I cause the annular cupping apparatus to adhere by a pres sure on its bulb.
Then, turning to the patient, I find that her veins are so bloodless as to be invisible. I succeed in discovering them by placing a bandage on berarm. I raise a fold of the skin transverse to the median vein, and, cutting it with the bistoury, find that the vein is bluish and very narrow. I prick it with a nine erine, and then, removing the bandage from the arm, confide to Dr. Brochin the care of cutting a small piece from the vein with the point of a fine scissors and of introducing the canula into the narrow vessel. A few drops of very pale, thin, and incoagulable blood run out.
During this time I have dipped the bell of the aspirating tube of the instrument into a vessel of water beated to abou 40 degrees. By working the bulb, this water fills the entire transfuser, heats it and expels the air that it contains. It was after all the air was expelled by the water that Dr . Brochin introduced the canula into the patient's vein.

The patient is now in such a state of inertia and anemic anæsthesia that she makes not even the slightest movement, either during the incision of the skin o! during the prepara tion of the vein

Our two subjects are now united by an uninterrupted channel full of water and free of air. A sharp tap on the head of the lancet opens Renaud's vein, and his blood soon makes its appearance at the orifice of the tubes, after having driven the water before it. The water section tube as well as the expulsion tube are closed, and a direct current of blood is set up Slowly, never removing my eyes from the patient, I press the pump bulb, and force the blood easily into the vein in quantities of 10 grammes each time. At the tenth contraction of the bulb the patient breathes more deeply and quickiy. When questioned she answers that she feels no discomfort, bu experiences a heat rising from her arm into her breast.

Dr. Brochin easily ascertains under his finger that the blood is distending the rubber tube and the vein at each pressure; and, moreover, we all perceive the vein becom ing more apparent and turgid as far as the arm pit.
At the seventeenth injection of ten grammes, perceiving a resistance in the bulb and a slight agitation in the patient, I stop transfusing, after 170 grammes of Renaud's blood bave passed into the patient's veins.

The preparations for the operation were some what prolonged by the absolute lack of comfort and room in the apartment. It was difficult to light the latter well, aud Dr. Chauvin was good enough to hold a lamp so as to light alternately each subject. The operation itself lasted five minutes.
Renaud's arm was dressed with a simple bandage, and he returned to his work very much pleased with the service that be bad rendered.

February 8th.-The patient bas slept, al thougb she bas awakened several times. During the day she bas eaten six times. Sbe has spoken aloud, and bas not felt the leas pain.

February 9th.-The patient bas slept well the entire night, and for the first time in six montbs.

Feb. 10th and 11th.-State of convales cence assured.
February 12th and 13th.-Madame M. is sitting up, and is certainly cured. Hereafter she can dispenace with my care.

Such is the interestirg case that we have desired to make known. It now remains to say a few words in regard to the instrumen employed by Dr. Roussel-his transfuser.

The apparatus consists of a soft, elastic warm, and moist tube, after the style of the blood vessels, designed to be placed between the vein that dorsal, represented by the genus gempylus. Very recently yields the blood and that which receives it. This tube car- an American tunny was brought into Fulton Market, and ries a suction and force pump, which gives impulsion to the venous blood, while measuring the quantity and velo city of the same. Two bifurcations, one at the beginning, and the other at the end of the tube, allow of the entrance and exit of a current of warm water so as to drive out the internal air and heat the instrument without the water itsel being forced into the patient's circulation.-La Nuture

The nitric solution of the two metals is mixed in a beaker or a large porcclain crucible, with 4 to 5 c . c. of pure glsce rine, supersaturated with ammonia, and mixed with 10 to 15 c . c. of concentrated soda-lye. The clear liquid thus obtained is heated, and boiled for three to five minutes; the obtained is heated, and boiled for three to tive minntes; the formation of a silver deposit on the sides is prevented by
stirring with a glass rod. When cold the reduced silver is stirring with a glass rod. When eold the reduced silver is
filtered off, washed with boiling water, with warm dilute acetic acid, and again with not water. The acetic acid in the filtrate is neutralized, and the lead thrown down with sulphurt ted bydrogen. The separation of silver from lead is practicable in presence of copper and bismuth, as the oxide of these metals are soluble in glyceric alkalies. $-\boldsymbol{E}$ Donath

THE AMERICAN TUNNY.

Probably no family of fishes exceeds the mackerels (Scom

 rinas) in their economic value. . Having a wide geographi ca range, the different genera are found in almost all the water of the world, everywhere being a benefit to man, and from their beauty, form, an peculiar habits attracting universal at tention. The family is divided into four sub-families: 1st. Scombrinæ, distinguished by the short first dursal and the wide space between it and the second, and the pec torals high up, including the genus Scomber, or common mackerels. 2d. The Orcyninæ, of which the subject of our illustration is a member. Here the spinous dorsal is contigu ous to the soft, the pectorals comparatively low, the caudal peduncle with a median adipose carina, or fleshy keel and two others, one abuve and one below, converging backward. This sub family includes orcynus, sarda, and cybium, and related forms. 3d. Thyrsitinæ, in which the spinous dorsal is also long and pectorals comparatively low, but the caudal peduncle is not keeled This family includes the genera thyrsites, ruvettus, etc. 4tp. Gempylinæ, distinguished from the others by the very long body the height being less thannearly nine feet long, and weighed between 8i 0 and 90 nearly nine feet long, and weighed between $8: 0$ and 900
pounds-a magnificent fish. its entire make up denoting pounds-a magnificent fish. its entire make up denoting
wonderful speed and activity in its native element, where with their rich coloring, iridescent and silvery tints, they present a wondrous spectacle. It is rarely that they are captured so near New York city. In Rhode Island and by some of the more northern fisbermen it is called the albicore as well as American tunny, and its range is from Newfound and to Florida. Rondelel tigures a tunny under the nam Thon, and another species which he calls Pelamyde, or Thon Aristole. The first he denominates in Greek as Orkunos, hich, he says, is the "Grand Thon." The reneric name w used is evidently from the old Greck desi tunny is from thynnos, the more common term in use among e ancients. The fish seems to have been well known along the Mediterranean sea. Rondelet figures a bize, which he calls also sarda, and which he says is called by Pliny pela mydes. It will be seen, then, that these names. which are retained by modern naturalisis, were usen by
writers to designate species very closely allied.

Storer says: "The species known along our coast as hers mackerel and albicore comes on to Massacbusetts Bay abou the middle of June and remains until October It is fre quently taken for its oil, which is taken from the bead and belly, a single specimen often yielding twenty gallons."
They grow to a great size, and in 1855 one was caught off Lynn, Mass., that weighed over 1,000 pounds, was 10 fee long, and 6 feet in girth. It was presented to the Lynn Nalu ral History Society by Dr. J. B. Holder, who was then the honorary curator. In a memorandum note in the History of Lynn, Dr. Holder says: ' ' In this year (1850) they were very abundant, small ones being seen jumping out of the water and I have measured se veral that were 10 feet inlength.'
After this they were rarely seen, but in 1871 a numbe were observed, as well as great quantities of a small tunny Orcynus alliteratus, which, remarkable to relate, and show ing their great range, had previously only been known in the Mediterranean Sea. The commen tunny of the locality is the Thynnus vulgaris, and is said to bave beenseen in on waters. It attains a much greater size than its American representative (Orcynus secundo-dorsalis). Specimens have been found 20 feet in length, exceeding balf a ton in weight.
A casual observer would hardly note a specific difference between the two, so much do they resemble one anotber. From a very remote period the fisheries near the Island of Sicily have been valued, and in the summer vast shoal of them are caught in large nets or by means of what the Italians call tonaro
In appearance the thynnus bears a close re semblance to our mackerel, except in point of size. Each jaw is furnished with a row of small sharp pointed teeth, slightly curved i_{1} ward; the tongue and inside of the mouth are very dark colored; the cheeks coveren with long narrow pointed scales; the oper culum is smooth; the dorsal and anal fins ar followed by nine small finlets, and the tail crescent-shaped. The upper part of the body is very dark blue; the belly a light gray spotted with silvery white; the first dorsal fin pectorals, and ventrals black; the second dor sal and anal nearly flesh colored, with a sil very tint; the finlets, above and below, yel lowish, tipped with black. This description well applies to the American tunny, though the Fulton Market specimen had lost its bril liant colors when we saw it. Mr. Garrell quoting from Mr. Couch, says that "the tunny appears on the Cornish coast of Eng land in summer and autumn, but is not often taken because it does not take bait, or at leas the fisbermen use no bait that is acceptable to it, and its size and strength seldom snffer it to become entangled in the nets. It feeds on pilchards, berrings, and perhaps most other small fishes, but the skipper (Esox saurus) seems to be its favorite fuod, and il has beer seen to leap in the air after them and endeavo to cut them down after the manner of the thrasher.

According to a Freuch writer the greatest tunny fisbery of the present day is that at Provence. Here the haul is made by an in closed net called the madrag"e. The net con sists of a combination of nets, which is quickly cast into the sea to head the tunnies at the moment of their passage. When the sentinels posted for the purpose bave signaled the approach of a sboal of tunnies and its direction by the indications of a flag which points to the spot occupied by the finny tribe, the fishing boats are immediately directed to the spot indicated and ranged in curved lines forming, with the light floating net, a hal circular inclosure lurned toward the shore the interior of which is called the garden The tunnies thus inclosed in this garden be tween the shore and the net become crazed with terror; as they advance along the sbore they press upon the inclosure, or rather a new interio inclosure is formed with other nets beld in reserve. In this second inclosure an opening is left through which the fish have to pass. In continuing thus to diminish the space by successive inclosures each occupies a smaller diame ter, in which the fisb are inclosed in about a fathom and a half of water. At this moment a seine is thrown into the garden. this is in turn hauled by the men into shallow water and the small tioh taken by hand, and the larger by hook made for the purpose and tbrust into the gills. A single day of such fishing will oftentimes produce 16,000 tunnies, rang ing from twenty-five pounds upward. The madragu above mentioned is a permanent fishery, and consists of a vast inclosure formed of nets into various cbambers, sup ported by corks and beld in place by weights. The net is intended to arrest the shoals of tumnies as they leave shallow water for open sea. For this purpose a long alley or run is established between the sea sbore and the park or ma drague. The fish follow the run, and after passing from chamber to chamber, at last find their way intu the interio To force' them near" the "park" long nets are used, hauled by boats, and finally, when they are thoroughly in the toils, the net is ralsed to the surface, and the victims killed with
poles and various weapons, the sport, if it can be called such, lasting the entire night.
As an eating fish it is there preferred to the salmon, and a French gourmand says of it: "For our part we put it far above salmon. Nothing is comparable to the fresh tunny throwninto a hot frying pan, and sprinkled with vinegar and salt. When properly cooked nothing can be more firm or savory. In short, nothong of the kind can rival or even be compared with the tunny as we find it at Marseilles and Cette."
The large tunnies of our coast are by no means such delicacies, though their cousins, the mackerels, when fresh and broiled-not fried-are equally up to the French ideal.

The Viscosity of Liquids, and its Relation to

The time that it takes a liquid to flow through a capillary tube, under certain conditions, will depend on its viscosity By comparing different liquids under exactly the same experimental conditions, the difference in tenacity, or their specific viscosity, can be determined from this difference in time. Richard Pribram and Al. Handl have been able to
prove experimentally that there is an undeniable relation prove experimentally that there is an undeniable relation
existing between the specific viscosity of homologous liquid substances and their chemical constitution, and that these can be expressed by definite rules for certain substitutions By means of new and very carefully prepared pure sub stances, they have recently increased the number and value of their experiments. These have been published in two very exhaustive memoirs presented to the Vienna Academy of Science, and with them the conclusions drawn from all their observations. Omitting the special description of the apparatus employed, and the details of the separate experiments given in the original, the Naturforscher gives the following summary of their work
The first question to be answered by farther experimenting was in regard to the action of isomeric esters (or compound ethers), of which Gueront had asserted that they possessed equal fluidity for equal volumes, the statement being strictly correct. It is true that the tenacity (or viscosity) for equal volumes of isomeric esters did not vary a great deal; but these variations ought not to be neglected, and it was found that there was a regularity within these variations which was clearly apparent if the esters were grouped together according to their composition.

If those esters were grouped together, in which the iso merism is due to simple interchange of alcoholradicalfor an acid radical, the table showed that in those cases where a difference could be seen with certainty, an ester containing a higher alcohol radical would possess greater viscosity, while the one containing a higher acid radical would, of course, have less tenacity, or greater fluidity. In general, these differences of specific viscosity for equal volumes increase as the molecular weight of the alcohol radica increases.
Interesting relations were further apparent in comparing isomeric ethers, in which the isomerism is due to a differen arrangement of atoms in the alcoholradical or the acid radi cal. The compounds of this series which were examined showed that esters containing normally constituted radicals, were more viscous than those isomeric with them, and thi was equally the case whether the isomerism was in the alco hol or in the acid radical.
Experiments were then made to ascertain whether simila relations to those last mentioned also existed in the othe series. Among the haloid compounds of alcohol radicals, the butylic compounds acted the same in this respect as the esters. With propylic compounds, however, the difference in tenacity for equal volumes was very small, while for equal quantitics the differences were larger; but in an opposit direction, the normal compounds having the smaller vis cocity.

The aldehydes, like the ethers, showed greater fluidity in the normal compounds. The isomeric alcohols showed no regularity in the few examples examined, which belong here. A few nitro-derivatives of the fatty series, that can be introduced here, exhibited as litt!e regularity.

Now, if we take a general survey of the relation of nor mally constituted substances to the isomeric ones in the different groups, it will be seen that in the majority of This rule applies to all the esters, the aldehydes, propylic alcohol (at $50^{\circ} \mathrm{C}$.), nitropropane, butyric acid, and butyli iodide; on the contrary, the propylic haloids, butylic alcohol, and nitrobutane, all deviate from the rule."
The relation which Brühl has very recently described a existing between the specific refractory power, and the pre sence or absence of numerous conditions of the atom in the molecule, gave them occasion for observing the specift viscocity in this direction. It was found that when an alco hol passed into an aldehyde or ketone, the fluidity increased This is considerably greater when two hydrogen atoms go out, and there is a double bond formed between a cangen, than in those cases where the loss of hydro and an oxygen, than in those cases where the loss of hydro
gen is compensated for by a double bond between two atoms of the same kind. This decrease of viscocity, when an alco hol goes into an aldehyde or ketone, is always the same pe cent of the whole, whether calculated to volume or to quantity (weight). With increasing molecular weights, how ever, the absolute difference between homolegous alcohols greater.

The observations that have been made by this grouping may be embodied in the following general statement: "In homologous series, the increase of viscocity is in general proportional to the increase of molecular weight. The coefficient of increase, however, depends upon the structure of the molecule, and is constant only in those cases where the members of the homologous series, considered as binary compounds, contain one member that is ixed, and the other
variable. In the series of halogen derivatives of normally variable. In the series of halogen derivatives of normally
constituted hydrocarbons, the form of the molecule bas less consituted hydrocarbons, the form of the molecule has less
iufluence than the weight of the molecule; with so called iufluence than the weight of the molecule; wit
isomeric compounds it is distinctly noticeable."
What was previously ascertained concerning acids wa merely confirmed. An exhaustive discussion of the obser vations made on alcohols, and a comparison with the older results of Rellstab, lead to a surprising result, namely, that the two curves (of tenacity and molecular weight) run par allel only when the two butylic alcohols change places, the isobutylic alcohol being put in the normal series, and the ormal alcohol transferred to the isomeric series of alcohols. Finally, the nitro-compounds confirm the law that the vis cocity increases nearly in proportion to the increase of
molecular weight.

NEW FORM OF BRIDGE SUPPORTS.

The accompanying diagram illustrates designs by Mr. J.
F. Smith, Leicester, England. He proposes, says the Engi F. Smith, Leicester, England. He proposes, says the Engi aeer, that bridges shanll consist of up with plates riveted to olled iron or steel ribs, the strength necessary to carry any weight required; they are generally of a circular section and the lower half of the cylinder, or inverted portion of the arch, supports the upper half, and has a continuous
bearing on the ground or bed of the river its whole length; the larger the cylinders the more stable the bridge. These bridges, or cylinders, may be riveted up in dry dock, a por-
tion of the ends covered with movable plates, floated into position and sunk; the only trouble in foundations being in

cases where the bed of the river is rocky and uneven, then
it is necessary to level or groove the bottom with " jump ers" from a platform over the line of intended cylinder For small water-courses under turnpike and other roads, Mr. Smith says these bridges may be riveted up on the spot rolled in, covered over, and the bridge is made as in Fig. 3 without any piling, diverting watercourse, building foundations and arches, or other trouble and expense usual in the old style of building bridges.
Where railroads are to be formed over frequently flooded or boggy land, a number of these cylinders laid side by side -as in Fig. 2-will, it is claimed, save railway companie the enormous cost of foundations. The cylinders having possibly sink very much, and the rail level would be made good on the top in case of any subsidence.

Light and Color.

by alfred danikle, m.a., b.so
Light is a form of wave-motion in the all-pervading ether and it scarcely needs, nor does space allow, a lengthened discussion of the varieties of converging proofs which aid one another in forcing us to this conclusion. If we throw a couple of stones on the surface of water, we find a couple of systems of rings produced, which at their points of cross ing present the appearance of engine-turning. Where the crest of one coincides with the crest of the other, there is double upheaval; where the trough of one coincides with the trough of the other, there is double depression. Where however, the crest of one coincides with the trough of the ther, what do we find? Neutralization of effects-no effect, no motion; for the instant a state of rest. This is exactly what happens when two beams of light coming, or
appearing to come from two points exceedingly near to one appearing to come from two points exceedingly near to on
another, are allowed to shine upon the same spot. The phenomena of interference of light are phenomena in which light added to light produces darkness in some places, and extra brightness in others-darkness when the same spot is affected by waves which are in opposite places, and increased brilliancy when the waves are in accord with one another This is a matter capable of easy explanation when the phe nomena of light are considered as due to wave-motion; but under the old corpuscular material theory of light it wa very difficult to explain, as indeed it was to understand o believe the explanation offered.
The phenomena of color are again due to waves of differ ent lengths. Each color and shade of color, provided that it is in the spectrum, is due to a special wave-length. The
waves of light which produce in our eges the impression of
deep red have a length of about the $37,640 \mathrm{th}$ part of an inch; and since the ripples of 192,000 miles of space break upon the eye in a second, we learn that during each second we spend in contemplating the planet Mars, or any red star, the prodigious number of $458,000,000,000,000$ break upon the eye; and if the red object we look at be terrestrial, it must be in a state of continued vibration, which enables it during each second to start this enormous number of wave raveling through the ether and striking the eye. The other xtreme in color is produced by certain violet rays, which have a wave-length of the 60,000 th part of an inch, and of which more than $700,000,000,000,000$ strike the eye durin very second. But there are still more rapid vibrations, propagated by the ether, to which our eyes are not sensi ive, but to which our photographic plates do respond; and there are vibrations, slower than those of the extreme red, to which our eyes are not specially sensitive, but which our kin and general bodily organisms perceive as heat rays The slower waves are thus the cause of radiant heat, the more rapid ones cause the sensation of light, and the most rapid produce the chemical effects upon which photography depends. Yet there is no broad line of demarkation between these departments of energy-bearing waves. The red ray are felt to be warm by the hand, and seen by the eye to be red; the violent rays are seen by the eye to be violet, and are also found to be active in relation to photographic plates. What lies beyond these we do not know. There is no probable reason, in the nature of things, for such a limit ation of vibrations in the ether to one or two octaves; but whether there be or be not any radiations through space which are slower or more rapid than those with which w are acquainted as heat waves, light-waves, or actinic waves, it remains that we do not know anything about them, for we have no senses which perceive them, and we have as ye iscovered no instrumental means for their detection. Ye we suspect their existence. Many of the vibrations of lumi nous bodies are connected with one another in the same way as the harmonics of a low musical note are related; and thus we may, without any material call upon our imagina tion, suppose ourselves to be in relation to the vibrations of light in much the same position as we can easily suppose grasshopper to be on listening to the boom of a church rgan. The grasshopper can hear sounds which are beyond our hearing, sounds high and keen edged, sounds like thos which he himself makes: but it is probable that we in ou turn can hear low tones which the grasshopper cannot hear and that on listening to a full-chorded combination of sounds, the insect would be deaf to the lower notes, and would hear simply a crowd of harmonics, which would seem at first to bear no relation to one another. In the sam way, we can suppose ourselves to be blind and devoid of sensation in respect of those long fundamental waves in the ether, of which these light rays and heat rays are some of the harmonics. Too much stress must not be laid on this, however, because our knowledge (though growing) is not yet very great in this regard; and there is not much evi ence that there is any material loss of recognizable or per eptible energy in the shape of unrecognizable or impercep tible radiations.
Color in the theory of light resembles pitch in the theory of sound. Both depend upon the length of wave which trikes upon the appropriate organ of sense after travelin through the appropriate medium. Yet though they depend upon the length of wave, the length of wave does not explain the sensations of color or pitch. The theory of ight and that of sound are both, in the most rigid sense sciences of calculation, of applied mathematics, mechanical ciences. They have nothing to do with the emotiona effect of the harmony of colors or of sound; or with the relation between beauty of color or of sound, and the admi ation which this calls forth from a sensitive mind. They have to dear with vibrations alone, and a transversal vibra tion in the ether, having a wave-length of the 51,110 th of a nch, and falling on the retina of the eye, may or may not ouse the enthusiasm of the mind which is behind the ey hat perceives the blue of heaven; but physical science, con erning itself with the vibration as such, and as such only tops short where physiology and psychology take up the burden of discovery and of explanation
White light, such as that which comes to us from the sun is composed of almost all the vibrations within the limits of isibility, simultaneously traveling through space, and sim ultaneously striking our eyes. When a ray of bright whit ight strikes the eye, we have no sense of any special color in the mixture, and this is the sensation of white light; the mixed sensation of all colors, of which none preponderates is the sensation of uncolored or white light. If an orchestra ounded forth every imaginable note within the compass of our hearing, the blinding flare would not produce in our ear the effect of any particular pitcb; the result would simply be an indescribable Wagneresque ocean of pitchless sound. So it is, and as wonderful, but that we are more accustomed o it, every time we behold white light; and our object when we endeavor to procure what we call pure white light is to procure light which is due to all possible vibrations, of which no one preponderates over the other so as to impress he aggregate result with its own colored individuality.Journal of Gas Lighting.

The American Association.

The annual meeting of the American Association for the Advancement of Science will take place at Montreal (no Buffalo as stated in our last), on Wednesday, Aug. 23, 1882.

