WINTER WORE FOR INVENTORS.

Men of all trades, callings, and professions usually experience during the year what are termed "slack times." A few months of activity are followed by periods when there is not much doing. It is at such times that inventors can make profitable use of their leisure. This has reference especially to that class of mecbanics and others who win bread for themselves and families by daily labor, and who cannot afford to devote time to the perfection of new inventions when they can be otherwise profitably employed
The winter months are the most favorable for the labors of the average inventor ; and they who improve the opportunitiesaffiorded them by the closing of mills and shops may be reasonably sure of success. During the summer months, when maclinery of all kinds is in active operation, is the time to note defects in general design and details of construction to be remedied when the "slack time" comes. During summer the agriculturist discovers faults in his seed planters, mowers and reapers, soil pulverizers, and so on through the entire range of machinery that has heen produced for his benefit. Let the inventor now visit him with his note book and pencil, and make sketches and memoranda of what is needed to bring the farmer's machinery nearer perfection. By the next season may be he will be able to make glad the hearts of thousands of farmers by the results of his winter efforts, and while they reap the golden grain with his improved machinery he also will reap a golden harvest.

But it is not agricultural machinery alone that should be overbauled for improvement during the winter months. Let the inventor go forth into the mines, which are usually
active in winter, and he will not fail to discover defects in active in winter, and he will not fail to discover defects in
mining machinery that it would pay lim well to remedy Or let him visit some of the lumber camps where thousands of men are employed in cutting and manufacturing lumber, which operation requires a vast amount of machinery. Some of the finest machinery on this continent is employed in the manufacture of lumber in its various stages from the stump to the palace car ; but there is yet room for improvements, especially in machinery for more rapid handling
during the process from the sled to the loaded car and during the process from the sled to the loaded car and wo through the mills to the pile.
It is astonishing what a vast number of operatives in these lumber-cutting establishments are maimed and crippled for life or killed outright by the treacherous saws and flying slabs and edgings. If inventors can provide these saws with slields or guards that would prevent operatives and others falling on the murderous teeth, they will certainly be rewarded. It is not expected that the expenditure of any amount of ingenuity will produce anything that will render these mills absolutely safe; but these horrible accidents can be notably reduced in number, and inventors will do well to labor to that end.
It is not only the novice in mill work that needs protection of the kind in question. The veteran who has long been noted for his skill and care in handling machinery, and who has always been on his guard against accident, may, in an unguarded moment, forget himself and lose a limb or his life or endanger the lives of others. Indeed, the operative of limited experience, knowing his liability to blunder, and having a just appreciation of the dangers of his occupation, usually exercises a greater care than he whose long familiarity with danger has bred a contempt for it. And there is yet another class of unfortunates who need protection by the inventor, to wit : those who visit manufacturing establishments for no particular purpose save to pass an idle hour in wandering aimlessly about among the machinery. The stupidity of these people, who manage to gain an entrance notwithstanding the notice over the
duors, "Positively no admittance except to employes," is something remarkable. They have no realizing sense of their danger, and are a constant source of anxiety on the part of the workmen, who may at any moment see their mangled remains scattered about the premises. It is true for safety ; but the weekly list of casualties of this class is a long one, and is conclusive evidence that inventors may profitably turn their attention still further in this direction.

It is in winter that railroad men and others who use iron and steel extensively for tools, machinery, and other purposes are subjected to much trouble and expense by exces. sive breakages, supposed to be caused by low temperatures, but probably due to something else. The expense to American railways for repairs and renewals of tools and fixtures, rolling stock, and machinery claimed to be due to the effects of severe cold and frost aggregate an immense sum per annum. Track men complain of failures of cold chisels, punches, hammers, mauls, crow-bars, claw-bars, wrenches, etc., and broken frogs and switch fixtures are frequently met with in cold weather. Rails, wheels and axles, and the iron or steel members of bridges and roofsare said to fail at extreme low temperatures; and distressing railway slaughters have been due, it is alleged, to the effect of frost on iron and steel, but this, we suspect, is rarely the real cause of the trouble. Jack Frost is too often charged with crimes that belong elsewhere. A wide and inviting field of labor is open to the inventor in studying out true causes of evils
such as we have indicated and in devising the proper means such as we have indicated and in devising the proper means for prevention.
Many lives and much property are destroyed by the cause under consideration. It is difficult to conceive of a wider search for some new process of manufacture of iron and
steel that would render these metals more capable of withstanding the weakening effect of severe cold. At first hought this may seem a doubtful undertaking; but when it is remembered that articles of iron and sieel resist the action of frost according to the quality of the material and the processes employed in their manufacture, the mountain becomes ods well known to American inventors. Of course, elaborate experiments will be required; and the coldest weather is the time for experimental and practical tests of this nature or for he purpose indicated. Winter is also a favorable time to prospect" for faulty car heaters and ventilators, and inventors who have labored in this direction will do well to
improve the winter by giving practical tests of their devices.

Wm. S. Huntington.

Yazoo Bridge

For several weeks past we have made frequent mention of the progress of construction of the piers for the great iron bridge now building over the Yazoo River at Anthony's Ferry, twelve miles above this city, for the Memphis, Vicksburg, and New Orleans, or what is better known as th Wilson line of railroads. The cost of the entire structure will be between $\$ 225,000$ and $\$ 250,000$, and when completed will be second to none in the South. The contractors hav now about 150 experienced men at the work, which is pro. gressing as rapidly as possible. Captain Jobn A. Grant is chief engineer, R. H. Elliott, chief assistant engineer, and Colonel C. J. Graves resident engineer.
The construction of a bridge at the point of crossing of expenc road is for several reasons unusually difficult and terial wi. There is n o bed rock or other impregnable maiver at low reach for tbe foundations to rest upon. This high water it is 80 to 90 feet. During the summer and early autumn the unhealthiness of the region would entirely unfit men for the trying labor required of them, so that the period during which the work has to be performed is limited oo three or four months, and hedged in between fever an ork.
The bridge will consist of three spans about 300 feet ong each; two of them "fixed" spans, and the third a "draw span," located in the middle of the channel. These ill be some six feet ahove the level of extreme high water and slightly above the elevation of the banks on either side There will be five piers, one at each end on the bank and three in the river. To obtain the requisite supporting ca
pacity, piles -100 in the pivot, and 72 in each of the other two channel piers-are driven to a depth of 40 feet into the river bottom. The outfit to drive these piles consists of regular pile driver engine, with a 4,000 pound hammer, a Skinner steam bammer, weighing 7,000 pounds, and a large duplex Worthington pump to supply a water jet, when this can be used in place of driving, or to assist the latter. Wheu the jet can be used to advantage, pipes are so arranged that one or more powerful jets, such as fire engines would supply, is brought into play at the point of the pile, excavating a hole for this latter to sink into. The Skinner steam bammer is simply a steam hammer similar to those een in large machine works, which is held over the pile in such a manner that it may p onud the pile down by litting
it successive blows with great rapidity. The piles for one pier have now all been driven and have reached such a firm bearing that an excellent foundation for the piers is assured One visiting the bridge site now would see the left bank ccupied by a number of buildings, the apartments and harring house of the men engaged on the work, slore house, offices, etc., which have sprung up in a few days,
and huge piles of sand, stone, and cement in readiness for use. In the river is a floating saw mill preparing timber to be used in the caissons. In the river is one of the latter just launched, and on the bank is another almost com pleted. These are nothing more nor less than huge wooden diving bells. The one for the first pier is 50 feet in diameter with sides two feet thick and six feet high. Its roof will be seven feet thick of solid tim ber. A "pneumatic caisson" may be described as an im mense box with no bottom, hut otherwise air-tight. Afte the piles are driven, they are sawed off under the water sur
face. A caisson is then floated over the piles. The con face. A caisson is then floated over the piles. The con struction of the pier proper, which will consist entirely of concrete, is then commenced on the roof of the caisso while this is still afloat. As it sinks it is held in the proper position, and when it touches the piles, air will be blown into the caisson by means of large air compressors run by steam. Men descend into the caisson through a shaft pro vided for the purpose. This shaft has two air-tight doors i it, one at the top, above water, and one at the bottom, which is in the caisson roof. When the men enter, the lower door is closed. After entering the shaft, the upper door is closed and a small valve from the air chamber of the caisson is opened into the shaft where the men are, allowing the compressed air from below to enter gradually. When the pressure in the shaft becomes equal to that in the caisson below, the lower donr is opened and the men descend into the caisson provided with saws. They saw off the piles as low . This caison, an inking is continued until the caisson is settled eren with the bottom of the river. While this sinking has been going on, the concrete has been built upward, and when the
caisson is settled firmly on the piles for the last time, the
pier is built up to the proper height to receive the coping, will be of stone two feet thick. On this the irgn ridge spans will rest. These piers when complete will consist of piles sawed off level with the bottom of the river Surmounting these is a solid platform (the roof of the caisson) of timber seven feet thick on whicll will rest the piers proper, which will be one continuous mass of concrete, remendous monolith. Some idea of the enormous quanity of material in the piers may be formed from the quantily of ement to be used, which will be in the neighborhood of 10,000 barrels. The piers are being buill by Wm. Sooy Smith \& Son, of Chicago, who have been either engineers or contractors for several of the largest works in the country. The design is thought to be peculiarly well adapted to the character of the crossing, and surmounted, as the piers will be, by a correspondingly excellent superstructure, the Yazoo River bridge will be a prominent feature of the great new road.-Vicksburg Commercial.

A Medical Opinion of the Electric Light.

Before the electric light becomes, as it must soon become, he common illuminating agent of the period, says the Lancet, a determined effort should be made to devise some mode of mitigating its peculiarly unpleasant intensity. The vibratile impulse of the electric force is obviously stronge than the delicate terminal elements of the optic nerve in the retina can bear without injury. We are wont to apply the adjectives "hard" and "soft" to light, and their signif ance makes them peculiarly appropriate. The electric light is too hard; it needs to be softened. The waves of motion are too short, and the outstroke-so to say-joins he instroke at too acute an angle. This might oubtless be obviated by employing suitable material for globes and shades, but perhaps the best plan would be to break up and scatter the rays of light by refiection. If a small convex reflector were placed immediately below the light in the protecting globe, and one of larger dimensions above it, so as to secure a double reflection with ultimate divergence downward and outward, the effect would be to cause the "rays" of light to fall obliquely on all objects within the mmediate area of illumination. This would, perhaps, ob viate the need of colored glasses, which the promoters of the electric light seem to dislike. Certainly there is a con siderable sacrifice of power in the use of the opaline globeso much, indeed, that some of the districts lighted by elec ricity displayed through this medium do not present any obvious superiority over gas. We throw out the suggestion for what it is worlh. Something must be done, for, as it is the electric light is " trying to the eyes," which means that it is in danger of injuring them, and already, there is reason to helieve, mischief has been wrought by its use. For true comfort there is nothing like the light given by the old fashioned pure wax candle.-The Electrician.

the steam street supply in new york.

There still seems to be trouble in keeping the joints tight under our streets. The screw joints do not seem to hold their 0 wn , either from inadequate material to give strength to the fittings, unusual strain by expansion, or unskilled labor in screwing the threads home, as fresh outbreaks are of almost daily occurrence.
Screw fittings should be made unusually strong and suited in every particular to the magnitude of the work, for there is no economy, and at most a mere make-slift, in the resor to the use of clamps and putty. The cause that disturbs or ruptures the joint at first will soon affect the clamps.
In our comments upon the progress of the steam supply in our issue of December 9, we aimed to crilicise the want of care and time in making up the rubber combination joints. We were far from intending to find fault with the rubber combination itself as a packing (the Jenkins), which is now so extensively used for steam and other purposes, and has the highest reputation for excellence. We have in mind an example where this packing is now in use with steam under pressure of from 150 to 225 pounds to the square inch, and was tested to near 300 pounds.
The first screwing up of bolts upon the flanged joints was not final, but gradual, as the heat and pressure was increasthe flanges

One More Number.

The next issue will close another volume of this paper, nd with it several thousand subscriptions will expire.
It being an inflexible rule of the publishers to stop send ing their publications when the time is up for which sub scriplions are prepaid, present subscribers to the Scientific American or Scientific American Supplement wil blige us by remitting for a renewal without delay.
By heeding this request to renew immediately, it will save he removal of several thousands of names from our sul scription books, and insure a continuance of the papers without interruption.
The management of the Standard Theater (New York) announce that on Saturday the electric lights with the Faure accumulators will. he carried for the first time by the balle girls in "Iolanthe." Experiments have been going on for some time with the aid of the best practical electricians in the city, and the result has been most successful. This use of electricity has been very successful in London, and it introduction here will add further possibilities in the way of introduction here willadd
effective ballet grouping.

