Srimtifir cmeriam.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors
 published weekly at

No. 261 BROADWAY, NEW YORK.
o. D. MUNN.
A. E. BEACH.

CEIRMS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year postage included.................................. $\mathbf{5 3} 2$ grame proportionate erate. Pive subtaccribers prepaid.
Remit Ly postal order. Aduress

The Scientific American Supplement

 Scientifc American Export Edition. The Scrint pic AnmelcAN Etport Edition is a large and splendid peri
odical. issued once a month Eath number contains about ne bundre

NEW YORK, SATURDAY, AUGUST 5, 1882.

TABLE OF CONTENTS OF
the scientific american supplement NO. 344,

For the Week ending August 5, 1882. Price $\mathbf{1 0}$ cents. For sale by all newsdealers
I. Engineering and mechanics.-The Panama Canal. by Mantrl Eissler. I.-Historical notes.-Spanish Discoveries in
Central America.-Early explorations.-Nicarasua projects.-Central America.-
Panama railway, etc.
Improved A veraging Machine
Compound Beam Engine. -4 tigures.-Borsig's improved com-
 worth.- 5 figures...
The Bicheroux System of Furnaces Applied to the Pudding of Iron.-2 figures.
Novelties in
Novelties in Ring Spindles.-4 figures.
II. NATURAL HISTORT.- Metamorphosis of the Deer's Antlers.Annual changes.-9 figures.
Monkeys.
Monkeys. By:A.R.W ALLACE.-Comparison of skeletons of man, rang outang, and chimpanzee.-Other anatomical resemblances and diversities.-The different kinds of monkeys and the countries
they inhbit.-American monkeys.-Lemurs. - Distribution, affinities, and zoological rank of monkeys...
Silk Producing Bombyees and other Lepidoptera reared in in 1881 .
By ALFRED WALLIT, Member Lauriat dela Societe e France.-An extended and important European, Astatic, and de France.-An extended and important Europ.
iII. MINERALOGY, METALLURGF, ETC.-The Mineralogical Localities In and Around New York City an. the Minerals Occur-
ring Therein.-By NELSON ring Therein.-By NELSON E. DARTON.-Chances for collecting within one hour's ride of New York.-Methods of collecting and
testing.-Localities on Bergen تill.-The Weehawken Tunnel.-testing.-Localities on Bergen Eill.-The Weeha wken Tunel.-
Minerals ind modes of occurrence. -Calcite. Natrolite.-Pectolite. -Datholite.-Apopholite--Phrenite.-Iron and copper pyrites:-
stilbite.-Laumonite.-Heulandite Stilbite.-Laum
Crystallization and its Effects 0 pon Iron. By N. B. Wood.Beauty of Cry stals.-Nature of cohesion.-Cleavage.-Growth of crystals.-Some large crystals.-Cast iron.-Influence of phos-
phorus and sulphur.-Nature of stee!.-Burnt steel.-Effect of phorus and
annealing.
IV. ARCHITECTURE, ART. ETC.-The Cathedral of Burgos, Spain Description of Burgos Cathedral.
Photo-Engraving on Zinc and Co
Meridian Line.-A surveyor's
 dientiflc attempts at electro-motors. electrian de ansion Action of Magnets Upon the Voltaic Arc Folcko their work to meet the practical wants of the multitude, is
the disposition to cut short the school period early to the disposition to cut short the school period early to
begin in earnest what seems to be the real business of life. Though ninety-nine in every hundred youth cannot hope to go to college, their educational needs are largely sacrificed to make the school a possible tributary to the college. Time which the majority of youth need for practical preparation for their life's work is thus very largely given to studies of for their life's work is thus very largely given to studies of
value only in their relation to a subsequent college course which is never to be enjoyed. It is no evidence of popular unwisdom, as most teachers seem to think, that there is an $\left\lvert\, \begin{aligned} & \text { increasing popular indisposition to surrender so much of } \\ & \text { youth's precious time to such unpractical work. There is }\end{aligned}\right.$ increasing popular indisposition to surrender so much of
youth's precrous time to such unpractical work. There is and if the schools are declining in favor, it is because the school officials

MORE INNOCENT BUYERS NEEDING PROTECTION.

 little present salary was accompanied with extravagant ex pectations seldom or never to be fulfilled. Others as unwisely pressed on in their school course, mortgaging their future to prepare themselves for learned professions, vainly seeking to win fame and fortune in places for which they had no real fitness. The condition of mnch schooled but ill educated girls was, if anything, still worse.A natural reaction against this misdirection of youth and A natural reaction against this misdirection of youth and ough ninety-nine in every hundred youth cannot bope to nothing so valuable to youth as education, but unhappily都 see this fact more clearly than the mass of

The readiness of certain "innocent" farmers of the West to take the risk of an extra good bargain under questionakle circumstances has led a good many in Iowa into trouble the past summer, and not with patent rights either. As described by the Iowa Homestead, the swindle which they
\qquad

the decline of schooling.

At the recent meeting of the New York State Teachers' Association, the report of the Standing Committee on the Condition of Education showed that, notwithstanding the steady increase in the population of our State, the number of children in daily attendance upon the public schools is declining. The decrease was attributed by the chairman of the committee to "the increased demands made by manufacturing interests," by which was meant, we presume, an increased employment of children in factories.
The lesszning number of children in school is not peculiar to New York State or to factory towns. At other teachers' gatherings this summer the same condition of things bas been noted and variously commented upon as being more or less visible
deplored.
The general feeling seems to be that the schoolmaster is losing his grip, and that the country is likely to suffer in consequence. That the schools are or can be in any way to blame for the declining popular interest in schooling, the school authorities are naturally not disposed to believe; nor does it seem to occur to them to think that their apparent loss of influence may really be an indication of the spread of juster views than formerly prevailed of what is proper for youthful culture
To say that fewer children " of school age," in proportion to the school population, are now to be found any day in school than was the rule twenty years ago, is very far from saying that proportionally fewer children are being properly educated now. The legal "school age" begins in this Stat at three years. Formerly the custom was to send little boys
and girls three and four years old to the public school; and such is largely the custom still among the poorer classes. With well-to-do people, we are happy to believe, the sending of such small children to school is becoming more and more the exception. The growing feeling is, that even when the school house is kept in a condition sanitarily fit for the reception of infants-which, we fear, is rarely
the beginning of school life had better, for the children's the beginning of school life had better, for the chen home sake, be put off until they are six, eight, or, when home
conditions are right, ten years old. For this reason a vast multitude of children, whose educational prospects are the brightest, are now kept from school. If the school work were differently planned and regulated, it might be better for some of these children to be in school a little every day; but not under present conditions. The fact that they are not in school, however, must not be taken as evidence that popu tion is likely to suffer for it. As a rule children who begin serious school work at eight or ten years of age are as far advanced in their studies at twelve as those who begin at three or four, and usually they are both. physically and mentally in better condition for instruction.
Not so satisfactory is the frequent cutting off of the other end of the period spent in school; and yet even that is not an unmixed evil, as the schools are usually conducted. When the free school system was first developed, the belief was general that schooling was the one thing needful to enable young people to get on in the world; and it was their children year after to make great sacrifices to keep their children year after year in school, only to find in the
end that their sons were too old to do boys' work, and too end that their sons were too old to do boys work, and too
proud to begin at the bottom of any trade or other industrial calling and work up. They must do something more ! genteel, and crowded into the towns and cities in pursuit of clerkships and quasi-professional engagements, in which a
tion, the unsuspecting farmer shows the beast, and the fellow decides that it is not his, and then he returns to his partner and describes the animal to him minutely. No. Two ooes to the farmer, and after proving by his thorough description that he is the owner of the animal, says be can not take it away, and offers to sell it at a bargain. The far mer buys, and in a few days the rightful owner comes along and claims the animal, and of course the farmer is out just o much."
If the victims of these swindles were mere mechanics or other artisans not generally interested in the ownership of cattle, it would be easy to provide a remedy for the wrong here complained of. Some Eastern Congressman might be got to push through the National Legislature a bill to pre vent the recovery of cattle that had been "innocently" bought and paid for under the circumstances described. But that remedy is barred by the fact that the innocent buy ers are also cattle owners, and occasionally cattle losers and they would not like to have the general security of their property in cattle unsettled for the sake of guarding them rom possible losses in an occasional over-promising pur chase. Estrays would be altogether too numerous, and the rade in them too lively under the action of such a law, and Congress would be promptly overwhelmed with rural protests against it.
Seeing that the evil cannot be cured by legislation, we can only hnpe that education through experience will suffice for the purpose. Two or three "innocent" purchasers in any neighborhood, with subsequent loss, should be enough to " protect" the community from any further imposition of that sort. If more farmers were patentees-as they ought to be-the same rule would suffice equally with respect to the "innocent" purchaser of patented article from unauthorized sellers.

A LABOR STORM-CENTER.

The city of Pittsburg may just now be regarded as occu pying the position of a labor storrn-center. Southwest, at Cumberland, Md., the coal miners have for five months been engaged in a strike against a reduction of 15 cents per on in mining coal; southeast, and at the gates of the city he miners in the famous Pan Handle gas coal region, hav been idle since April first, striking against a reduction of one-half cent per bushel; northeast, the miners are disturbed and inclined to strike for an advance of 15 cents per ton west, the miners of the Hocking Valley, O., reginn are triking against a reduction of 10 cents per ton. Worse than all, the great iron mills of the west and northwest after a brief stoppage, through strikes among the iron workers, have started up, agreeing to pay their men the scale of prices " which shall be fixed at Pittsburg." This makes of the latter city the battle ground of the existing ron strike. Since June 1st, an army of 10,000 idle iron workers have been upon the streets of Pittsburg, and he proverbially smoky atmosphere has given place to one as clear as New York or Brooklyn possesses. In Pittsburg are the main offices and headquarters of the most powerfu labor organizationsin the world. The Amalgamated Associa tion of Iron and Steel Workers includes operatives in nearly very iron and steel mill from Maine to the Rocky Moun tains, and possesses a membership of at least 50,000 . The Knights of Labor, with a membership of from 15,000 to 20,000 , comprises all manner of industries other than iron nd steel; the Miners' Association possesses 12,000 members, all coal miners. In addition, there are the telegraphers, the lass workers, and other trades unions, whose largest mem bership is found in the same city. It is the demand of the ron puddlers-members of the first named organizationfor 50 cents advance per ton in their wages, which brought about the existing iron-workers' strike, a disturbance in which both sides seem as firm to-day as they did nearly two montlis ago. The varied episodes of these strikes, as noted n and about Pittsburg, would, in the hands of a second Charles Reade, furvish abundant material for a volume sur passing in interest that writer's "Put Yourself in his Place."

FIRE RISKS WITH ELECTRIC LAMPS.

In obviating the fire risks incident to the use of oil and gas lights, electric illumination has quite fulfilled the prom ses first made for it, but users of electric lights are learning that they are not without their own peculiar hazards, which xperience is the only means of discovering, hence th eed of especial watchfulness for new developments in very part of the electric circuit
It will be remembered that the burning of a factory in Philadelphia some months ago was attributed to sparks of molten copper from the coating of the carbons of an imper fectly shielded arc-lamp. More recently, in the same city a large show window in a popular dry goods store was fired by a Jablochkoff candle. A careless attendant had neg lected to screw on the brass cup below the light, and a soon as the current was turned on the fabrics in the window were ablaze from a shower of white-hot particles thrown of by the lamp. This was obviously no fault of the lamp, bu he incident goes to emphasize the need of great care in its manipulation.
Even the purely incandescent electric lamp is not without its dangers, as was discovered in a Philadelphia drug house few days ago. One of the strong claims of this method of lighting has been its alleged inability to set anything afire. The nature of the "low tension" current supplying incan descent lamps was thought to forbid the system's ever play ing the part of an incendiary, while the security of the lampe
was publicly demonstrated by breaking the glowing lamp in the midst of highly inflammable stuffs. Yet, in the case just referred to, a defective lamp came very near starting a serious fire. The lamp was in use in a cellar, and excep for the fortunate entrance of an employe, the fire migh never have been explained. He found the wires of the lamp-a Maxim lamp-white bot, with their paraffin coating blazing up against the beam and fioor above. A welldirected hatchet stroke severed the wires, and the fire was stopped. An examination showed, according to the state ment of Mr. McDevitt, Superintendent of the Insurance Patrol, that of the two wires, the one that enters the side of the brass shell below the glass globe in one of the lamps, and which is supposed to be firmly beld in place there by a drop of solder, was not in fact so held, but seemed to have been loosely tied to the shell with a bit of copper wire, and to have dropped down from that imperfect fastening, cross ing the other wires and establishing electrical connection with it. Both wires were, of course, white hot instantly They were covered with a heavy insulating coating, mainly composed of paraffine, and that substance burned at once. But for the timely discovery of the accident the entire estab lishment might have been destroyed. Upon a careful inspection being made of the other lamps on the premises, one or more was found in which the wire was simply tied on, and two others from which the drop of solder had been melted away or else had never been there, so that the wir was loose and liable to fall at any moment.

Thus we see in one city, and within a few months, each of the types of electric lamps bas been the cause of a fire However safe, as compared with kerosene, the electric lamp will bear watching.

THE ABSORPTION OF METALLIC OXIDES BY PLANTS.

The Journal of the Franklin Institute for July contains detailed report by Mr. Francis C. Phillips of a series of experiments undertaken by him to determine whether any injurious effects are produced upon plants by the presence of certain metallic oxides in the soil, and whether healthy nlants will absorb such oxides through their roots
The experiments of Dr. Freytag, at Bonn, quite positively indicated that growing plants would take up mineral poisons, and that without injury until a limit of poisonous concentra tion was reached, when they rapidly withered and died. The plants showed no discriminating or selective faculty, but took up any matter in a suitabre condition. Other ex periments in Germany have since contradicted the results arrived at by Freytag, and so have certain tests with Paris green reported by our own Commissioner of Agriculture.

Mr. Pbilli ps experimented with carbonates of zinc, copper and lead, and the arsenate of lime, compounds which are almost absolutely insoluble in water. The plants were geraniums, coleas, ageratums, achyranthes, and pansies, which were selected not with reference to any special peculiarities of the plants, but for the reason that there were thousands of other plants of the same kind, and all equally advanced in-growth, on the tables of the greenhouse, which afforded an opportunity for a close comparison of those grown upon
conditions.
The con
The conclusions arrived at by Mr. Phillips are:

1. That healthy plants grown under favorable conditions may absorb througin their roots small quantities of lead, zinc, copper, and arsenic.
2. That lead and zinc may enter the tissues in this way without causing any disturbance in the growth, nutrition, and functions of the plant.
3. That the compounds of copper and arsenic exert a distinctly poisonous infiuence, tending, when present in larger quantity, to check the formation of roots, and either killing the plant or so far reducing its vitality as to interfere with nutrition and growth
In the case of the heavy metals, copper, zinc, arsenic, and lead, it seems to be probable that their oxides may under certain circumstances become deposited in the tissues of the plant.
These results have a direct bearing upon the conduct of may become hoperations involving thesemetals. If crops elements in the soil, the greatest care should be exercised to prevent the dissemination of these metals by the vapors of smelting establishments and the like

accuracy in telegraphing.

When the telegraph was first established, with a new system of representing words, and of necessity employing operators new to the business, there was reason enough in supposing that a large allowance should be made for operative errors. Under the conditions then existing the stipulation of the telegraph companies that they would not be responsible for mistakes unless the message be repeated was not altogether unreasonable. That the public should submit to the same one-sided regulation, now that telegraphing is no longer a novelty, is simply absurd, or worse, since it allows the companies to shirk the proper consequences of employing under paid and incompetent operators. At current rates there is no business that can better afford to furnish the best of servants and service than telegraphing, and with the present development of the art there is no more justice in tbrowing the presumption on the side of inaccuracy and redelivery of their messages than there would be in applying the same rule to any other service.

The baker who should offer bread at the current rates, re fusing to guarantee full weight and sweetness except for double price, would soon discover that the public did not pprove of that way of doing business. And the sam ommone would befall the tailor, shoemaker, rate on the plan of mer man who should ate prices.
The lack of competition and the easy submission of th public to inherited customs have made it possible for the telegraph companies to continue the practice. At last, how ver, some one has had the spirit to dispute the right of the companies to make the law for themselves, and the United States Court at Leavenworth, Kan., has justified his action. The court beld " that any rule or regulation of the company which seems to relieve it from performing its duty, belong ing to the employment, with integrity, skill, and diligence, contrávenes public policy as well as the law, and under it the party at fault cannot seek refuge. If it become necessary for the company, in transmitting messages with integ rity, skill, and diligence, to secure accuracy, to have said message repeated, then the law devolves upon them that duty."
It is to be hoped that this decision is as well founded in law as it is in reason, and that in case of appeal the higher for inaccuracy in the transmission of no reasonable excuse The instruments make no mistakes, and it is possible, hy double instrumental records or otherwise, to insure the cer tain delivery of the message received. It might evolve a lit tle more care and a higher grade of operative ability; but the companies can afford that, and the public should accep nothing less from the companies than a full and exact discharge of the duty undertaken by them.

WHY BEEF IS DEAR.

The reasons given for the current bigh price of beef are many. The winter of $1880-81$ was exceptionally severe and heavy losses of stock were suffered on the great cattle ranges of the West. The drought of the ensuing summe acted not less unfavorably upon the smaller berds of the East. The hay crop was short, and the summer and fall pasturage failed over many States; so that farmers were forced
to kill their young stock. In this way, we are told, the beef supply was diminished both in quantity and quality, leaving the demand for good beef far in advance of the supply. The exportation of nearly 200,000 cat tle contributed still further to lessen the beef supply for home market. Advantage was taken of the situation by speculative dealers and combinations controlling millions of capital, and by local rings of butchers and marketmen, and the price of beef was thereby raised far above what it would have been in the ordinary course of trade.
All these conditions no doubt had their infiuence; yet underlying them all was one of vastly greater scope and potency. Notwithstanding the enormous advance made in cattle raising during the past twenty years or so, the incommensurate with the increase in the has not been at all The ratio of increase in cattle is less than that in population, so that even with no change in dietetic habits the demand for beef would tend steadily to outrun the supply. But our appetite for beef increases much more rapidly than our numbers. The marketman makes his daily rounds with fresh beef in hundreds of communities where salt pork
was eaten almost exclusively twenty-five years ago; and was eaten almost exclusively twenty-five years ago; and
generally throughout the country beef has largely displaced pork on the tables of farmers, mechanics, and well-to-do people. This partly because of the universal improvement in the scale of popular living due to general prosperity, but more, perbaps, to the infiuence of an active school of would be health reformers who have persistently decried pork as an article of food and created a widespread and unreasonable prejudice against it.
Leaving out of consideration any possible increase in the demand for beef for exportation, we may reasonably anticipate that the home demand for beef will continue to increase as fast, if not faster, than the population does; and there can be no marked decline from the present excessive prices until the supply of beef cattle is brought up to the level of the popular requirement. It is not the prime cost of beef cattle in the field or their necessary cost at the shambles, after being driven or carried half across the continent, that chiefiy determines the price of the meat to the consumer, but the single fact that the supply is relatively so meager that cattle-raisers can ask and readily get prices which enable them to make twenty, thirty, even fifty per cent profit per annum on the money invested, selling for six cents a pound, live weight, cattle which cost two cents a pound to raise.

Composition and Setting of Cements

Mr. H. Le Chatelier, who has for some time been making xperimental researches into the composition of the slow setting cements known as Portland, and also into the theory of their setting, has recently presented a paper on the subject to the French Academy of Sciences. He finds that the effective elements of these cements are, primarily, a calcareous peridot, $\mathrm{SiO}_{2} 2 \mathrm{CaO}$, and secondarily, one or more aluminates and ferrites of lime.
On another hand, as concerns the successive phenomena of the setting of cements, he found the following facts by observations with the polarizing microscope: The action of
which plays the chief role in the definite bardening crystal lizes in hexagonal plates analogous to those of hydrate o lime, $\mathrm{CaO}, \mathrm{HO}$. This was not collected in sufficient quan tity to determine its composition. At any rate, it is a pro duct derived from calcareous peridot, and is, in fact, much more abundant in those cements that are exclusively formed of this silicate and not aluminous.
There are also formed (but only in aluminous cements) long needles, which are interlaced in every direction, and the number of which in quick-setting cements is very great. These crystals, when exposed to dry air, become dehydrated and undergo considerable contraction; and when heated in water at $50^{\circ} \mathrm{C}$., break into fragments and become reduced to a powder. They result from the action of water upon the ricalcic aluminate. The author ascertained that the latter body, $\mathrm{Ai}_{2} \mathrm{O}_{3} \mathrm{SCaO}$, dissolved in pure water in the proportion of 3 grammes per liter, and in larger proportion in salt water, although in this case it became partially decomposed. These remarks explain the differences that have been ob served in practice between slow setting and quick setting cements that are always very aluminous,
Calcareous peridot possesses a remarkable property which ought to give a key to a quite frequent phenomenon in the manufacture of cements. Heated up to the melting point of soft iron, then allowed to cool progressively, it exhibits itself first in the form of a semi-translucent stony matter; then the mass disintegrates and finally becomes reduced to an impalpable powder formed of debris of crvstals. The in: equality in the dilatation of the surfaces brought together by the grouping of the crystals is undoubtedly the cause of the the grouping of the crystals is undoubtedly the cause of the
breaking. But if the crystallization, has taken place at a lower temperature, there is no grouping of the crystals, so that their symmetrical faces adhere, and there is consequently no pulverization on cooling.

Preparing for the Transit of Venns.

The organization of the parties to observe the transit of Venus on December 6 next, has been delayed in consequence of the failure of Congress to complete the Sundry Civil Appropriation Bill. The Commission has, however, selected the chiefs of parties and the stations at which observations are to be made. Of the stations in the Southern hemisphere two will be in South America, one in South Africa, and one in New Zealand. The southernmost of the South American stations is to be at Port Santa Cruz, on the east coast of Patagonia, in 50° of south latitude. The other South American station will be at Santiago, in Chili, or at some point in the interior. The exact locations of the stations in Cape Colony and New Zealand have not been fixed, but will depend upon the weather probabolities as learned by the observers after their arrival. The following men have been selected to take charge of the four parties: Lieutenant S. W. Very, U. S. N., for Santa Cruz, Patagonia; Professor Lewis Voss, of the Dudley Observa tory, Albany, for Santiago, Chili; Edwin Smith, of the United States Coast Survey, for New Zealand; Professor S. New comb, superintendent of the Nautical Almanac, for the Cape of Good Hope.

As the parties have not yet come together, it is possible that there may be some changes in these arrangements. The principal stations in the United States will be four in number; namely, Cedar Keys, Fla.; San Antonio, Texas and Fort Thorn, New Mexico. It is expected that they will be in charge of Professors Hall, Harkness, and Eastman, of the Naval Observatory, and Professor Davidson, of the Coast Survey. The stations to be established by European governments in this part of the world are as follows: Germany, at Hartford, Conn., and Aiken, S. C.; France, one in Florida, one at Martinique, one in Mexico; Belgium, one in Texas; Great Britain, one at Bermuda, one in Jamaica, and one at the Barbados. The American observers will and one at the Barbados. The American observers will depend chiefiy upon photography, which is their strong
point, the American photographs taken at the last transit point, the American photographs taken at the last transit
being the only ones which were serviceable. The Germans depend upon the heliometer, and the French and English and Belgians upon contact.

New Hybrid silk Moth.

Mr. Alfred Wailly, whose reports on silk-producing and other Bombyces reared by him will be found in The Scientific American Supplement, has submitted to the Council of the Society of Arts, London, specimens of coconns and moths of a newsilkworm, which he has reared by the crossing of Attacus (Anihercea) Roylei, female, the Himalayan oak silkworm, Attacus (Anthercea) Pernyi, male, the North China oak silkworm. The resulting hy brid is larger than either of the parents. Mr. Wailly writes that "the larvæ of the hybrids were reared with the greatest success in France, Germany, Austria, England, Scotland, and United States of North America, and everywhere splendid cocoons were obtained. This year (1882), in April and May, the moths of this hybrid emerged from the cocoons in equal proportions of male and female, all perfect insects, which paired with the greatest facility." He concludes by saying: " Contrary to what has taken place with the crossing of different species of silk producing Bombyces, I have this time produced a new species, which is larger, stronger, and I think superior in every respect to the parent species, and susceptible of reproduction."

To make plaster of Paris hard enough for a mould for etal, use ten per cent of alum in the water used for mis.

