grieutifir gmprirn.

ESTABLISHED 1845.

MUNN \& CO., ${ }^{\text {E Editors }}$ and Proprietors. published weekly at

No. 261 BROADWAY, NEW YORK.
O. D. MUNN.
A. E. BEACH

TELIMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year postage included....
One copy, six months postage included
8320
160
Clubs.-One extra copy of THE SCIENTIFIC AM ERICAN will be supplied
gratis for every ount of tive subscribers at $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid
mit oy postal order. Address
The Scientific American Snpplement
is a distinct paper from the SCiENTIFIC American. THE SUPFLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size
with Sci Entictic American. Terms of subseription for Supplement $\$ 500$ a year, postage paid, to subscribers. Bingle copies, 10 cents. \&old by all news dealers throughout the country
Combined liates. - The Screntific American and Supplicment
will be sent for one year postage ane will be sent for one year pestage tree. on receipt ot seven dollars. Both The satest way to remit is by draft, postal order, or re The satest way to remit is by draft, postal order, or registered letter.
Address MUNN 4 CO 0. . 261 Broad way, corner of Warren street, New York.

Scientific American Export Edition.
The Scluntific Ambrican Export Edition is a large and splendid peri.
odical, issued once a month. Each namber contains about ine hundred odical, issued once a month. Each namber contains about rine hundred
large quarto pages, urofusely illustrated. embracing:
(1.) Most of the plates and pages of the four preceding eeekly issues of the SctiveTIFIC Am:RICAN, with its splendid engravings and valuable information: (2.)
Commercial, trade. and manufacturing an.ouncements of leading houses. Terms for Export Edition, 75.00 a year, sent prepaid to any part of the Terms for Export Editinn, S Single copies 50 cents. a year, sent prepaid to any part of the to secure foreign trade may have larke, and handsomely disp
nouncements published in this edition at a very moderate cost. The SCIENTIFIC AM Lirican Export Edition has a large guaranteed circu-
Iation in all commercial places throughout the world. Address MUNA \& lation in all commercial places throughout the world. Address MUNA \&
co., 261 Broadway, corner of Warren street, New York.

NEW YORK, SATURDAY, MARCH 10, 1883.

Contents.	
边s	Himechaniceali inven
oumph new	hiss Lurline
	Vertales,
ng horse	New ar pump cowet
Iness and personal	
toin to plum bersi.t	Painer friliss
隹	
nd	
Cow tree, the	Remeay
Deepest sounding in the At	Rember holder, ne
ma swanpp the	Side show science-
bridge safety swit	dill
a pela, remedy for	State
dernd miler, at owin	
	Tinss
Index to newinentions.	
metric governor, the ${ }^{*}$.	

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT
INO. 375,
For the Week ending March 10, 1883
Frice 10 cents. For sale by all

v. YEDICINE AND HYGIENE.-Lime Juice; its

VI. BIOGRAPHY--Henry Draper.....

ViI MINiNG AND GEOLOGY.-The Geology of the Quicksilve

COMPRESSED BRAN.-ONE THOUSAND DOLLARS REWARD for a new invention.
In the manufacture of flour the outer cuticle of the grain
is separated by sieves in the form of bran, the particles of is separated by sieves in the form of bran, the particles of
which are exceedingly light, but strong and elastic; probably which are exceedingly light, but strong and elastic; probably they become electrified, for they have the peculiar quality of standing apart and holding air between them, thereby oc cupying much space. Thus a barrel that carries 190
of flour will only contain about 70 pounds of bran
The quantity of bran annually produced in this country is enormous. Or hour we are supposed to manufacture about fifty millions of barrels yearly; for every barrel of flour made, probably about 40 pounds of bran is produced.
Bran forms a superior article of feed for animals. As a mixer with other foods it is of unquestionable value; but owing to its great bulk, and the lack of proper devices for
its condensation or compression it is difficult and costly to its condensation or compression, it is difficult and costly to transport; hence it is almost a drug to the maker. It ouly brings about five dollars a ton in this country; but in Eng land it sells for almost twenty dollars a ton. In the earlier practice of our Western milling it was common to turn the bran into the river and let it float off as waste. Even now it barely pays for handling.
With a view to the calling out of some new method, process, or invention, by which bran can be more profitably marketed, the Millers' National Association have recently made public an offer of a premium of one thousand dollars in cash, which is to be paid to whoever is able to meet the following requirements and suggestions:

Millers' National Assoclation.
Secretary's Office,
Milwaukee, Wis., February 19, 1883.
By virtue of a resolution adopted at the Delegate Conven tion Millers' National Association, in Cleveland, January 31 ult., the Sub-Execulive Committee are instructed to offer a cash premium of $\$ 1,000$ for the invention and production of the best practical machine that will enable mills of ordinary
capacity to compress bran economically into a suitable, cheap, and safe package for export, at a saviug of at least five cents per hundred pounds in the process, package, and freight, over the methods now in general use.

Requirements.
First. A machine that will compress one hundred pounds of ordinary bran into a package not to exceed fifteen (15) inches square, or two hundred pounds in the same ratio.
Second. That will, with the aid of an attendant and a reasonable amount of power, prepare for shipment one ton or more per hour.
Third. The inventor or owner of the successful machine must stipulate to sell it at a reasonable price (to be agreed upon bet ween the Executive Committee and himself) to all members of the A ssoctation.
Fourth. The offer to remain open one year, the committee to be at liberty to reject all devices, competing for this prem ium, that do not come up to the requirements of the trade. Suggestions.
First. Other results being equal, the machine producing a package with the best form for close "stowage," will have the preference
Second. The package should be compressed in such a manner that when the covering is removed the bran will assume its ordinary condition without manipulation.
Third. No machine, or process, requiring the addition to bran of moisture, or any foreign substance, will be entertained.

Fourth. It is desired that parties building, or with machines in model, intending to compete for the premium, will report progress at an early date.
For further particulars address
S. H. Seamans, Secretary.

The chief utility of such a premium consists in directing the special attention of ingenious minds to this particular subject. The real reward to be derived by the successful inventor will come to him through the protection of the patent laws. These beneficent regulations present to every person a perpetual encouragement to study out and develop new improvements; and they grant to the successful inventor; in the name of the nation, the opportunity of securing a
generous reward for any new art or industry that he brings before the public.
The problen which the association presents for solution is doubtless a difficult one; but we think that some reader of the Scientific American will be able to solve it. Whether accomplished or not, we are confident that many ingenious minds will devote study to the subject; and, as always happens in such cases, these researches will open the way to hundreds of collateral suggestions for other novelties. Uuder pressure of thought the inventor's brain is apt to yield multitudes of new ideas, which fly out involuntarily, like sparks from grinding steel.
The offer of the association would have appeared more just and liberal had the third requirement been omitted. It conveys the impression that the committee regards the payment of the thousand dollars as a consideration of so much importance that they ought to have the practical control of the invention. Such a notion seems almost absurd. Why, it' will cost the inventor, in preliminaries, more than a throusand dollars for time, labor, models, experimental machinery, drawings, patent fees, etc. The committee may as well dismiss the idea of ever being called upon to pay the money, in the face of stipulation number three.
They ask the inventor to press their bran down to a dens.
ity more solid than hickory wood, and retain the compres sion in the form of a merchantabie package, still keeping the quality of the chaff intact.
If this can be done, the commercial effect of the inven tion will be to increase the selling price of bran probably five or ten times above its present rate; and the $1,000,000$ tons of bran, or thereabouts, now annually produced and sold say for five millions of dollars, will bring to the twenty five thousand mills of this country perhaps not less than fifty millions of dollars a year.
The invention called for, if actually realized, will be of immense value and utility. The man who produces it will be master of the situation; and to bim will belong the exclusive privilege of dictating the terms upon which the members of the association may enjoy the use of the invention.
Referring to suggestion number four, we would caution he inventor to give out no description of the nature of his improvements until they are protected by patent.

SCHOOLED BUT NOT EDUCATED.

The great lack of our country to day, said a shrewd observer recently, is properly educated men. The speaker was a rarely capable business man, whose connection with large financial and commercial affairs brings him into daily inter course with many of the leading business men of the country.

Our material progress has been so rapid, he went on to say, that men have failed to keep up: consequently the country is full of possibilities which cannot be developed, and of enterprises which are suffering grievously for lack of competent men to manage them. And the difficulty in finding the right men for the waiting work is not felt simply in connection with operations of great magnitude. It is felt wherever there is need of full, specific, and exact knowledge, coupled with self-reliance, practical judgment, and skill to deal promptly and wisely with novel problems.
The men who are now doing the larger work of the world as best they may, have for the most part grown up with their affairs, under conditions comparatively favorable for gaining and retaining the mastery of them. But these men are waxing old, are rapidly dying off, and their manthes fall upon younger men, whose entry upon the stage of action was too late for them to benefit by the earlier formative experience enjoyed hy their fathers.
The world's business calls for a wider and wider range of real knowledge, a broader grasp of principles, and a larger executive ability than were necessary a few years ago. At the same time the specializing tendency of the age-the de velopment of specialties within specialties, an inevitable consequence of the increasing magnitude of commerciat and industrial affairs-leads to narrower experience, narrower training, and, too often, to a serious limitation of men's grasp of affairs in general, their relations, and interactions. The demands of future years are likely to be for men of larger and still larger capacity; yet the conditions for their development are becoming less and less favorable in active business life as the years roll by, and the subdivisions of service become more minute.
The day has passed, or soon will pass, when a man could begin as a common labcrer and rise in succession through all the stages of service, practically mastering each department up to the direction of, say, a great transportation system or other enterprise of national magnitude. The steps are too many and the ascent too great. To a larger extent also, the real workers must remain subordinate while the heirs of capital command the higher stations. How are they being educated for their great responsibility?
The speaker above referred to dwelt with much feeling upon the inadequacy of the traditional systems of education to meet this new requirement. With a few exceptions our great educational institutions, and still more the smaller ones, are in grasp and spirit far behind the age, and entirely out of sympathy with the modern world which the rising generation is soon to take possession of. From the moment the boy begins to prepare for college he faces the past; educationally he lives in the past; and the more conscientiously he does the work laid out for him the vaster will be the final gap between college life and reallife. The intellectual habits acquired in school and college may possibly evable bim ultimately to grapple with greater power and skill with the later problems of real life, greater, that is, than he would have shown had he been left entirely unschooled; yet in the administration of affairs he is likely to be distanced for the best part of his life by the unschooled practical man who knows from early and real experience precisely what to do in any emergeney. The young man fresh from school is apt to know with thoroughness much that the busy world has no use for. He bas general notions of many arts and scjences, but his positive knowledge of the realities upon which such arts and sciences are based is usually vext to nothing; still less dues he know of the practical methods of men who apply them to human uses. His educational years have been spent mainly in a world apart from and largely out of relation with the modern working world he is to enter upon when his schooling ends. His education, admirable as it may appear from a theoretical point of view, iserves rather to unfit than to fit him for practical life: and his real education has to begin afresh in the rude and costly sebonl of experience.
This, of course, on the assumption that the youth's education bas been wholly by school work. Fortunately there are few boys who do not rebel more or less against the
routıne of schooling, and so gain under protest, of en by glass, while the two other fibers may be likened to colored stealth, a partial preparation for real life. If the schools did not usually get the credit for good results obtained in this way by the independent and unencouraged efforts of their pupils, it is probable that it would be much easier than it is to doaway with the traditional obstructions to real edu cation which linger in most schools and courses of study.
One of the great problems of to-day is to infuse a larger share of modern spirit into school life and school work; to lessen largely the amount of book learning and increase the
proportion of individual effort in dealing directly with realities; in short, to make the student more of a doer and less of a passive recipient of vague generalities.
The progress of the schools in this direction during recent years has not been small; yet it has been slight and limited compared with the rapid and general advance in public needs and individual requirements. In every department of active life the call is for men untrammeled by tradition, men trained to challenge every alleged fact and natural law until its truth is proved; bold men, used to the solution of real problems and undaunted by novel difficulties; alert men, ready to grasp every opportunity for improvement in materials and processes, and skilled in the use of everything that ministers to economical success. The schools should help to develop such men. Now they oftener hinder such degvelopment.

SILK AND HOW IT IS DYED.

Otto N. Witt and E. Noelting have recently contributed an interesting essay on silk and silk dyeing to the Chemiker Zaitung, from which we abstract such points as are likely to interest the readers of the Scientific American.
Silk holds the same place among fabrics that gold and the diamond do among metals and gems respectively. It is the noble, the royal fiber. Silk has that peculiar luster, that agreeable feeling, which charms our senses. The fiber itself, as it is unwound from the cocoon, consists of two parallel, thick, glossy threads stuck together lengthwise These threads are so highly polished that the hest objectives are unable to disclose any irregular or uneven spots, which fact is expressed in a general way by saying that silk is structureless It is evident that such must be the case, for it is nothing but a solidified liquid thread, resembling in every respect a glass rod. Cotton, on the contrary, is a tube, not a round but a flattened tube, irreguiarly pressed together, which almost always contains minute granules of dried plasma that once filled the tube. A glass rod is more brilliant than a dusty tube irregularly formed or flattened. Glass wool spun from glass rods has more luster than that spun from glass tubes.
To obtain a similar simile for wool one must compare it to rods of unglazed porcelain, or better still porcelain rods covered with "craquelé," or crackled glass. This represents the bleached wool before it is dyed. When dyed, the conditions are still more favorable on the side of the silk.
The dyer utilizes the great affinity that the silk fiber has for certain chemical compounds, or rather its power of precipitating substances from their solutions and combining with them. The coloring matter is not, however, deposited on the surface of the silk in granular or crystalline form, but is dissolved in the silk and distributed through it just as it was previously dissolved in the dye-bath. The fibroine, or silk substance, is not a base that combines with an acid ye, nor yet an acid which unites with basic coloring matters to form insoluble salts; silk makes no distinctions be-
tween acids and bases; it absorbs both just as a sponge sucks up water. It does not even confine itself to dyes, but has the same attraction for many uncolored substances, such as sugar and many metallic salts. Of course the exterior portion of the fiber takes the most, and only gives up to the interior portion the excess that it is unable to retain for itself. Under the microscope the cross section of dyed silk is seen to be shaded from the center outward, the circumfer ence being darkest, and the center usually white with-intermediate shades between.
With wool the case is quite different. Its scales are horny and have but little affinity for dyes. On warming or
boiling the dye-bath, the dye penetrates into the interior of boiling the dye-bath, the dye penetrates into the interior of the fiber, which then becomes saturated with the pigment as in the case of silk. Consequently, wool is a dark colored substa
Cotton has no affinity for dyes, but it is hollow, and the cellulose of which it is composed is osmotic, and on this the dyer bases his processes. He first treats it with mordants, ; which are solutions of different substances that pass through the walls of the cell into the interior of the tiber. He then washes off the excess of the mordant that has not been aborbed. It is next put into a solution of some dye likewise. capable of osmosis, when this also penetrates the cell walls, where it comes into contact with a mordant already stored up there, when a mutual decomposition takes place and an insoluble colored compound is precipitated within the cell, and cannot sulsequently be removed by any amount of washing. In a cross-section of dyed cotton examined under the microscope, the cell walls are seen as a long colorless ring in which are deeply colored granules. Hence, in this case too we have a dark colored substance seen through a colorless, or nearly colorless, envelope.
The optical effect of dyed silk is just the opposite of cotton and wool. To make use of our comparison again, silk resembles a white substance viewed through colored

bstances seen through verythin colorless glass.

We emphasize the fact that the colorless layer is very thin, for we must recollect that very thin plates of colorless ubstances produce a play of colors, as can be seen at any time on soap bubbles or very thin glass balls. These inter ference colors are very prominent in the thin colorless layers that overlie the colored portions of cotton and wool. We are unconscious of this play of colors here because the num ber of transmitted rays greatly exceeds that of the reflected ones. Nevertheless this play of colors is sufficient to dim
the luster of the color beneath. It is easy to prove that this lack of luster is due to a phenomenon of this sort by wetting the fiber, which will increase its luster, for the interference produced in these thin layers is much less in water than in ir. If it were possible to find a liquid having exactly the same index of refraction as these colorless layers, the colored core within would appear in all its true beauty.
Silk is free from this disadvantage; the center being colorless, and the surface colored, heightens the effect. Here again we have a good example in glass making; it has long been known that "flashed" glass (white glass covered with a thin layer of colored glass) is more brilliant than where the entire mass is colored.
We have already said that the fiber from the cocoon consists of two cylindrical threads glued together; we must now recall the fact that in reeling off the cocoons, several of these double fibers are always united into one thread for spinning. Different qualities of silk differ in the number of fibers thus united and in the manner of combining them. What is called "Tram" consists of a small number slightly twisted, while "Organine" has a greater number, and is hard twisted. A third quality of silk called "Chappe,"
floss, is made by combing and spinning the waste of the cocoons which is left after making the other two qualities. This last is generally used for velvet or for mixing with otton.
Silk is almost invariably dyed before it is woven, so that silk dyers are generally "skein dyers." Piece dyeing is the exception and is generally limited to poor qualities, or to half silk goods.
The preparation of the silk for dyeing is rather complicated, the object being to impart to it that beautiful white ness and to develop that luster which distinguish it from ther fibers. This is called "ungumming, or décreusage. Before this is done the finest organzine has a dirty yellow, or yellowish, gray cream color, sometimes greenish, according to its origin, and is hard and lusterless.
In order to understand the action of the reagents employed in degumming silk, we must first briefiy consider the chemical composition of silk
The raw undressed silk consists of the real silk "fibroitre" which forms the center, or core, and the so called silk-gum, a glue-like substance consisting of albumen, fat, resin, and coloring matter, which forms a crust around it. The object to be aimed at is the complete removal of this crust with the least possible injury to the fibroine. According as this is more or less perfectly accomplished different qualities of silk are obtained, which are known as:
-(1) Cuits, or boiled silk, in which the gum is entirely removed, the loss of weight reaching. a maximum of 25 to 30 per cent (2;) souples, where the loss is not over 8 or 12 per cent; and (3) crus, or raw silk, when the silk is aerely washed and only loses 3 or 4 per cent of its weight. The removal of the gum is done before weaving, course, and a great variety of chemical regents have bee employed for the purpose, for example, caustic and carbonated alkalies, alkaline eartlis, baryta and lime, hydrochloric acid, alcohol, and many others were tried, but they are too energetic. Although they remove all the gum, they attack the fibroine, which thereby loses not only its strength but also its most valued property-its luster. A complete re moval of gum without any injurious effect upon fibroine can only be obtained with boiling soap-suds, in which the iber gains in softness and luster
The ungumming, as now performed in Lyons, Zurich Bâle, and Crefeld, consists of two operations, known there as dégommage and la cuite, but differing only in the manner of dipping the silk and the time. The first is performed in rectangular wooden box (15 feet long and about 3 feet wide and deep) lined with copper and provided with a coil fteam pipe in the bottom for heating the soap-suds. The keins are drawn back and forth in the liquid, which is are used for 100203° Fahr. From 30 to 35 parts of soap water, but if it is very hard it is advisable to soften it just to save soap.
The whole operation is not usually finished in one tub, the silk being removed in half an hour to a second, whicb has the same temperature but contains less soap, and finally to a third. The three operations last from an hour to an hour and a half. As fast as one lot of silk is taken out of the first tub a second lot is put in, until the ends get saturated with gum, which is the case after three or four lots have been passed through it. The suds is then set aside for use in color dyeing. If, however, it is not to be used again, the fatty acids are recovered by precipitation with lime, the lim The being subsequently decomposed by acid.
The silk is next washed with water containing a littlesoap and soda, then packed in bags (poches), and boiled balf an soap. The French call this cuite en poches. The weight of hemispherical, from six to eight, or even ten feet in dia
meter. Formerly they were heated over the open fire, now they are almost exclusively heated with steam. In Lyons this extra boiling is very much in use for white and light shades, in Switzerland it is frequently omitted. After this boiling the skeins are stretched out, and then, if they are ntended for light colors, they are exposed while still moist o the action of sulphurous acid gas in closed chambers, to hleach them. This gas is generated by burning sulphur in stone crocks on the floor of the chamber
The sulphur is left to act on it for six hours, and is repeated two, four, six, or even eight times, according to the nature of the silk. The total quantity of sulphur consumed is only five per cent of the weight of the silk. It has frequently been proposed to substitute for this gas its aqueous solution or acidified bisulphite solutions, but this has never been inroduced into practice. After sulphuring, the silk is well washed to remove every trace of sulphurous acid and is then ready to be dyed

softening-assouplissage

This consists of four distinct operations: 1. Removingthe grease (degraissage) ; 2. bleaching; 3. sulphuring; 4. the actual softening. For darker colors the second can be omitted.
The silk is first put in a tepid bath containing 10 per cent of soap, at a temperature of 77° to 95° Fahr. It is left here one or two hours; pressed and moved around so as to wet it all. The principal object of this is to swell the fibers, open he pores, and prepare them to take up the dye, etc.
The bleaching is accomplished by the use of aqua regia, 1 part of nitric acid to 5 of muriatic, diluted to $21 / 2$ or 3° B., or about 15 parts of water to 1 of mixed acids, by volume. The operation should not continue more than fifteen minutes, as the nitric acid will impart a yellow color to the silk that can never be removed. Sometimes sulphuric acid saturated with nitrous fumes is substituted for aqua regia.
The bleaching with sulphur is the same as that for boiled silk (see above). When it comes from the sulpbur chambers the silk feels hard and rough, and is brittle, hence the necessity of softening (assouplissage).
This consists in treating it for a long time with boiling water, to which is added a certain quantity of tartar. After sulphuring, the silk of course retains a certain quantity of sulphurous acid. About three-eiglths of a pound of cream of tartar is dissolved in 100 pounds of water, and the silk drawn through it for $11 / 2$ hours. The silk gradually grows softer, swells up, and absorbs water easier, and is easily dyed. After this it is washed in tepid water.
The theory of softening is not yet established on a scientific basis. Many dyers are of the opinion that tartar can be replaced by other acid salts such as hydrosulphate of soda $\left(\mathrm{NaHSO}_{4}\right)$, or sulphate of magnesia $\left(\mathrm{MgSO}_{4}\right)$, with the addition of sulphuric acid.
Perlaps it is not even necessary to use acid salts, and that dilute acids will do as well. The question can only be answered by practical experiments on a large scale. At all events tartar is still used, in spite of its high price, in Lyons and elsewhere, whenever beauty is considered in preference to cheapness.
treatment of the "ecrus.
The raw silk is rarely used, even when naturally white, as, for example, in the back of velvets. If yellow, it must be bleached. Its treatment is as follows: 1. Moistening in hot water ; 2. washing ; 3 . sulphuring twice; 4. bleaching ; 5. washing; 6. sulphuring three or four times. If the silk is to be white, the treatment is as follows: 1 . Cold soap bath without soda, 1 pound of soap to 10 pounds of silk; 2. washing; 3. sulphuring twice; 4. bleaching with aqua regia or nitrosulphuric acid; 5. washing; 6. soap bath like No. 1; 7. sulphuring twice; 8. washing; 9. weak soda bath (16 to 1,000 of silk); 10. weak soap bath, cold (30 to 1,000 of silk); 11. washing; 12. sulphuring twice; 13. washing in pure, or slightly acidified water.
The details of dyeing the silk are promised us in a second paper by the same authors.

Remarkable Circular Saw Accident

The premises at Nos. 9, 11, and 13 York Street, New York, are used for an extensive packing box factory, conducted by George Blair. About forly men are employed there. In the rear of No. 13 is a long, low shed, whick covers a portion of the machinery. Directly under a skyight in the center of the shed is a table used for "ripping" planks. A circular saw projects above the center of the table about six inches. On the afternoon of February 26th, Caroline Bernheimer, a washerwoman, had been hanging out clothes to dry on a line that was stretched on the shed oof. Shortly after 5 P. M., a workman, who was engaged at the "ripping" table, heard a sound of crashing glass, and the body of the unfortunate washerwoman was precipitated through the skylight. She fell squarely across the jagged teeth of the saw, which was whirling at its full speed. The poor woman had evidently stumbled and lost her balance, and she did not utter a sound when she fell. Death came instantaneously. The horrified workman stopped the machinery, and then lifted the bleeding corpse from the saw. Some of the workmen ran for a physician, and Dr. Gulick, who lives a few doors away in Beech Street, hastily responded. The saw had buried itself into the victim's back, severing the spinal cord and cutting her heart in twain. Mrs. Bernheimer was thirty-five years old She was a widow, with one daughter, and lived at No. 338 Hudson Street.

