THE STEAMSHIP AUSTRAL

The latest addition to the Orient Line of steamers, the Austral, is a distinct advance on the Orient, the first of her lype, not only in respect of speed, but in the structure of the hull, the ventilation of the state rooms, the arrangements made for the importation of frozen meat from Australia, and the effectiveness of the vessel as an auxiliary to our naval force. She has been built by Messrs. John Elder \& Co., of Govan, on the Clyde, under the superin. Elder \& Co., of Govan, on the Clyde, under the superin-
tendence of Mr. J. W. Shepherd, a member of the Institute tendence of Mr. J. W. Shepherd, a member of the Institute
of Naval Architects. Her length over all is 474 feet, ber of Navalth 48 feet 3 inches, and her depth moulded is 37 feet. Her displacement on the load line is about 9,500 tons. She is thus 10 feet longer, 2 feet broader, and 2 inches deeper than the Orient, but, as her lines are finer, her tonnage wil not much exceed that of the Orient. She is built through out of mild steel, and has three steel decks. She is divided below the inner skin and the double bottom into ninetee separate water-tight compartments, separate water-tight compartments,
and in the bull proper within the inand in the bull proper within the in-
terior skin she is divided by thirteen water-tight bulkheads, ten of which run up to the level of the main deck. If the whole of the lower compartments were îlled with water, the effect would be an additional draught to the extent of 18 inches, and if the sea got into two of them, the stability and the surplus buoyancy of the vessel would prevent ber from being endanwould
gered.
Above the main deck the ship is divided into seven fireproof compartments, all in cocemunication with the main deck; and, as the pumping power provided is equal to 2,928 tons per hour, there is ample arrangement made for flooding any of the compartments in case of fire, or extracting the water in case of their becoming waterlogged. in case of their becoming waterlogged.
In the event of the engines being disIn the event of the engines being dis-
abled, the vessel is provided with four abled, the vessel is provided with four
masts, the fore and main being squarerigged, and the mizzen and jigger having fore and aft sails, wbich, combined, will give about 28,000 superficial feet of canvas: thus the vessel is well under command independently of steam power. These provisions for the general safety of the vessel are supplemented by unusual care for the comfort of the passengers. The cabins are all placed within the area of the ship, with a gangway, four feet wide, running right along the vessel, outside the state rooms, and at frequent intervals across the ship. This permits each state room to be constructed like an ordinary compartment, with windows in stead of portholes; and the porthole in the side of the ship may be opened even in rough weather without any fear of water entering the cabin. If a sea should strike the vessel when the porthole is open, the water will fall on to the gangway. Upon the upper deck, the gangway running round the whole of the vessel is perfectly open to the air, while it is covered above; and the passengers may promenade there with the full advantage of an open sea before them. The passage round the ship leads fore and aft on each side of the saloon, so that persons can go to either end of the ship
without passing through the saloon. Besides this, there are
numerous cross passages, three feet wide, between the several quadrangles of state rooms, an arrangement that offers unusual facilities for moving about the ship. The saloon is a bandsome apartment, paneled with walnut and embellisbed with carved shields representing the arms of various nationalities. Arrangements are made for the usual long tables, but they can be also divided into sets of a dozen or even four seats. The most striking characteristic of the saloon, however, is the row of dome-shaped painted-glass windows down each side. These can be lowered at will in all weathers, because, instead of opening on to the sea, as usual, they merely admit air from the long corridors. Effective ventilation is provided for the saloon by a centrifugal fan, worked by a small steam-engine. The fan forces a continuous current of pure air into the apartment, and the foul air finds its way out through an ornamental opening above each window. The public rooms, the engine-room, pantries, and passage ways are lighted by the electric light

THE OPERATION OF TRANSFUSING BLOOD

Swan lamps. Five of the arc lights are placed in the engine room and four on the deck The current is provided by two of Siemens' alternating current machines, each driven by a separate engine.-The Illustrated London Neros.

A Government Fish Steamer.

The Government is now building in Delaware a fine new ron steamship for the special use of the Fish Commission. It is to cost $\$ 200,000$, to be named the Albatross, and to be ready in about four months. Its dimensions will be Length, 200 feet; beam, 27 feet 6 inches; depth of hold, 16 feet 9 inches; burden, 800 tons. Among the special applinces fitting the vessel for its purpose will be a deep-sea dredge and eight miles of wire rope. One of the first important services of the Albatross will be the transportation London of the collection which will represent this coun to London of the collection which will represent this coun-
try in the great Fish Exposition next May.

THE DIRECT TRANSFUSION OF BLOOD.

Among the various methods of transfusing blood that have been employed, the most commendable appear to bc hose of Dr. Oré, of Bordeaux, and Dr. Roussel, of Geneva The process of the latter bas recently occasioned a remark able cure which bas attracted much attention from the medical world, and we are therefore glad to make it known to ur readers. Facts, as we know, speak for themselves, -o we will give these in' a succinct manner. Mrs. M., aged 31 years, had bad five living children and two miscar iages. In December, 1881, after six months of gestation, se gave birth to two children-one of them was stillbort and the other lived for a few hours only. The patient in spite of all cares gradually became feeble from week to week. She was altended by her physician, Dr. Chauvin, and by Drs. Brochin and Pean. On the 31st of January she vent from bad to worse; and, on the 1st of February, there was little hope for her. Anorexia, vomitings, insomnia inertia, diarrbea, anemic bectic fever, cadaverous face, and approaching dis solution; such were her symptoms Drs. Pean and Brochin then suggested transfusion as a last resource. Thi was performed by Dr. Roussel, who describes the remarkable operation a follows: On the 5th of February Dr. Brochin came to the Grand Hotel to ask my concurrence. I found the patien inert, scarcely conscious, without heat without respiration, as pale as a corpse, veins invisible, and pulse filiform at 140.

The heart and lungs appeared to me to be healthy, and I consented to oper ate, February 7th, 4 o'clock P.M. The patient is in the state above described to-day she bas had diarrhea nineteen times; ber pulse is filiform, tremulous, and 150. The sister and husband of the patient offer me their arms; but, after an examination, I prefer to mak a choice elsewhere. There is made known to me a business man of the street who employs many strong workmen. Mr. Z. at once comprebends the importance of my request and canse his men to call, and to them I explain that it is a question of saving a mother f a family by giving her a little blood taken from the arm of of them by a single puncture which I affirm will be harmless. Several consent. I select a young man of about hirty years of age, healthy and robust, named Adrien Renaud. We go up to the patient's room, where are pre sent Drs. Brochin and Chauvin and the husband, sister, and other relatives. The transfuser is washed in warm water to which has been added a little soda. I uncove the breast of the patient, and stretch her arm along the edge of the bed. I seat R., and place his arm parallel with that of the patient, and surround it with a bandage so as to cause his veins to swell. After having carefully sougbt and noted with ink the course of the bumeral artery t the bend of the elbow, I mark a point of ink at $t w o$ cen timeters berond the course of the artery, on the median vin, which appears to be prominent and well swollen with blood. Resting the initial cylinder of the transfuser in such a way that it figures the circumference of this central point.

THE NEW STEAMSHIP AUSTRAL. OF THE ORIENT LINE.

I cause the annular cupping apparatus to adhere by a pres sure on its bulb.
Then, turning to the patient, I find that her veins are so bloodless as to be invisible. I succeed in discovering them by placing a bandage on herarm. I raise a fold of the skin transverse to the median vein, and, cutting it with the bistoury, find that the vein is bluish and very narrow. I prick it with a nine erine, and then, removing the bandage from the arm, confide to Dr. Brochin the care of cutting a small piece from the vein with the point of a fine scissors and of introducing the canula into the narrow vessel. A few drops of very pale, thin, and incoagulable blood run out.
During this time I have dipped the bell of the aspirating tube of the instrument into a vessel of water heated to abou 40 degrees. By working the bulb, this water fills the entire transfuser, heats it and expels the air that it contains. It was after all the air was expelled by the water that Dr Brochin introduced the canula into the patient's vein.
The patient is now in such a state of inertia and anemic anæsthesia that she makes not even the slightest movement, either during the incision of the skin or during the prepara tion of the vein
Our two subjects are now united by an uninterrupted channel full of water and free of air. A sharp tap on the head of the lancet opens Renaud's vein, and his blood soon makes its appearance at the orifice of the tubes, after having driven the water before it. The water section tube as well as the expulsion tube are closed, and a direct current of blood is set up. Slowly, never removing my eyes from the patient, I press the pump bulb, and force the blood easily into the vein in quantities of 10 grammes each time. At the tenth contraction of the bulb the patient breathes more deeply and quickly. When questioned she answers that she feels no discomfort, but experiences a beat rising from her arm into her breast.

Dr. Brochin easily ascertains under his finger that the blood is distending the rubbe tube and the vein at each pressure; and, moreover, we all perceive the vein becom ing more apparent and turgid as far as the arm pit.
At the seventeenth injection of ten grammes, perceiving a resistance in the bulb and a slight agitation in the patient, I stop transfusing, after 170 grammes of Renaud's blood have passed into the patient's veins.

The preparations for the operation were some what prolonged by the absolute lack of comfort and room in the apartment. It was difficult to light the latter well, aud Dr. Chauvin was good enough to hold a lamp so as to light alternately efach subject. The operation itself lasted five minutes.
Renaurd's arm was dressed with a simple bandage, and be returned to his work very much pleased with the service that he had rendered.

February 8th.-The patient has slept, al though she has awakened several times. During the day she bas eaten six times. She has spoken aloud, and bas not felt the leas pain.

February 9th.-The patient has slept well the entire night, and for the first time in six months.

Feb. 10th and 11th.-State of convales cence assured.
February 12th and 13th.-Madame M. is sitting up, and is certainly cured. Hereafter she can dispenac with my care.
Such is the interesting case that we have desired to make known. It now remains to say a few words in regard to the instrumen employed by Dr. Roussel-his transfuser.
The apparatus consists of a soft, elastic warm, and moist tube, after the style of the blood vessels, designed to be placed between the vein that dorsal, represented by the genus gempylus. Very recently yields the blood and that which receives it. This tube car- an American tunny was brought into Fulton Market, and ries a suction and force pump, which gives impulsion to from its great size attracted general attention. It wa the venous blood, while measuring the quantity and velo nearly nine feet long, and weighed between 8i0 and 900 city of the same. Two bifurcations, one at the beginning, pounds-a magnificent fish. its entire make up denotin and the other at the end of the tube, allow of the entrance wonderful speed and activity in its native element, where and exit of a current of warm water so as to drive out the
internal air and heat the instrument without the water itself
present a wondrons spectacle. It is and rarely that they are being forced into the patient's circulation.-La Nuture. captured so near New York city. In Rhode Island and by some of the more northern fishermen it is called the albicore, as well as American tunny, and its range is from Newfounda large porcclain crucible, with 4 to c. c. of pure glsce land to Florida. Rondelet tigures a tunny under the nam rine, supersaturated with ammonia, and mixed with 10 Thon, and another species which he calls Pelanyde, or Thon to $15 \mathrm{c} . \mathrm{c}$. of concentrated soda-lye. The clear liquid thus d'Aristole. The first he denominates in Greek as Orkunos, obtained is heated, and boiled for three in five minutes; the which, be says, is the "Grand Thon." The generis name formation of a silver deposit on the sides is prevented by now used is evidently from the old Greek designation, and stirring with a glass rod. When cold the reduced silver is tunny is from thynnos, the more commontermin use among filtered off, washed with boiling water, with warm dilute the ancients. The fish seemsto have been well known along acetic acid, and again with not water. The acetic acid in the Mediterranean Sea. Rondelet figures a bize, which he the filtrate is neutralized, and the lead thrown down with calls also sarda, and which he says is called by Pliny pelasulphur ted hydrogen. The separation of silver from lead mydes. It will be seen, then, ihat these names. which are is practicable in presence of copper and bismuth, as the oxides retained by modern naturaliss, were used by the earlie:of these metals are soluble in glyceric alkalies. $-E$ Donath. writers to designate species very closely allied.

Probably no family of fishes exceeds the mackerels (Scom rincs) in their economic value. . Having a wide geographi ca range, the different genera are found in almost all the water of the world, every where being a benefit to man, and from their beauty, form, ana peculiar babits attracting universal at tention. The family is divided into four sub-families: 1st. Scombrinæ, distinguished by the short first dursal ind the wide space between it and the second, and the pec torals high up, including the genus Scomber, or common mackerels. 2d. The Orcyninæ, of which the subject of our illustration is a member. Here the spinous dorsal is contigu ous to the soft, the pectorals comparatively low, the caudin peduncle with a median adipose carina, or fleshy keel and wo others, one abuve and one below, converging backward This sub-family includes orcynus, sarda, and cybium, and related foms. 3d. Thyrsitinæ, in which the spinous dorsal is also long and pectorals comparatively low, but the caudal peduncle is not keeled This family includes the genera thyrsites, ruvettus, etc. 4tp. Gempylinæ, distinguished from the others by the very long body (the height being less than

THE AMERICAN TUNNY.

