plantation machinery and agricultural implements, and \mid from the sun, on which it seems to hang, by a distance of special inducements will be offered with a view to placing before the planters and farmers the most approved appliances for successful diversified farming, the encouragement ances for successful diversified farming, the encouragement
mirror in which we may see the semblance of our own
and stimulation of which is one of the chief missions of the planet. For as Venus looks to us, so does the earth look National Cotion Planters' Association and one of the chief \mid to observers on Mars when she makes her transit over benefits hoped to be derived from the proposed exposition."
Under proper direction such an exhibition could not easily fail to be popularly successful and of great benetit all around. Though the chief benefit would accrue to the cotton growing States, the cotton manufacturers, machine builders, and makers of agricultural implements and machinery throughout the country would share in the general profit.
The South is to be the region of the greatest natural and industrial development during the rext two or three decades; and nothing is better calculated to hasten such development than the demonstration of the capacities, needs, and possibilities of the Southern States by means of great popular expositions of their resources and requirements.

the transit of venus as SEEN at the seagrave OBSERVATORY.

The transit of Venus on December 6 was as successfully observed as the clouds would permit at Mr. F. F. Seagrave's private observatory in Providence, Rhode Island. The telescope is a fine instrument of eight and a quarter inches aperture, made and equatorially mounted by Messrs. Alvan Clark \& Son, of Cambridgeport. The observatory is of the first order, including every kind of apparatus that will furnish aid in astronomical research. The owner of the observatory is a young man, endowed with a natural taste for astronomy, zealous and untiriag in the investigation of the science, and possessing ample facilities for the pursuit of his favorite study.

The contact and photographic methods were used in the observations made during the transit.
The polar and equatorial diameters of the planet were measured by means of a double-image micrometer. The contacts and general course of the planet were observed by
Mr. Seagrave through Mr. Seagrave through the large telescope in the observatory, the aperture having been diaphragmed or cut down to three inches to make it a vailable.
A small building erected for the purpose was devoted to the photographic work in charge of skillful operators. An able assistant had charge of the three-inch telescope, stationed in the open air, and used for the micrometrical measurements of the planet's diameters.
The observing party was promptly on hand to commence \mathbf{w} ork as soon as the sun should appear. A few minutes be-: fore the time for the momentous event of the day, tbe great luminary burst forth from the encompassing clouds and shove from a clear sky. But at the critical moment, a dark cloud flitted over his face, and the first external contact was : lost. When the cloud passed, Venus had made the entering notch and was partially on the sun's disk, the view being : unimpeded until she was entirely on his face and had made her first internal contact, the observed time differing a minute and three-quarters from the predicted time. This aspect was very satisfactory, for Venus left the sun's border without any appearance of the connecting ligament known as the "black drop," while the film of light surrounding her proved the existence of an atmosphere beyond dispute. As the transit progressed, the sky was by turns clear and obscure until 2 o'clock, when the clouds became masters of the situation, and the scientific work virtually ended, though glimpses of the planet were occasionally obtained as she reached the second internal contact, and finally, arriving at second external contact, made her exit into the immensity of space, where she was lost to view. Every moment of clear sunshine was improved in photographing the sun with the planet on his disk, and twenty-three excellent pictures were rail. the result. Several measurements of the planet's polar and equatorial diameters were made, which are yet to be reduced. Thus the Seagrave observatory contributed its share io grains of sand upon the seashore before certainty can be reached. It is probably the last time that so much scientific stress will be laid upon a transit of Venus. For before the stress will be laid upon a transit of Venus. For before the
next one, in 2004, we have faith to believe that other and next one, in 2004, we have faith to believe that other and
more accurate methods will be found for computing the sun's distance.
Independent of the scientific work accomplished, there was the highest kind of enjoyment in watching the grand phenomenon itself. Through the large telescope, Venus moon, and crowned with a film of light. She filled nearly the whole field of vision, only a small portion of the sun being visible outside of her, and this was paled into bluish white light, by the colored eye-piece that alone made it: possible to behold the solar brightvess. Through a threeinch telescope the aspect, though not so wonderful, was far more interesting. Here she looked as large as a ball that children play with, black as ink, moving serenely over the sun's disk, the whele lower limb of the sun being easily brought into the field of vision. Through smoked glass, the eye could just discern the planet passing like the head of a black pin over the sun's face.
The view in the small telescope was the most suggestive of the whole. Here, apparently, is a little black ball easily held in the palm of the hand, clinging to the sun's surface as it glides over it. In reality, the little ball is a great globe almost as large as our own, dwindled into tiny dimensions by a distance of twenty-five million miles, and separated

ixty-seven million miles.

The transit of Venus is a feature of special interest, the sun. Perhaps, while we watch the transit, observers in : Venus are watching the earth. It is night on the beautiful planet, for the dark side is turned toward us. In the starlit sky arching above her, a star rises when the sun sets, and shines through the entire night. This brilliant evening star
is the earth in opposition, and, accompanied by a tiny is the earth in opposition, and, accompanied by a tiny
moon, she is larger and more brilliant than Venus ever: appears in our sky. For when we see Venus in her brightest phase, she is a crescent. When, observed from Venus the earth is seen in her brightest phase, her whole illumined

A POSSIBLE FIELD FOR RAILWAY ENTERPRISE.
Some of the English papers are discussing the merits o
a system of freight roads proposed for the manufacturing districts of Lancashire, England. In that region a vast amount of material, raw and manufactured, is subject to transportation for short distances. The railway charges are exceptionally high, and the cost of repeated bandling adds materially to the burdens of manufacturers and dealers. For instance, a bale of cotton received at Liverpool is lifted out of the ship's hold and deposited on the quay. It is then lifted upon a cart and hauled to the railway station. There it is unloaded, and after one or more handlings is reings the car is marshaled into its proper train and started for Manchester. Here another series of handlings are in order, ending with the delivery of the cotton at the factory. From the mill back to the ship, the manufactured cloth is subject to the same treatment, largely enhancing its cost to the shipper. Indeed, owing to multiplied handlings and excessive railway charges, the cost of sending goods from Liverpool to Manchester is said to be actually greater than it used to be before railways were introduced.
The magnitude and urgency of the traffic forbid a return to the old cartage system for the whole journey; so a com promise is proposed in the form of a " plate way," on which rdinary wagons are to be hauled by steam motors.
The estimated cost of the plate way and its equipment is about $\$ 175,000$ a mile, which would build a respectable railway in the American style. Obviously, the carrying capacity of a plate way used by ordinary road wagons would be much less than that of a regular railway.
The question arises whether the avoidance of repeated loading and unloading of freight could not be secured, and all the advantages of the railway retained, by simply transporting the loaded wagons upon properly constructed flat cars, to be hauled by locomotives in the usual way.
Of course this plan would be feasible only where the railway carriage was short, compared with the rest of the haulage, as, for example, between the wharf or warehouse of the city and the factory in the suburbs or in a near-by town, or between an outlying market garden district and the city market.
In many American cities from which railways radiate to all points of the compass, this method of transportation might prove decidedly economical, especially in saving repeated and destructive handlings of fruit and vegetables brought in from the surrounding country. The farmer's loaded wagon might be hauled upon a platform car, as upon a ferryboat, and carried with its team and driver to the city station, whence it could proceed to market without delay. Or those whose market business is extensive might have relays of horses and divers, and send the loaded wagons only by Vail.
Vast quantities of farm and garden produce are hauled in road wagons fifteen or twenty miles to city markets. or dist facilittes for the larger part of the distance, and haulage, would conderably beyond the present range of road saving in time and wear and tear of wagons, harnesses, and eams would amply offset reasonable railway charges.

INVENTION AS A MEANS OF EDUCATION.

Young people are commonly dissuaded from exercising their native talent for invention by, or because of, the mistaken opinion that youth is exclusively a time for learning hat others have done; that it is altogether improbable that ny discovery or invention a young person may make can be either new or of any value. Any utility that a boy can
recognize or develop, it is too commonly thought, must of necessity have been discovered and tried before; and it would only be a waste of time to reinvent old or impracticable devices.
This opinion involves two grave errors. In the first place, it is not always a waste of time to rediscover or reinvent, hough there may be no immediate money profit to be got from such work. Original investigation and creative thought of invention is best aequired by inventing, even though fifty other men may have individually worked out the same practical problems before. For mathematical training, the patient and thoughtful solving of problems brings the same discipline, no matter how many other students have already draughtsman may acquire in the work of sketching machinery off-hand is not lessened in any way by the fact that the
draughting-room of the machine shop is full of much more perfect drawings of the same machinery than he can hope to make.
In like manner the time of the young inventor may be most profitably employed in inventing, even when it turn out that the product of bis labor is nothing new. Indeed, there is no better way for the young inventor to acquire skill in his art than by resolutely working out (to him) novel problems the best way he can, even when he knows that hey have been satisfactorily solved by others; then comparing his invention with the products, it may be, of older and more experienced minds. The skill so gained will tell in his avor when he strikes a problem that is entirely novel.
The other error referred to is the assumption that the inventions of young people are not likely to be of any value. The history of invention is full of illustrations to the contrary. A recent instance is recorded in a morning paper. A young lad in the Cooper Institute class in mechanical A young lad in the Cooper Institute class in mechanical
drawing has devised a simple attachment to the ordinary bath tub, by means of which any bath room is enabled to furnish every variety of baths, Russian, spray, vapor, medicated, or other, as may be desired. The Herald says that one apparatus has been manufactured and placed for trial in the Frenc! Hospital in this city, where it is being experimented with in the treatment of rheumatism and acute nervous diseases by spray baths permeated with drugs. The same contrivance, attached with rubber tubes to the faucets of a washbowl, serves to produce vapor impregnated with chamomile or other herbs for inhalation in cases of bronchial affections. A number of physicians have called to see the young inventor, and all commend the invention, but express surprise that something of the kind was not produced long ago.
That is the usual way. When an invention is made, the wonder is that no one has ever seen the way to do it before. It is safe to say that there is not a single article in every day use that will not sooner or later be greatly improved: we do not see the opportunity now because we are blinded by habit. It requires a novel point of view to make the requirement visible; and to a large extent the keen eyes of youth, if encouraged to be critical, are best situated for taking novel views of things. And bearing in mind the truth that the most profitable field of invention, all things considered, is in connection with matters of every day use by everybody, the common custom of discouraging the efforts of young people in this direction, however crude at first, is far from wise. The habit of mentally challenging the economic right of everything in common use to fill the position it occupies, of asking what its real function is, and whether it might not be bettered or possibly displaced entirely by something cheaper, handier, or more efficient, is one of the most promising habits that the young can acquire. There is money in it, and public benefit as well.

TEMPERING STEEL.

More tools are ruined by overheating, cold-hammering. and over-tempering than can be redeemed by all the new and over-tempering than can be redeemed by all the new
receipts that have been invented. The only way that is really good, is first to find a brand of steel that is good and suitable for the tools to be made, and stick to it. Next find by a few trials the lowest heat that will harden it in pure water at 70°, or ordinary shop temperature. If steel is hardened at the lowest heat, the temper will require drawing very little, i. e., to a pale straw, full straw, or brownish yellow, but not deeper unless for wood working tools with thin cutting edges, when a full brown may be desirable.
File makers use salt water for a hardening bath, because it makes the water more dense and the teeth harder and of course more brittle.
Sulphuric acid or mercury is sometimes used for harden. ing very small tools for cutting glass and etching stone.
For springs the same care should be taken in regard to low even heating that is necessary with tools. Pure lard oil is as good and probably better than any of the many mix. tures that have been tried for the bardening fluid; burcing off may do for drawing the temper of smallor thick springs, but is totally unfit for long or slender ones.
Dip the hardened spring into a bath of oil heated nearly to its boiling temperature; this is the only way to get an even temper. We say, in reply to a correspondent, that we do not know having ess. It rade of late years. They were never a sucfor the correcting lens, and as there are no formulas, to our knowledge, for the bisulphide, you will have to make an experimental trial. For your front glass, you may make the curves one to six or nearly a plano-convex flat side next the eye, the radius of shortest curve about six times the diameter of the lens. For the correcting lens, the diameter should be not less than one-third the diameter of the front lens. Its general form should be plano-concave; and as the dispersive power of bisutphide is more than three times as great as crown glass, its refractive power being about 50 per cent greater, you may make the side next the object glass plane, and the side next the eye convex on the inner side and plane next to the eye, if convenient to do so. This will require only one curve to be altered for final correction. To start, make this curve the radius of the first surface of the ront lens, and place the lens about one-third the focallength of the object glass from the eye.

