sIDE SHOW sCIENCE,

There has recently been exhibited in the Circus of the Champs Elysees, in Paris (we learn from La Nature), a curious example of the ability to remain a considerable time under water without asphysia. This is "Miss Lurline, the Queen of the Water," as sbe is called. The aquarium in whicb she performs consists of a large rectangular vessel with glass sides (the larger about 10 feet long by 7 feet bigb), and filled with water which is slightly tinted green, and is strongl illuminated by means of five or six oxybydrogen lights.
Miss Lurline dives, swims, lies down and eats at the bot tom of the water, passes between bars of a chair, etc.
At a certain moment, the music ceases, the girl draws few long breaths, then lets herself sink to the bottom, wbere she kneels on one knee, crossing her arms on her breast. A man outside stands with watch in one hand and bammer in the other, with which latter he counts the half minutes by striking. One half minute-one minute-a minute and a half-two minutes-two minutes and a half! During the silence, interrupted only by the sound of the hammer, the minutes seem very long, the spectators are painfully intent and experience a relief when the diver returns to the sur and
To appreciate what is implied in passing two minutes and a half witbout taking breath, let any one (says M. Kerlu in the journal named) make a small experiment, bolding his breath as long as possible, wbile watcbing a seconds watcb Few persons reach one minute; the majority are ohliged to take breatb before forty-five seconds have elapsed, and it is only exceptionally and with much difficulty that some at tain one minute fifteen seconds.
The fishers of sponges, mother-of-pearì, and of pearl oys ers in the Mediterrana and elsewhere, do not ordinarily remain under water longer tban two minutes. It bas never been autbentically observed, watch in hand, that tbey
effected a voluntary immersion of more than three minutes. Tbe mean time is one minute to a minute and a half. Even under tbese conditions, the work of a diver in deep water is excessively painful. On coming out of the water, they usually remain some time motionless, the face congested, the eyes bloodsbot, and often blood given out by the mouth from rupture of blood vessels in the lungs. These divers do not live long; they sometimes die of apoplexy after coming out of the water; they also frequently lose sight by reason of congestion of vessels of the Thes.
The public divers in aquaria run much less risk. They have not to bear any great pressure resulting from thickness of the layer of water above, and, besides, they remain still in the water, wbereas the fishing divers bave to perform active work during immersion, and so exbaust more quickly the supply of oxygen retained in their lungs.
During the last twelve years, four or five divers (male During the last twelve years, four or five divers (male
and female) have exbibited in Paris, under various aquatic names, such as "l'Homme-poisson," "l'Homme-ampbibie," " La Femme-Sirene," "La Reine des Eaux." Their exercises have been much the same. One of them, however, the fish man, made a very curious experiment. He smoked a cigarette almost entirely, but witbout emittingthe smoke. Then be lay down at the bottom of the water, and let a succession of gray bubbles of smoke rise to the surface. The quantity of smoke thus returned seemed enormous. At intervals the series stopped, to commence again a few econds later, greatly to the surprise of the spectators. Some of tbese estimated tbat the experiment lasted quite five minutes. In reality, it did not exceed one minute. Wbile a diver is immersed, if one do not look at a watch, one finds it difficult to calculate the time of immersion correctly, and generally exaggerates. Hence, in all probability, the accounts of many wonderful divers. It is said, e.g., that Ionian and Sicilian divers employed after the naval battle of Navarino, in 1827, remained five to ten min ates under water and one of them even a quarter of an bour. Exaggeration here is evident.
Whence comes this power, possessed by some persons, remaining longer than others with out breatbing? The old physiologists attributed it to the aperture of Botal not being closed in the heart (as in the child before birth). Tbis is easily proved to be an error.
It has also been supposed that divers feed only on vegeta bles, their food yielding blood less rich in corpuscles, and so requiring less oxygen. Another idea is that divers exhibiting in public take either morphine with the view of retarding the circulation, or digitalis with the view of retarding the beart beats.
These supposed means (says M. Kerlus) are not practica ble, or tbey would tend to the opposite of the end aimed at. The power of remaining a long time witbout respiration seems due simply to a great development of pulmonary capacity, to lungs of large volume and perfectly sound. Tbis great capacity may be natural; it may be the result of heredity, as is probably the case with the sons and grand sons of fishing divers; it may be acquired, or at least developed, by exercise. The profession of diver is similar in this respect to those of the runner, the gymnast, and also the singer.

The Londos Medical Record concludes from Prof. Koch' experiments tbat the only certain disinfectants are chlorine bromine, and corrosive sublimate. Solutions of one part of the latter to 1,000 parts of water will kill spores in ten minates, while a solution of 1 in $\mathbf{1 5 , 0 0 0}$ is strong enough to arrest the power of development in micro-organisms.

Manufacture of Tinned Sheet Copper.

An interesting patent case has been decided by Judge Shipman in the United States Circuit Court of Connecticut in which the following particulars of the above art were brougbt out:
Tinned sheet copper for the manufacture of culinary utensils was formerly furnisbed to the coppersmith in the form of a soft sbeet of copper tinned on one side, and the copper side discolored by the action of the beat and acids employed in the tinning process. This soft, porous, flexible sheet was then made dense and hard by tedious and expensive hand ammering, or "planisbing," as it was called, whicb con isted of hammering the sheet upon an anvil with hammers of a curved surface to make the sheet dense, and then wit bammers of a plane surface to smootb and brighten it. Tin sed copper had been also sometimes cold-rolled or passed through polished rolls, whereby the sheet was made more dense; but the form in which the coppersmith generally received the sheet for manufacture into utensils was the on which bas been described. Sometimes the discoloration wa attempted to be removed by the use of acid. Mr. Andrew O'Neil, in 1867, received letters patent for a tinned copper sheet prepared in this way. A varuish, made after a pre cribed formula, was applied with a brusis to the copper sid of the tinned sheets in the rough state " witbout subjecting bem to any acid bath, scouring, planishing, or any other chemical or mecbanical preparation." The varnished sheets when dry, "were passed through higbly polished rolls of teel. or case-hardened or chilled iron." In 1869 another patent was granted to Mr. O'Neil.
This invention, which consisted in sumjecting the sbeet to cold-rolling, whereby the surface was made dense and glossy and to polishing, whereby the discoloration was removed,

MISS LURLINE IN HER AQUARIOM.

and, if need be, to an additional enameling process, was received with great favor, went into extensive use, entirely superseded hand planishing, and was very useful. In 1877 a reissue of this patent was obtained, on wbich reissued patent this suit was brought. In the specification the patentee says that "in some instances the sbeet bad been passed hrough rollers before my invention;" but in consequence of he acids employed in preparing the sheet fortinning and the beat in the tinning operation the copper surface became dark ad mottled.
The reissued claims are as follows
" 1 . As a new article of manufacture, the tinned sheet copper herein described, the same having a bright or polished opper surface, and the

" 2 The described.

. ening the other surface and one surface, cleaning or brigh o pressure between rollers, substantially as set forth.

، 3 . The sheet of tinned copper prepared by cleaning and olling, and protected by a varnish upon the copper surface, as and for the purpose set fortb.
Tbe first claim is identical with the first claim of the original. It is not for a tinned sheet, cold-rolled, and baving brigbt copper surface, made such by the use of acids, but having a surface made bright or polisbed by the wbeel, or by auy approved mode of polishing. The second claim i for the process of manufacturing described in both origina and reissue, not including the varnishing; but it is not to b construed as including any mere "cleaning" of the surface altbough the word "cleaning" is introduced both into the description and the claim. To include in the patented pro would be an undue expansion of the original patent.
In 1876 Thomas James obtained a patent for an improve-
ment in the manufacture of tinned sheet copper, under which the defendants now make the article which is said to be an infringement. After the sheet is tinned the discoloration is removed by the use of diluted acid, or by scrubbing with acid and sand. Tbe sheet is then wasbed in pure water, and after it is dry is cold-rolled between bright chilled rolls, two sbeets having been placed together with their tinned surfaces in contact. By this process the discoloration is removed by the application of acid, and then tbe surface is polished by the chilled rolls. By the O'Neil process the surface is polished and made glossy by the rolls, and the discoloration is removed by the buffer or otber approved polishing method. The defendants' process is not the patented process. It omits a pateuted step, and in its stead includes one which the patentee intended to avoid.
There is no infringement, and the bill is dismissed.

Work for Inventors To Do.

We have machines for doing almost all kinds of work in field, shop, and factory. But most of the machines we flnd in tbem now will not be used twenty years hence. Tbey will give place to something vastly better. All the machines now styled "perfection," will be found to be very imperfect. Tbe machines now employed for making paper, weaving cloth, printing, sewing, shaping brick, and working up lumber will soon be displaced. A very valuable invention is seldom very valuable, in itself, beyond tbe term for which it is patented. It is improved to sucb an extent that only a single principle remains to be kept in operation.
It is likely that much will be done in the future in restoring old processes, and in combining them for doing certain kinds of work. In many departments of industry little bas een done to lighten the burdens of human labor. Kitchen work is performed in about the same way as it was when the first kitcben was constructed. Clotbes, dishes, and floors are washed after the most primitive fashion.
Our methods of doing all kinds of housework are twenty centuries behind our methods of doing farm and factory work. Knives and forks are made by macbinery, but are scoured by hand. A new tin disb is made in a factory quicker and with less trouble tban an old one is cleaned in tbe kitchen. When drudgery was driven out of the field and workshop it took refuge in the kitcben, seemingly with the determination of making it its permanent place of abode. It clings to it with desperation. New dishes for the table and new garments for the person all make work, but the persons who bring them out produce no labor-saving machine for cleaning the first or keeping in order the last.
It is likely that most of the valuable inventions in the future will be made by persons who will devote themselves to inventing as a business. More knowledge, skill, time, money, and higher talent are now required to make inventions than were formerly needed. A person must now study to find out what is wanted in any department of industry, and then learn what has been accomplisbed. He must read many books and consult witb many persons. If a proposed invention percains to the application of any science to the arts, he must become familiar with both the science and the art for improving which it is designed.
Messrs. Bessemer, Ransome, and Edison, three of the most illustrious inventors of our time, afford good illustrations of what men of genius, judginent, and perseverance can accomplish by devoting themselves to specialties. A tecbnical education and a library are as necessary to an inventor as to any professional man. For a mechanical inventor a worksbop is as necessary as it is to a mechanic. Some capital of course is necessary to enable a person to devote all his time to this business. Ability to concentrate one's thoughts on a particular subject is of prime importance to a successful inventor. A "happy idea" may occur to bim, but patience is required to make it of any practical value. Many scientific men and mecbanics can devote considerable time to inventing aud go on with their regular pursuits, as the have unusual facilities. Much always depends on little things in the perfection of great inventions. Goodyear and Morse found tbeir greatest difficulties with matters that at first appeared trifling.-Chicago Times.

An Artificial Aurora

A telegram has been received by the Finnish Academy of Sciences from Professor S. Lemström, cbief of the Finnish Meteorological Observatory, at Sodankylä. He states tbat, having placed a galvanic battery with conductors covering an area of 900 square meters on the hill of Oratunturi, be found the cone to be generally surrounded by a balo, yellow-wbite in color, which faintly but perfectly yields the spectrum of the aurora borealis. This, he states, furnishes a direct proof of the electrical nature of the aurora, and opens a new field in the study of the pbysical condition of the earth. A furtber telegram has been received, in wbich Professor Lemstıöm states that experiment, with the aurora borealis made December 29, in Enare, near Kultala, on the hill of Pietarintunturi, confirm the results of those at Oratunturi. On that date a straight beam of aurora was seen over the galvanic apparatus. It also appears from the magnetic observations tbat the terrestrial current ceases below the aurora arc, wbile the atmospheric current rapidly increases, but depends on tbe area of the galvanic apparatus, to wbicb it seems to be proportional. The Professor regrets that with the means at his disposal further experiments cannot be made, and tbat he intended almost immediately to withdraw the apparatus.

The Vocal Statue of Memnon

On the low marshy plains near Thebes, on the banks of the Nile, are situated the wonderful colossal statues of Memnon, which for se many centuries have attracted the attention and excited the wonder and admiration of travelers and students. These two colossal monoliths, which are supposed to represent the royal personage of Amenophis III., and to have been erected by him some 1,700 years before the Chris tian era, are of the same dimensions, and are hewn from the same sort of granite.
The height of the figures from the soles of the feet to the crown of the bead is about fifty feet, making a total height with the pedestal of over sixty-five feet. One of these monoliths being mounted upon an unsufficient foundation, began to assume an inclined position many centuries age, and a litthe crack forming in the stone was increased year by year, until, about the year 27 B.C., an earthquake taking place in Egypt, the upper part of the statue was broken off and overturned, and there it has been lying ever since.

Soon after this occurrence, certain curious rumbling neises were heard te proceed from the standing portion of the statue. These sounds were observed to occur at break of day, immediately after the rising of the sun. That this phenomenon was noticed by a number of travelers and sa vants is pretty well proved by the inscriptions chiseled on the
pedestal of the statue by different persons at different times, pedestal of the statue by different person
and all bearing witness to the same fact.
Strabo, whe visited the statue some dozen years after it fall, thus speaks of it: "There are twe colossal moneliths, one of which is still standing, while the upper portion of the other has been everthrown, I am told, by an earthquake. It is believed, also, that once each day a sound like a slight blow preceeds from that portion which remains standing on the base. As for myself, when I visited this locality with Alius Gallus, I most assuredly heard a noise at the first hour Did it proceed from the base, from the colossal, or from
some of those who were standing about the base? Was it clone designedly? This is what I cannot assert positively, for without knowledge of the truecauseit is better to imagine aluost anything than to admit that stones se placed can emit sounds." Later observers were more decided in their opin ion, however, and assert positively that they distinctly heard the sounds proceeding from the interior of the stone In the time of Septimius Severus, the statue was restored, and the upper portion, consisting now of five pieces, was re-
placed to its original position, and since then there is io record of any sound having proceeded from the austere figure.
It has been noticed that the sounds were heard at the time when the first rays of the sun fell upon the statue, and further that these noises did not begin to be noticed until after the upper portion of the statue had been overturne. i, and that as soon as the monolith was restored to its original condition they were heard no longer. Taking all these facts itto consideration, M. De Roziere, whe has made a considerable study of this matter, considers the phenomenon te be due to the fact that the rays of the sun, striking on the broken por tion of the monument, dry up the moisture which has been
absorbed during the night. The dew depesited in the fissures of the rock and thus caused rapidly to evaporate tends to open the crack still further.
If the matter were homogeneous throughout or composed of fine particles, ne noise or vibrations would be discernible; butas the stone consists of an agglutinous mass of her grains, the larger grains will resist more than the others the tendency in the rock to crack and separate inte fissures, and will be left alone to suppert the strain. This tension being continually renewed, these grains finally give way. This
rupture causes in the stone a concussion or rapid vibration, rupture causes in the stone a concussion or rapid vibration,
and it is this which produces the groaning sound in the stone at the rising of the sun
Humboldt speaks of having discovered musical stones, called by the inhabitants lojas de musica on the banks of the Orinoce. These werc granitic in character and were full of cracks and fissures, and emitted sounds, as he says, immedi ately after the rising of the sun, like the tones of an organ. The seventy inscriptions which make mention of this prodigy leave almost ne doubt as to the facts in the case, and the great matter for regret is that the religious or perhaps superstitious arder of Septimius Severus should have led him to set about those restorations which have for ever closed the mouth of the reyal Memnon.

$\xrightarrow{\sim}$

Some curious facts relating to unredeemed obligations of the Gevernment have been collated by the New York Surr, which show a considerable source of profit to the United States G॰vernment. The amount of paper money and coin which is never presented for redemption comprises a large sum. Much of this is destroyed by fire. Some of it is buried or hid in places known to no person alive. A large quantity of the coin is melted to make sterling silverware. Considerable amounts of both paper money and coin are exported never to return. Not long ago a United States bond, city. The interest on it had ceased over fifty rears. It had come back from Europe through Baring Brether standing principal of the public debt of the United States last year was nearly twe billions of dellars, chiefly represented by bonds and treasury notes.
It would be, of course, impossible to hy how much of this will never be presented for redemption, but some idea may be formed from the fact that $\$ 57,665$ of it was issued - long age that the date is not recorded. It appears in the
report as "old debt" that may safely be put down as profit. There is an item of $\$ 82,525$ of treasury notes issued prier to 1846. Some of them were issued nearly fifty years age, and will not, in all probability, ever be presented for redemption. One thousand one hundred and four dollars of the Mexican indemnity of 1846 has never been claimed. The last of the fractional currency was issued under the act of une 6,1864, yet, although nearly twenty years have elapsed this is held as a curiosity. Some of it is still used by banks and merchants for transmitting small sums by mail. Sev and merchants for transmitting small sums by mail. Sev
eral New York banks have considerable sums of new frac eral New York banks have considerable sums of new frac
tional currency, which they distribute for the accommodation of their customers.
As to the coin, the Government derives a considerable profit from it. The silver in one thousand silver dollars costs, on an average, about $\$ 803.75$. The coinage of a silver dollar costs about $1 \frac{1}{4}$ cents. The total cost of one thousand silver doliars to the Government is therefore $\$ 816.25$. Since the organization of the mint, in 1793, 127,190,618 silver dollars have been coined, on which the Government has received a profit of over twenty-three mil ions of dollars.
In the same period $\$ 122,758,510$ was coined inte half dollars. At the same rate of cost for coinage the Government profited $\$ 19,395,769$ on these. The total silver coinage of the Gevernment since 1793 is $\$ 347,766,792$. Estimating the profit on the halves, quarters, and subsidiary coins at the same rate as on the dolars, the total profit received by the
Government on its silver coinage has been about sixty-four millions of donars
In the coinage of the tive cent nickels the Gevernmen reserved to itself the liberal profit of nearly 50 per cent. This gave to the Government last year the haudsome revenue of over $\$ 100,000$ from nickels aloue. The wide margin be tween the intrinsic value of the five cent nickel and its face value led to extreme counterfeiting. Several years ago an assay was made of some of the counterfeit nickels, and it was discovered that the counterfeiters lad put into their coins more valuable metal than the Government ases in making the genuine coins.

Does snow Protect the Soil from Frost?
Prof. Alex:ander Edmond Becquerel, of the Conservatoir des Arts et Metiers in Paris, the celebrated investigator -electre-chemical decomposition, has recently been investi-
gating a question of considerable scientific interest as well gating a question of considerable scientific interest as well
as of great practical importance especially, to agriculturists, namely, whether a blanket of snow prevents frost from entering the ground or hinders it to any great extent.
The numerous experiments which it was necessary to make to obtian a precise answer to this question were car ried on last winter in the Jardin des Plantes. The aim of these was 10 iscertain, first, to what extent the temperature f the ground was influenced by the temperature of the air, both under bare ground and in sodded soil, with and without snow. Also to ascertain what depth the temperature of the air was ahle to make its influence felt. In these very coun pli cated investigations the electric thermometer invented by Becquerel himsclf was employed, an instrument which needs some description to make the following details intelligible.
Two covered wires of unlike wetals-copper and ironare soldered together at both ends, which are left uncovered for this purpose; otherwise they are covered their whole length, for tie purpose of insulation, with gutta-percha and different temperalures, an electric current is are exposed them, and the greater the difference in temperatures the stronger the current, but the current ceases when both are exposed to the same temperature. This electric current acts - a a magnetic needle suspended so as to move freely over a graduated circle, a kind of compass. The copper wire forms a vertical frame around the needle parallel to the normal direction of the needle. Λ s long as both ends of the double wire are at the same temperature the needle continues to point to the north, being subject only to the earth's magnet ism, but as soon as there is any variation in temperature the needle is sure to move instantly and take another position which it will keep until some other change of temperature takes place.
The application of this ingenious instrument for the mea suring of soil temperatures was made as follows
One of the soldered joints was buried in the earth to a epth at which it was desired to take the temperature. and the other end was put in a water bath at any desired distance from the first. The temperature of the latter could be inreased or diminished at pleasure, and was measured by a ery sensitive thermometer. To ascertain the temperature in the soil where the other end is buried, it is only necessary to raise or lower the temperature of the water bath until the
magnetic needle stands at zere, and then read the therme magnetic needle stands at zere, and then read the therme.
meter. The thermometer will stand the same as if it were buried at that point. The results obtained were absolutel accurate. and the method itself very simple and easy
Prof. Becquerel began his observations at the end of November. Simultane ous observations were made of the temperature of the air at the height of $33 \frac{1}{3}$ feet and $66 \frac{2}{3}$ feet, and of the soil at the depths of $2,4,8,12$, and 24 inches. They were made under sod and bare ground. On November 26, a dry frost began which lasted without interruption until December 3. At this date the air had a temperature of 7° Fahr., and a heavy fall of snow began that covered the
ground to the depth of 10 inches. From the 6th to the 19th
of December, the cold steadily moderated until on the morning of the 19 th and 20 th it was above 32°. A variable cole weather followed, and the snow sank to less than 8 inches. Observations of temperature showed that both before nd after the snow fell the temperature of the soil, where it was covered with sod, remained above the freezing point even on the coldest day. On November 26, at a depth of 2 inches the temperature was 40° Fahr. From this time it sank centinuously until December 14, when it reached 3212° Falr., but it uever fell below this minimum.
The results were quitedifferent in soil not covered with grass sod. On November 26, the day when the dry frost began, the temperature at a depth of 2 inches fell below 32° Fahr.; on November 29 it stood at $261 / 4{ }^{\circ}$ Fahr., and on De cember 2 , before the snowfall, it was 25° Fahr. During the whole time when its surface was covered with snow from 10 t- 8 inches deep, the temperature never rose above 32^{\bullet}. but only varied, at a depth of 2 inches, between 28° to 30° Fahr. From these observations, which were repeated a great many times, altlough we have given but few of the results, we may deduce a whole series of very interesting results of reat importance to agriculturists.
In the first place it was proved that changes in the tem perature of the air make themselves felt to a certain distance in the earth even when the surface is thickly covered with snow. Hence the generally received opinion that a mantle of snow keeps the earth warm is in general erroneous. Snow does not protect the soil and seed at all from freezing, but only hinders to a certain degree the too extensive radiation of heat from the soil, and is converted into water at 32°, which sinksinto the earth and somewhat raises its tempera ture

Becquerel's experiments alse prove that the best protecion for the soil is a heavy sod, which does more to raise its mperature than ever so thick a layer of scow.
The matted roots of the sod form a sort of felted covering which not only excludes the cold in a high degree, but also draws up the moisture from the lower strata toward the surface. Our winter grain does not have the thickness of a bed of sod and cannot act the same, having much more the character of bare ground, and hence we are not entitled to consider our grain fields sufficiently protected from the strongest frosts when only covered with an ordinary layer of snow.-FT. Von Thumen, in Weiner Landoirthschafliche Zeitung, January 6, 1883.

The Deepest Sounding in the Atlantic.

The Coast and Geodetic Survey steamer Blake returned - this port February 14, from a winter cruise for deep sea exploration between the Bermudas and the Bahamas. On the 19 th of January, in latitude $19^{\circ} 41^{\prime} \mathrm{N}$., longitude $66^{\circ} 24^{\prime}$ W., about 105 miles northwest of St . Thomas, there was found the greatest depth ever measured in the Atlantic, or 4,561 fathoms
The place was about eighty miles southwest of the place where the Challenger made her deepest sounding, of 3,862 where the Challenger made her deepest sounding, of 3,862
fathoms. It was inside a basin-that is, many hundred fathoms down it was inelosedsy a ridge. The temperalure of the water at this great ceppth was 36 degrees. It is a curious fact in connection with sucl basins as this that the water of the bottom of them is of exactly the same tempera ture as that which runs over the top of the ridge several hundred fathoms above. The specimen of the betom sedences of faun

Iortality of Our Great city.

Thirty-seven thousand nine hundred and fifty-one persons died in New York city in 1882, the ratio being a little over twenty-nine per thousand of population. These figures show that New York has no equal among Northern cities for funerals and that the business of undertakers is remarkably active.
The number of cases and deaths from the principal contagious diseases for 1882 was as follows

The average death rate for to United States, as indicated by the census returns for 1880 , is between 17 and 19 per llousand Of suicides there were 199 ; of these, 165 were and 34 were wemen; 71 were Germans, 50 Americans, nd 20 Irish.

mexican Tin.

The first ton of Mexican tin ever sent to thi country was recently received. The metal is said to be bright, clear and apparently of good texture. It came from Durange. The ores of placer origin are said to average 73 per cent of smelted tin. Mr. Henry Freeman, an A ustralian tin mining engineer, has been for a year or more exploring the region between Chihuahua and south western Durange in search of evidences of the tin lodes and placers spoken of by the old Spanish settlers, and has secured for St. Louis merchants and capitalists a considerable tract in the south west quar ter of Durango believed to contain tin ore in large quan tities. The famous iron mountain of Durango is in the northern part of the district.

