavens through its great eye must be taken Struve, who became director in 1864, upon the death of his

distinguished father, and still holds the honorable position. distinguished father, and
The Russian Government was not satisfied with the capacity and size of the present working force of the observatory, and determined to have a new refracting telescope constructed which, in me chavism and optic power should surpass any tele scope in existence. The director (Struve) was cos missioned to carry out the plan. The most per ect workmansbip attain able was to be put in requisition, and Struve chose from all the world, for the execution of the difficult and delicate task, the Messrs. Alvan Clark \& Soas, the famoustele scope makers of Cam bridgeport, Mass.
Struve came to this country, and intrusted to their skillful hands the making of the object glass, with a diameter of thirty inches, and its cell. The mounting of the great telescope is being made in Hamburg, Germany, by Messrs. Repsold \& Sons. The Pulkowa object glass is four inches larger than that of the Washington elescope finished in 1873 , and seven inches larger than that of the similar instrument recently completed for the Princeton Observatory, both telescopes being the work of the same makers. The arrangements with Messrs. lark were made in the summer of 1881, and the great objective was completed in October, 1882:
A temporar' ${ }^{\prime}$ equatorial stand was erected if the yard of the workshop, in order to test the quality, power, and perfection of the glass. It consists of a ier of solid masonry, to which a tube of sheet ron, made in three sections, is firmly fixed, with the necessary mountings to secure its movemeut in the required direction. The object glass, the eye pieces, and other appurtenances being then placed n position, the great refractor was ready to show its working power, and to reveal any slight imperfections in the pulish or finish that required attention. The precious

THE TRIAL MOUNTING FOR THE GREAT RUSSIAN TELESCOPE, PULKOWA, RUSSIA. CONSTRUCTED BY MESSRS. ALVAN CLARK \& SONS 1883.

The evening of our observation is intensely cold, but the sky is undimmed by the shadow of a cloud, the atmosphere is free from a breath of moisture. The heavens present a scene of exceeding beauty as the party of observers take their places under the stars. The last lingering rays of twilight faintly suffuse the west, the new moon, only a day old, holding the old moon in her arms, is nearing the horizon, and the zodiacal light spreads its cone of pale gold high up among the eternal stars. Under the dark dome arching above us, the brightest stars and clusters of stelspace look down with friendly eyes, and seem to ang low, as if they would bold communion with mortals. mong them thread the planets Jupiter and Satum, whose mysterious portals we, audacious invaders, are seeking to enter this night with necromantic art. Rising from a surface of unbroken snow, and looming up with shadowy indistinctness, the buge telescope seems to pierce the skies, while the observers at its base dwindle to pygmies.
After a short time the instrument is ready for action; its open eye is turned upon the planet Saturn. The serene star, upon which a moment before we had turned our unaided eye, is suddenly transformed into a creation of surpassing beauty. A superb golden spbere, as large as the full moon, lies before us. Saturn is softly cradled in the protecting embrace of his engirdling rings, and seven of his eight moons are visible as bright points on the dark background of the sky. Titan, the largest moon, bas a perceptible disk. Every detail of the magnificent and complex Saturnian system is complete. The outer ring, with its fain line of division; the di vision between the oute and inner rings; the inne or second ring; the third or crepe ring, closely joined to the second; th break on the rings formed by the shadow of the planet; and the soft mark ings on bis disk. Noth ing is wanting in the minutest details, and there is but one imperfec tion in the picture. The definition is not good; the outlines are not clearly defined. The view does not differ greatly in dimensions from that pre sented by a smaller tele scope, but planet and rings are fionded with light of delicious bril liancy and softness. Here lies the advantage of a great telescope. It brings to the eye all the light that enters it, so that, within certain limits, the larger the telescope, the larger the amount of light it collects, the more easily visible will faint objects become, and the greater the number of objects before unseen that will be revealed.
The coloring is exquisite. Terrestrial colors are muddy in comparison
with the celestial hues of liquid gold of the disk and rings, and the creamy tints of the belts that cross the disk with the lightness and grace of scudding cloud bands. The sphere seems almost to stand upright within the encircling rings, only a small portion of the planet being seen beneath them We have fallen upon favorable conditions for a view of Saturn, for his rings are opening to their widest extent, his northern declination is increasing, and he is approaching perihelion.
Jupiter is the next object to est the space annihilating power of the instrument. The Prince of Planets is superb larger than the full moon, though but little larger than we have seen him many times in a telescope of eiglit inches aperture. He is, however, much brighter, and though by no means as magnificent as Saturn, we have the pleasure of feeling that we see him on a much larger scale. He seems so near that we are impelled to put our hands behind the glass and touch him. His broad belts are delicious in coloricg, now suffused with pale rose, or mottled with soft gray, while shades of purple, brown, and delicate green are interspersed. Never before did we behold the variety of tone and tint, the flood of light we see this night. Never did our giant brother seem so near, so grand in proportions, so symmetrical in equipoise. His four satellites are brightly beaming on his left, and bear testimony to the power of the telescope by presenting disks instead of points. The famous red spot is wanting in the view. We mourn its absence, for since 1878, its well known features have become as familia and firmly fixed as if they were a permanent feature on the planet's disk.
What shall we see next? is the question now discussed, for the extreme cold has congealed the oil, and the monster refuses to move. His eye is turned to the meridian, and no effort will make him swerve one inch to the right or left. In this emergency, a member of the party volunteers to mount to the top of the pier and lubricate with fresh oil the jaints of the giant. The plan is successful, and with many a shriek and groan, the lower end of the tube rises and the upper end falls, until the Cyclopean eye points to the great Nebula in Orion.
The little wisp of cloud haze visible to the naked eye is transformed into one of the most glorious visions that ever breaks upon the entranced eye of the observer. The mos wonderful nebula the northern sky reveals lies before us, filling the whole field of view and suffused by a light that never was on sea or shore. Now we appreciate the power of the great telescope, the triumph of the optician's art. For definition is of little consequence in observing the shadowy ebula. Light is needed, and ligbt comes
The delicacy of the celestial glow that pervades the scene is beautiful beyond comparison. The central point of inter est is the famous trapezium, consisting of four brigbt stars and two smaller ones. Around this sextuple group radiate what seem to be the head and branching horns of some huge animal, the trapezium occupying the open mouth, and sur rounding a space of sky within which reigns the blackness of darkness. Spiral curves of nebulous haze fill in the field of view, the radiating mass being of a delicate green tint, while dotted over the shadowy haze are many brilliantstars, tbrowing an element of life into the formless void and help ing to light up this scene of loveliness and grandeur which no pencil may paint nor pen describe. We feel, while with reverent eyes we gaze upon the picture, that we are looking within the eternal gates, and enjoying a glimpse of the glory to be revealed, that "eye hath not seen or ear heard."
It is said that no one can look upon the Apollo without standing erect and feeling a sense of the divinity inherent in human nature. But what is tbis masterpiece of Greek art, chiseled by human hands from a block of marble in comparisol with this creation from Nature's fashioning band brought near to mortal eyes by telescopic art! Where but in the heavens shall we find such an exhibition of majesty, vastness, and celestial grace as is symbolized in the great Nebula of Orion, beaming with suns, peopled with ghosily shadows, and glowing with light that is hundreds of years when it reaches us! Our earth and her brother planets will have cooled duwn to dead worlds, the sun's fires will be quenched in utter darkness, when the star dust on which we are now looking will quicken with the pulse of physical life throw off its concentric rings, and concentrate into beaming suns and systems to take the place of those whose race is run, whose mission is fulfilled

Photo-chemical Action of Ferric Oxalate

Victor Jodin has observed that when 1625 parts (one equivalent) of percbloride of iron, and 63 parts of crystal lized oxalic acid, dissolved in a liter of water, are exposed in the sunlight, carbonic acid gas is set free in such quantity as to supply the requirements of plants inclosed in the vessel with it, the absorption and decomposition of carbonic acid by the plant being likewise a photo-chemical action, becaus it requires sunlight to aid it.

New subscribers to the Scientific American and Scien pific American Supplement, who may desire to have com plete volumes, can have the back numbers of either paper sent to them to the commencement of the vear. Bound volumes of the Scientific American and Scientific American Supplement for 1882, may be bad at this office or obtained through news agents.

Srientific Amxitam.

ESTAABLISHFDD 1845.

MUNN \& CO., Editors and Proprietors.
 published weekly at
 No. 261 BROADWAY, NEW YORK.

o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCLENTIFIC AMERICAN.
One cony, one year postage included..
One copy, six months postage included \qquad $\$ 32$
Clubs.-One extra copy of The Scientific American will be supplie ame proportionate rate. Potage prepaid.
Remit vy postal order. Address
MUNN \& CO., 261 Broadway, corner of Warren street, New York.
The Scientific American supplement
a distinct paper from the SCIENTIFIC AM ERICAN. THE SUPPLEMENX with Scientific American. Terms of subscription cor Supplement $5: 00$ a year, postage paid, to subscribers. Single copies, 10 cents. Sold by 1 news dealers throughout the country
Combined liates. - The Scientictic American and SCpplemmint papers to one address or different addresses as desired. The safest way to remit is by draft, postal order. or registered letter

cientific American Export Edition

The Scienvific amilican Export Edition is a large and splendid peri dical, issued once a month. Each number ccntains about one hundred
arge quarto pages, profusely illustrated, embracing : (1.) Most of the lates and pages of the four preceding weekly issues of the Scruswrific AmRICAN, with its splendid engravings and valuable information: (2.) Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire o secure foreign trade may have large, and handsomely displayed an The SCIENTIFIC AMMuIC AN Ex Eort Edition hy moderate cost. Tion Sientific ammican Export Edit ion has a large guaranteed circuO., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, APRIL 7, 1883.

TABLE OF CONTENTS OF
the scientific american supplement

No. 379,

For the Week ending April 7, 1883.
Price 10 cents. For sale by all newsdealers
 TECHNOLOG Y.-Richard's Registering Apparatus.-6 figures... Fruxler's New Carding Machine.- 1 Agure.
II. FNGINBERING AND MECH ANICS. -Champton's Hydraulic

II. AGRICDLTURE.-How Nature Sweetens Our Fruits. iil. natural history.- A Land sink.
I. ASTRONOMY.-Astronomy for 1888.
x. MISCRLLANEOUS. Said I to myself.-A poem....................... 6 653

THE TOTAL SOLAR ECLIPSE OF MAY 6

A total eclipse of the sun occurs on the 6th of May, that presents features of special interest. It is greatly to be regretted that this sublime and awe-inspiring phewomenon marks its path over a portion of the globe where there are so few to witness it. The line of totality lies entirely in the South Pacific Ocean, and as ingeniously avoids habitable land as if its purpose were to confine the spectacle to the smallest possible number of spectators.
There are, however, within the narrow path of total obscuration, two eligible points where the eclipse may be seen to great advantage. These points are two small islands, named Caroline Island and Flint Island. Caroline Island, the larger of the two, is about ten miles in circumference, and was, when visited in 1874, inhabited by a few natives and an Englishmar. It is situated in $73^{\circ} 20^{\prime}$ west longitude from Washington, and in $9^{\circ} 40^{\prime}$ south latitude. It does not belong to the group known as the Caroline Islands, situated farther west. The duration of totality in Caroline Island will be five minutes twenty seconds.
Flint Island is five or six miles in circumference and is uninhiabited. It is situated in $73^{\circ} 40^{\prime}$ west longitude from Washington, and in $11^{\circ} 30^{\prime}$ south latitude. The advantage it possesses lies in the fact tbat the totality here continues five minutes and thirty-three seconds, thirleen seconds longer than in Caroline Island.
The eclipse of May next is especially favorable to observation ou account of the exceptionally long duration of the total phase. The longest time a total solar eclipse can last is a little less than seven minutes. The average time is about two minutes. In the present case, the totality will continue between five and six minutes, which is a rare event.
Three expeditions are already on the way to these lone islands of the Pacific, for the purpose of observing the eclipse. The American expedition is sent by the United States Government, five thousand dollars having been appropriated for the purpose. The National Academy of Sciences, the Naval Observatory, and the Coast Survey all send representatives. The party consists of six members. Prof. Holden, Director of the Washburn Observatory, at Madison, Wis.; Prof. Hastings, of the Johns Hopkins University, of Baltimore, and Mr. Rockwell, of Tarrytown, New York, nominated by the National Academy of Sciences; Mr. Preston and Mr. Upton, sent by the Coast Survey; and Ensign Brown, sent by the Naval Observatory. Prof. Holden has charge of the expedition.
The astronomers started from New York on the 1st of March, reached Panama on the 9th, and Callao on the 22d. From Callao they will be conveyed by a government steamer
 25th of April. They will spend the intervening time till May 6th in preparation for their work. After the eclipse, the government steamer will take the voyagers to Honolulu, Sandwicl Islands; thence they will return by steamer to San Francisco, and arrive in New York about the 1st of July. This is the programme of the American exploring party, and on account of the isolation of its members from the rest of the world it will be impossible to obtain tidings of the result of their work before the 1st of June.
British astronomers are but meagerly represented on the occasion. The Royal Astronomical Society has sent two representatives, who, joining the American observers at Panama, will go with them to Caroline Island. They will take charge of the photographic work.
The French expedition, under the charge of M. Jannsen, is also on its way in pursuit of the same object. It will probably observe on Flint Island, or, divided into sections, may occupy both islands.
Thus, three of the most enlightened governments of the world send men of science to this far-away spot to "take notes" on the day when the light of the sun is hidden for less than six minutes. What do these astronomers hope to accomplish that will reward them for the privations endured in traversing many thousand miles by land and sea, and for the possibility that intervening clouds may hide the grand phenomenon from view?
They bope to learn sometbing on three important points, two of which are connected with the surroundings of the sun, and are never revealed except on the rare occasions of a total eclipse. In the first place, they will make a study of the corona, the silvery halo that surrounds the sun, and comes into view the moment his bright orb is covered by the moon. Especially will tbey pay attention to the inmense appendages that branch out from the corona in all directions, and, taking on all manner of fantastic forms, spread in limitless dimensions into the regions of space $_{s}$ The problem of exceeding interest to solve is $\begin{aligned} & \text {. nether }\end{aligned}$ they are dependencies of the coronal atmosphere, or whether they are swarms of meteors circulating around the sun.
In the second place, observations will be made upon the zodiacal light, the glimmering glow of pale gold that, during portions of the year, appears in the west after sunset, and, assuming a cone-like form, rises high among the stars. The possible connection between this mysterious light and the coronal appendages affords material for observation of exceeding interest.
In the third place, careful search will be made for the small intra-Mercurial planets that probsbly circulate in the immediate neighborhood of the sun, and can only be seen when making a transit over his disk, or during a total solar eclipse.
Observations on various other points of inte rest connecte

