

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 261 BROADWAY, NEW YORK.
O. D. MUNN.
A. E. BEACH.

TERIMS FOR THE SCIENTIFIC AMERICAN. One copy, one year postage included...
One copy, six months postage included gratis for every clubl, of tive subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postape prepaid.

Remit by postal order. Addres

The Scientific American Supplement
is a distinct paper from the SCievtific american. The Supplement
is issued weekly. Every number contains 16 octavo pages uniform in is issuad weekly. Every number contains 16 octavo pages, uniform in size
with Scienturc American. Terms of subscription for SUPPLEMENT $\$ 5.00$ a year, postage paid, to subseribers Single copies, 10 cents. Sold b all news dealers throughout the country Combined liates. -The Scientific American and Scpplivairnt
will be sent for one year postage tree. on receipt of seven dollars. Both will be sent for one year postage tree. on receipt of seven dollars. Bot
papers to one address or different addresses as desired. The sifest way to remit is by draft, postal order, orregistered letter. AdaressMUNN

Scientife American Export Edition.

 The Scin:Nific ambrican Export Edition is a larke and splendid perilarge quarto pages, wrofusely illustrated. embracing: about che hundred plates and pages of the four preceding weekly issues of the ScicstIFIC Commercial, trade, and manufacturing announcements of leading hoise Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have laree. and handsomely dispnouncements published in this edition at a very moderate cost.
The Scievtific Amumican Export Edition has a large guarain teed circu lation in all commercial places throughout the worla. Address AlUNN Co., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATLRDAY, MARCH 31, 1883.

Contents.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 378,

For the Weet ending March 31, 1883.
I. ENGINEERING AND MECHANICS - Boiler Explosions....

III. TECHNOLOGY.-Heating by Gas. By II. H. EdGerton.-2

VI. NATURAL HISTORY, GEOLOGP.ETC.-The Origin of Crystal.

EDUCATION FOR MECHANICS

The question of the extent of the benefits of education to the working mechanic is an old one. Many place too high a value upon the utility of learning. To them knowledge seems all powerful; it is a key that unlocks every door. It is among those of lesser culture that this opinion mostly obtains. They overestimate the value of science, while the better educated fall into the opposite error, and undervalue it. As usual, the truth is to be found in the middle. Edu cation of whatever nature exerts a certain influence upon all our actions, but is not responsible for everything. Those who are wanting in it are apt to attribute all their troubles to this deficiency. How often does some inefficient mechanic say that he would have done much better if he had only been educated. He cannot see that bis faults are positive and inherent. Those who possess education, find ing that their natural faults still impede their progress, come to the conclusion that what they bave learned is of little value.
In the case of the mechanic it is not easy to determine just what knowledge is worth. After he has learned hi trade mechanically, it is worth his while to go further and read up what has been written about it. While many of the best workmen do not use book knowledge at all, the typical intelligent workman is always a reader. He receives a scientific journal and possesses half a dozen books treating of lathe work and kindred subjects. They describe case-hardening compounds, brazing and welding fluxes, and give hints on lathe management, on cutting angles of tools for different metals, and the like. Every day he may have to go through some of the operations they tell of, yet rarely or never will he leave the beaten track. But although he may not follow them in practice, he always reads them He does good work in the shop, and reads intelligently at home. If any question comes up with his employer about mechanical points, he will bring him the next day some of his books or papers as authorities, yet his shop work is done on principles learned by hard experience, and not by book theory. His books and his scientific journal do not seem to help him there. Clever as the man may be, he would seem at first sight to lack the faculty of applying his book knowledge. Yet if we go a little deeper into the sub ject, it may appear that it is because of his excellence as mechanic that he rejects the book in practice. The hard school of experience has taught him two lessons. One has been a right way of doing things; the other bas been the danger of trying to improve on that way. In the appren ticeship of the mechanical arts the work of generations of mechanics is imparted to the learner. The evolution of so many minds and years should be treated with reverence. To institute a genuine and valuable improvement is far from easy.
All this proves the diguity of the pandiden held by the mechanic. He has a knowledge of shop work that is de rived, as just stated, from generations of the world's work His knowledge of this work is, then, of the very best. His acquaintance with different metals, with the treatment of different steels and irons, is perfect. His application of it is an instinct. He will seldom find in his course of reading a justification for leaving the way he is accustomed to. His special branch he knows so well that the books can scarcely improve it. His thorongb kuowledge of shop work attains to the dignity of a liberal education. It is not to be de spised or looked
This is a fair picture of the good mechanic as found in our shops to-day. He reads, but does not often succeed in applying his reading. Yet be will study, and will enjoy studying. It elevates his mind by giving it something be sides itself to live upon. Seldom as the direct application of his reading comes into his work, its indirect influence affects every blow of his hammer. His intellectual being is improved by it, and his self-respect increased. His journal and bonks give it good pabulum. The benefits of education cannot be doubted in his case.

ANALYSIS OF WATER.

Chemistry will unfailingly reveal the elements and their proportions in a compound, and also the inorganic quantities yet it will be at a loss to show the organic components mor than approximately. Tests will only show the presence, not the exact parts, of the latter, and as the process by evapo ration and heating the residuum separates the volatile con stituents of animalcules and vegetable compounds, thei amount cannot be determined with certainty.
It is only after disease germs have been traced to water as their medium of diffusion that the water is sulyjected to ex amination. The microscope failing to show them. their ex istence can only be proved by placing them in. conditions favorable to their development. Inorganic ingredients of a hurtful nature can be ascertained, and the proportions which it would be dangerous to health to exceed are known. Vege table matter can be closely calculated, but the results that would ensue by changes under certain conditions can only be obtained by a system of a priori reasoning. But the germs, the most insidious enemy to healt in neither atmospheric nor mechanical action, nor dilution, will cradicate thera, cannot be found
The benefits accruing from the solution of this problem cannot be overestimated; physicists are bending their energies in this direction, and students are entering the field; it is a wide one, and one that, if explored, will yield boundless reward.

sites for water supplies.

The transition from a village to a city is so rapid in this ountry as to seem to be due to the agency of the " magic lamp," and yet all the privileges and conveniences enjoyed by the old are demanded by the new communities. Un doubtedly among the most important of these, and one to which attention is forcibly drawn as spring opensand hilding operations are resumed, is that of a perfect supply of water.
In selecting a locality whence to obtain this supply it would be judicious to insist upon certain conditions which are vital to success. Absolute purity of the source should be he tirst characteristic. The entire watershed should be carefully examined, and everything avoided that would even be liable to produce corruption. In the case of wells, chemi cal analysis will take the place of inspection. After having obtained a source now pure, the possibilities of contamina tions in the future should be looked to. It is a well known and frequently demonstrated law that security breeds neglience, and in the case of water supplies this is often tested. Imperceptibly the water will become unwholesome, and ye its true character will remained concealed until disease is traced to it, when an examination reveals impurities which have crept in and been steadily increasing.
For many reasons the quantity of the supply should be ufficient, not only for present needs, but to allow for growth and increased consumption. After these comes the nex actor, one that is, unbippily, often ranked as first-that of cost. The works should be built economically, but when poor work is liable to risk the whole, the economy is false. Due attention should be paicl to so constructing the first system that it could, when the time came, be increased by the ex penditure of a moderate percentage of the first cost.

The Great Statue of Liberty

A singular problem in engineering is presented to the ommittee which has in charge the construction of the ped stal for the great statue of Liberty in New York harbor bout eighty theusand dollars out of the necessary two hun dren and fifty thousand have been raised, but nothing has been done about the work. It is probable that operations ould be begun at once with the funds in hand, if it wer not that no plans have been made, and no architect or engi eer has been engaged to make them, the committee not having been able to find any member of these profession willing to contribute them for nothing, or rather for the "great credit" which, " if properly donc," they will "re fect upon the designer and engincer."
As the value of the drawings and superintendence for the pedestal alone, to say nothing of the responsibility of seeing the atatue pheded safely upon it, woułd be about twenty-five thousand dollars, we fear that the committee will look long before they find the individuals whom they seek. The task itself, independent of any consideration of proper payment or the time and responsibility involved, is not one that the most skillful engineer would wish to undertake bastily. The statue weighs, complete, only about eighty tons, but resents an immense surface to the wind, and stands, more ver, on a comparatively small base.
Considering that it is not extremely casy to construct a brick chimney of the same height-one hundred and forty. ight feet-weighing ton times as much, of pyramidal form and standing on the ground, so as to resist the force of a storm, the difficulty of raising and securing the statue, not on the ground, but on the top of a pedestal nearly one hun dred and fifty feet high, is apparentryere are no prece ents for anything of the kind, and it will hardly do to se cure the figure by the rope stays, like those of a derrick which the incapable engineer would naturally resort to
The members of the committee seem themselves to have erceived something of the difficulty of the undertaking nd have telegraphed to France for instructions as to the mode of doing the work. We do not generally volunteer advice, but it seems to us that the plan said to be employed by the Japanese for securing their light pagoda towers against the effects of wind, by means of a long weight or pendulum, bung from the top of the tower, and reaching nearly to the floor, might perhaps be employed with good effect for the New York statue.
A very similar device, applied by Sir Christopher Wren, has for two hundred years held np the spire of Salisbury Cathedral, as well as those of one or two other English churches, in which a heavy wooden framework, extending s far downward as the construction of the tower permits, is suspended by strong iron bars from the capstonc, free to swing in any direction. The effort of the wind on one side of the spire inclines it until the banging framework rests gainst the opposite side, but when the pressure is relieved, the pendulum swings back, bringing the stonework with it into its original place.-Amer. Architect.

Electric 'Tramway.

According to Mr. Trail, the engineer of the Giant's Cause way and Portrush Electric Tramway, the total prime cost will be about $£ 31,000$ for six and a half miles of tramway, the cost of buildings, rolling stock, electric plant, engines, law, parliamentary, and engineering expenses. He says also that the electric car is able to ascend a long, continuous hill of about one and a half miles in length, and with a gradient of 1 in 35 , drawing a second car behind it, and work as readily and as well at a distance of two miles from the generator as adjacent to it.

