IMPROVED RAILWAY CAR.

We give an engraving of an improved railway passenger car designed to avoid telescoping and the disastrous consequences that result from it in the event of a collision.
Theinventionconsists in making each end of the car with a corner, which is wholly independent of the frame timbers of the main structure, but fastened to it so as to fill out the proper outline of a car. This detachable part, by being disconnected or displaced in the sbock of a collision, allows the ends of the cars to wedge past each other, instead of telescoping into each other, thus avoiding the great loss of life and the injury which are the usual results of telescoping.
It also diminish es the liability to fire from the displacement of the stove or heater, as these will be placed in the solid part of the end of the car.

Referring to the engraving. it will be seen that the car strucure is as usual, except that the obliquely opposite corners on opposite ends, as shown, are framed independently, and attached to the main frame in such manner as to fill all the usual requirements of a passenger coach; but so that inl case of a collision and tendency to telescope the corners, by reason of their being weaker than the opby reason of their being weaker than the op-
posing side of the next car, will be broken posing side of the next car, will be broken
off, and should they not have sufficient strength to destroy the momentum of the car, the oblique side or framework, coming in contact with the re-enforced guard or fender on the opposite car, will divert the car from its course and render telescoping impossible. The timbers forming the oblique side or end of the main frame are strongly fastened to the main frame, and the corresponding timbers, which are a part of the frame of the corner, are bolted to the timbers in such manner as to afford sufficient strength for common use, but of just such strength as will give way in the event of a
collision. The corner of the car, attached as shown, is sup- mods can be tris in then at much ported vertically by the superstructure and by rods. Iron guards or fenders made very heavy are strongly fastened into the bottom timbers of the car, and extend high enough above the platform to receive the force of the colliding cars. These guards may, however, be omitted. Tbey are built in with the wooden framework to supplement its strength, but will not be seen, except where the flange extends a sbort distance inside of the doorway. These guards afford greater strength to the part of the car inclosing the stove.
In ordinary collisions the momentum of the cars would in a great measure be overcome in crushing off the corners, and in severe collisions the cars might be derailed, but with greatly reduced tendency to loss of life.
This invention has recently been patented by Mr. Joln Milton, of Hamilton, Va .

MULTIPLE-SPINDLE SLOT DRILL. This machine, constructed by Beverley \& Atkins, Sheffield, is capable of finishing a complete set of keyways, three in number, at one operation, and thus economizes both time and labor.
The machine has two movable heads, one of these-that to the rigbt hand in our engraving-carrying two drill spindles, each $11 / 2$ inches in diameter, while the other head carries a single spindle. the other bead catries a single spindle.
This arrangement is adopted, says EngiThis arrangement is adopted, says Engi-
neering, because one of the shafts of a wringing machine roller has a keyway at one end only, but it is of course capable of modification if the machine is intended for other purposes. The traverse of the heads, which is given by elliptical gearing so as to equalize the motion, is adjustable so as to equalize the motion, is adjustable
up to a range of 4 inches, while the posiup to a range of 4 inches, while the posi-
tion of each head between the frames can tion of each head between the frames can
be modified independently of the other.
By throwing off the traverse driving belt the machine is converted into an ordinary drill with three spindles. Tbe down feed in slot drilling is self-acting, and is given by ratchets and spiral wheels, there being two speeds. It will be noticed there being two speeds. It will be noticed
that the framing of the machine is open at each end so as to allow of a long shaft being operated upon. The whole machine is of a new type and one which can be very readily modified to suit the requirements of various manufacturers.

Pure Hydrochloric Acid.
The author adds to the sulphuric The author ads to the sulphuric acid employed a small mate or permanganate, and causes the gas, before it is conducted into water, to pass over mercury in a Liebig's bulb tube. The oxidizing body prevents the formation of sulphurous anhydride in presence of organic matter, and liberates bromine and iodine if present. Arsen-chloride is decomposed in contact with the mercury, and free chlorine, bromine, and iodine are absorbed.-Dr. Giudice.

IMPROVED SLOT DRILL.

An experiment of more than ordinary significance is about An experiment of more than ordinary signiticance is about
o be tried in England. A number of leading ship owners to be tried in England. A number of leading ship owners
and merchants of Liverpool have projected and raised a large guarantee furd for obtaining parliamentary sanction for a series of roadways, radiating from Liverpool to the great centers of manufacturing industry in South Lancashire, the roads to be laid with a double set of iron plates to serve as tracks for ordinary freight wagons, the wagons to bervasks for ordinary freight wagons, the wagons to

MILTON'S IMPROVEMENT IN RAILWAY CARS.
small.

The Princeton College Scientific Expedition.
The scientific expedition whicb left Princeton, June 26, secured twenty-two hundred. pounds of valuable fossils, which have been classified and added to the college museum. The collections were made in Wyoming, Nebraska, and Dakota.

This Selenium.
This rare element, which a few years ago was a mere hemical curiosity, has since become a commercial article. It is not yet sold by the ton, it is true, but it is no loger impossible to obtain a pound of it, even in this country.
The cause which has operated to bring so scarce a substance into the market is to be found in the fact that many amateur and practical electricians are endeavoring to utilize a property which is not known to exist in any other substance, viz., that of changing its electrical conductivity when exposed to the light. Like sulphur and phosphorus selenium is able to exist in different allotropic forms, only one of which possesses this interesting (and probably useful) property, viz., the crystalline form. Fortunately the amorpbous selenium is easily rendered crystalline by heating or fusing, and permitting it to cool very slowly. Selenium possesses a striking similarity to pbosphorus in its relation toward sulphide of carbon, although, in all cases, less soluble in that liquid than in phosphorus, but its solubility does not depend entirely on whether it is crystalline or not, for the amorphous variety deposited from selenide of bydrogen is soluble, and so are the monoclinical crystals. As these crystals are only obtained from solution, we can readily understand why they are soluble, and it is not probable that any real difference exists between them and the soluble form of amorphous selenium. When these crystals are leated to $150^{\circ} \mathrm{C}\left(302^{\circ}\right.$ Fabr.), they turn black and become insoluble, but this selenium recovers its solubility by melting and rapid couling, which is cer tainly rather surprising. The solubility of selenium in sulphide of carbon is very small at best, 100 parts being required to dissolve one of selenium at a boiling temperature, so that no practical use can be made of it. The vitreous selenium is still less soluble, while the other forms are all totally insoluble in sulphide of carbon. The best solvent for selenium is its own chloride, which dissolves large quantities of both modifications, but they separate from it as black selenium.
occurrence.
Selenium, we have said, is not an abundant article, and all now in the market is imported. It has been found in a free state at Culebras, in Mexico, and Les Mondes says that free state at Culebras, in Mexico, and Les Nondes says that
an ore containing 28 per cent of selenium has been found an ore containing 28 per cent of selenium has been found
in the province of Mendoza, in the Argentine Republic. in the province of Mendoza, in the Argentine Republic.
Clausthalite is as elenide or lead found in the Hartz Mountains. But none of these actually furnish the manufacturer with selenium. Many pyrites, both of iron and copper, contain traces of selenium, which becomes concentrated when the ore is used for other purposes, and may be utilized for making selenium. The soot that collects in the flues of the Mansfeld copper works in Saxony, and the slimy deposit that is found in the leaden chambers of sulphuric acid works where seleniferous pyrites are burned, are among the chief sources of selenium. The chamber deposits at Stockholm in Sweden, in which it was discovered by Berzelius, and at Tilkerode in the Hartz, in which thallium was discovered by Crookes, are among the richest'sources of selenium. According to Nilson the chamber deposits from Falun in Sweden contain $21 / 2$ per cent of selenium. In 1875 the total amount of selenium produced at Eisleben from Mansfeld soot was only $51 / 4$ lb., valued there at $\$ 90$. Platinum ores sometimes contain selenium, and a slag containing a large percentage of selenide of sodium is made at the Frankfort assay office as an incidental product. When dissolved in water it yields a reddish brown solution, from which, on exposure to the air, a crust of metallic selenium separates. (Dingler's Journal, ccxxiv., p. 414.) A portion of the selenium of commerce comes from this source.

PREPARATION.

The simplest method of preparing selenium from these deposits in the leaden chambers is to digest the slime with a rather strong solution of cyanide of potassium; about one-third of an ounce of the cyanide to a pound of the deposit. After filtering or decanting, the selenium solution is treated with excess of hydrocbloric
acid, which liberates a quantity of Prussic down the selenium as a red powder or scales. acid, and throws down the $+2 \mathrm{KCl}+\mathrm{Se}$.) The gases given off $\left(\mathrm{SeK}_{2} \mathrm{Cy}_{2}+2 \mathrm{HCl}=2 \mathrm{HCy}+2 \mathrm{KCl}+\mathrm{Se}\right.$. $)$ The gases given off
must either be absorbed in water or alkali, or else conducted must either be absorbed in water or alkali, or else conducted
into a flue, as they are very deadly! If any sulphur is dissolved it remains in the solution in form of sulphocyanide, not being so readily decomposed as the selenio-cyanides are.
Th

This method is also very convenient for testing for the presence of selenium in chamber deposits. Such deposits, of
course, contain a good deal of lead, sulphur, etc., and if selenium is present are generally red. They should be digested with the cyanide solution at a temperature below boiling, until the residue has lost its red color. If no red substance separates on adding an excess of bydrochloric acid, it may be assumed that selenium is absent, or present in too small quantities to pay for working it. If a deposit forms it may be tested as below described.
Another method of making selenium consists in dissolving the slime or sediment in caustic potash, and then exposing the solution to the air at a temperature of 44° Fabr. Hypo sulphite of potash is formed, and selenium separates. Mansfeld soot is levigated, washed with water acidified with hydrochloric acid, then with pure water, dried, and fused with crude carbonate of soda, or potash. The selenates are extracted with water, and exposed to the air as before. The fusion, even on a very small scale, must not be performed in a platinum vessel, as it always contains more or less lead, which would destroy the crucible.

purification.

Selenium prepared by any of the above methods forms red scales. If washed on a filter and then boiled in water, it agglomerates together to a hard, reddish black mass, with a metallic luster and ring. To purify selenium, Bunsen dissolves it in hot nitric acid, which oxidizes it and converts it into selenious acid. By evaporating this sloovly on a water bath to dryness, he obtains anhydrous selenious acid as a white powder. By too rapid evaporation some of the seleniumi s carried off with the nitrous vapors. The selenious acid is next purified by subliming it in a current of air at, or below a red heat. A piece of combustion tubing is drawn out narrower in the middle, and lonsely stopped with a tuft of asbestos; the dry acid is placed in one end, which is heated quite strongly, and other end cooled, while a current of air is drawn through it. Selenious acid sublimed in this way forms beautiful long white crystals. It is next dis solved in water, and a current of sulpburous acid $\left(\mathrm{SO}_{2}\right)$ passed through it, whereby the selenium is precipitated as a red powder, which may be melted and cast in moulds if desired.

tests for seleniom.

The characteric odor of burning selenium, resembling, as some say, decayed horseradish, is generally a sufficient test. Its soluble salts give a red precipitate when sulphurous acid is passed through their solutions; if there is but little selenium present, the solution bas a green appearance by transmitted light. (Scientific American, Oct. 26, 1872.) Selenium colors the flame a bright blue, which does not serve to distinguish it from sulphur. If a small bit of any selenious compound be brought on an asbestos thread into a small reducing flame, and a glazed porcelain dish of cold water be held one-balf inch above it, a brick-red film will be deposited on the cold porcelain; heated with strong sulphuric acid, it gives an olive green solution, which yields a red precipitate when poured into water (Bunsen). Selenium does not dissolve in sulphuric acid unless this is very strong, but if boiled in the acid for a very long time, it becomes oxidized to selenious acid, sulphurous fumes are evolved, and no precipitate of red selenium can then be obtained on dilution (Hilger).

melting point.

We have already seen that selenium can assume various forms or states, some of them soluble and others not; some conduct electricity while others do not. In regard to the melting pnint of selenium statements are at variance, for it sometimes becomes soft long before it is really fluid. When melted and allowed to cool very slowly, selenium becomes granular, or crystalline, with a leaden gray to red dish violet color. In this form it melts at $217^{\circ} \mathrm{C}$ (423° Fabr.) without previously softening. According to Bettendorff and Wiillner, the amorphous selenium begins to soften between 40° and $50^{\circ} \mathrm{C}$. (104° to 122° Fabr.) Berzelius says it softens when warmed, at $100^{\circ} \mathrm{C}$. (212° Fahr.) it is semi-fluid, and perfectly liquid at a slightly higher temperature, but on cooling remains soft, like sealing wax, so that it may be drawn out in long, elastic, transparent threads. Sacc says that selenium has no definite melting point, for it softens and bardens gradually; that it probably melts at $200^{\circ} \mathrm{C}$. and bardens gradually; that it probably melts at $200^{\circ} \mathrm{C}$.
$\left(392^{\circ}\right.$ Fahr.), for at that temperature it ceases to adbere to the hulb of the thermometer. It is completely melted a $250^{\circ} \mathrm{C}$ (482° Fahr.), and when cooled to $150^{\circ} \mathrm{C}$. $\left(302^{\circ}\right.$ Fahr.) it is entirely solid.
ACTION OF LIGHT ON SELENIUM.
action of light on selenidm.
This seems to have been first observed by Willoughby Smith and his assistant, Mr. May, in 1874. At first the effect was attributed to heat, but the experiments of Lord Rosse, Werner Siemens, and others, soon demonstrated the fact that it was light, and not heat, that effected this change. Selenium, like most non-metals, is a very poor conductor of electricity; in the amorphous form it does not conduct the current at all, in the crystalline form it conducts the current feebly, but the resistance is less when the selenium is exposed to light than when kept in the dark. Even the cold light of the moon has the same effect as found by Adams. So sensitive can it be made by suitably "annealing," or rather crystallizing it, that Siemens constructed an artificial
eye that would wink, while Tainer and Bell have produced sound by the agency of light in their photophone. The latter claims to have made sensitive selenium cells, having a resistance of only 155 ohms in the light, and 300 ohms in the dark. The cellsused are made by taking a plate of brass and heating it, then rubbing it over witha stick of selenium.
It is annealed by beating it over a gas burner until the re-
flecting surface becomes dimmed. The cloudiness resembles
somewhat the film of moisture produced by breathing on a mirror. Bell says that his best results have bean obtained by heating the selenium untii it crystallizes, then continuing the heating until it shows signs of melting, when the gas is immediately put out. The portions that had melted instantly crystallize, and the selenium is found, on cooling, to be a conductor, and to be sensitive to light. The appearance of the crystals, seen under the microscope, differs according as the heat is removed, as soon as cloudiness begins, or not until fusion begins, or when complete fusion is followed by slow cooling.

CHEmical and other properties.
We have seen that selenium does not dissolve readily ex cept in chloride of selenium. Sulphuric acid, free from water $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, dissolves it, nitric acid oxidizes it, and the alkalies combine with and dissolve it. It unites directly with bromine and chloripe, and on heating, will unite with iodine, sulphur, phosphorus, and the metals. It unites with iron to form a selenide, and when this is decomposed : by acid, a bydrogen compound, $\mathrm{H}_{2} \mathrm{Se}$, is formed, which resembles sulphureted hydrogen in its power of precipitating the heavy metals from solution, but is distinguished for its unpleasant odor. Selenium forms nearly all the compounds that sulphur does. Owing to the ease with which it may be liberated from its compounds by reducing agents, it is generally estimated in the free state, by precipitating with sulphurous acid as a red powder, boiling to cause it to adhere together, and collecting it on a tared filter, drying and weighing as such.

Electrolific deposits.

Selenium is easily reduced from its solutions, whether acid or alkaline, by the galvanic current. According to Schucht the deposit is at first light-red, but as it grows thicker becomes darker. The precipitation is so complete that it could be employed for quantitative estimations. Only a feeble current of two elements can be employed, or the selenium would become pralverulent. When deposited on a platinum electrode, it rubs off easily; probably on brass or copper it would adhere better. From its combination with potassium, selenium precipitates nicely with a feeble current; in acid solutions some seleniureted hydrogen is given out at the negative pole. If the solution contains a metal, like copper, the selenium and copper are precipitated together, and t
For covering
For covering metals with selenium, the method of melting on seems preferable to electrolytic deposition.

NOVELTIES AT THE NEW ENGLAND INSTITUTE FAIR.
The engravings on our front page illustrate the special features of several devices which attracted our artist's attention at the Boston fair, as combining novelty with a promise f considerable economic and industrial value.
Fig. 1 represents the general plan and pulley connections of the Harris Revolving Ring Spinning Frame. The purpose of the improvements which it embodies is to avoid the uneven draught of the yarn in spinuing and winding incident to the use of a fixed ring. With the non-revolving ring the strain upon the yarn varies greatly owing to the difference in diameter of the full and empty bolbbin. At the base of the cone, especially in spinning weft, or filling, the diameter of the cop is five or six times that of the quill at the tip. As the yarn is wound upon the cone the line of draught upon the traveler varies continually, the pull being almost direct where the bobbin is full, and nearly at right angles where it is empty. With the increasing angle the drag upon the traveler increases, not only causing frequent breakages of the yarn, but also an unequal stretching of the yarn, so that the yarn perceptibly varies in fineness. The unequal strain further causes the yarn to be more tightly wound upon the outside than upon the inside of the bobbin, giving rise to snarls and wastage.

These difficulties have hitherto prevented the application f ring spinning to the finer grades of yarn. They are overcome in the new spinning frame by an ingenious device by which a revolving motion is given to the ring in the same direction as the motion of the traveler, thereby reducing its friction upon the ring, the speed of the ring being variable and so controlled as to secure a uniform tension upon the yarn at all stages of the winding.
The construction of the revolving ring is shown in Fig. 2. C is the revolving ring; D, the hollow axis support; H, a section of the ring frame; E , the traveler.
To give the required variable speed to the revolving ring there is placed directly over the drum, Fig. 1, A, for driving the spindle a smaller drum, B, from which bands drive each ring separately. The shaft, which is attached by cross girts to the ring rail, and moves up and down with it, is driven by pair of conical drums from the main cylinder shaft; and is so arranged with a loose pulley on the large end of the receiving cone as to remain stationary while the wind is on or near the base of the bobbin. When the cone of the bobbin diminishes so as to materially increase the pull on the traveler the conical drums are started by a belt shipper attached to the lift motion. By the movement of the belt on these drums a continually accelerated motion is given to the rings, their maximum speed being about one-twentieth the number of revolutions per minute as the spindle has at the same moment. This action is reversed when the lift falls. The tension of the wind upon the bobbin is thus kept
uniform, the desired hardness of the wind being secured by
the use of a heavier or lighter traveler according to the com pactness of cop required.
The model frame shown at the fair did its work admirably well, spinning yarns as high as No. 400, a fineness hitherto unattainable on ring frames. It is claimed that this invention can do whatever can be done with the mule, nd without the skilled labor which mule spinning demands. This invention is exhibited by E. \& A. W. Harris, Providence, R. I.
Figs. 3, 4, and 5 illustrate some of the applications of the electric stop motion in connection wilh cotton machinery. The merit of this invention lies in simplifying the means by which machinery may be stopped automatically the instant its work, from accident or otherwise, begins to be improperly done. The use of electricity for this purpose is made possible by the fact that comparatively dry cotion is a non-conductor of electricity. In the process of carding, drawing, or spinning, the cotton is made to pass between rollers or other pieces forming parts of an electric circuit. So long as the machine is properly fed and in proper working condition the stopping apparatus rests; the moment the continuity of the cotton is broken or any irregularity occurs, electric contact results, completing the circuit and causing an electromagnet to act upon a lever or otber device, and the machine is stopped. The current is supplied by a small magnetoelectric machine driven by a band from the main driving baft, and is always available while the engine is running.
Fig. 3 shows the general arrangement of the apparatus as applied to a drawing frame. In the process of drawing down the roll of cotton-the sliver-four things may happen making it necessary to stop the machine. A sliver may break on the way from the can to the drawing rollers, or the sup ply of cotton may become exhausted; the cotton may lap or
accumulate on the drawing rollers; the sliver may break between the drawing rollers and the calender rollers; or the front can may overflow. In each and all of these cases the electric circuit is instantly completed; the parts between which the cotton flows either come together, as when breakage occurs, or, if there is lapping, they are separated so as to make contact above. In any case the current causes the electro-magnet, S , against the side of the machine to move its armature and set the stop motion in play.
Figs. 4 and 5 represent indetail the manner in which elecion ion of the stop motion. In Fig. 4 the upper part of a receiving can is shown. When the can is full the cotton lifts the tube wheel, J, until it makes an electrical connection and the stop motion is brought into instant action. In Fig. 5 , the traction upon the yarn holds the hook borne by tbe spring, \mathbf{F}, away from \mathbf{G}, and the electric circuit is interrupted. A breakage of the yarn allows this spring to act ; contact is made, and the stop motion operates as before.
This simple and efficient device is exhibited by Howard \& Bullough \& Riley, of Boston.
Fig. 6 shows the essential features of a positive motion loom, intended for weaving narrow fabrics, exhibited by Knowles, of Worcester, Mass. The engraving sbows so clearly bow, by a right and left movement of the rack, the shuttle is thrown by the action of theintermediatecog-wheels, that further description is unnecessirly.

THE NATIONAL ACADEMY OF SCIENCES.

The annual meeting of the National Academy of Sciences began in this city November 14, Professor O. C. Marsh, of Yale, vice-president of the Academy, in the chair.
In the first paper Professor Loomis, of New Haven, discussed the mean annual rainfall of the several geographical divisions, and pointed out that on our Atlantic coast an annual rainfall of at least fifty inches extends from latitude 35° north to latitude 33° south. In the principal part of South America a rainfall of fifty inches extends nearly to the Andes, and there are extensive districts which have a rainfall of seventy-five inches. In Africa there is a rain belt of fifty inches, whose average breadth is 1,000 miles, and which is apparently continuous from ocean to ocean. There are also extensive districts where the annual rainfall exceeds seventy-five inches. In nearly all the islands of the East Indian Archipelago the mean rainfall exceeds seventyfive inches. We have thus an equatorial rain-belt amounting to at least firty inches annually, baving an average breadth of nearly 1,500 miles, and which appears to be continuous across all the islands and continents. With regard to the ocean our knowledge is very limited. As we recede to the ocean our knowledge is very limited. As we recere
from the great equatorial rain-belt, the amount of the rainfall diminishes rapidly, with the exception of certain dis. tricts of limited extent, where local causes give rise to a large rainfall.

Very large portions of the globe have an annual rainfall of less than ten inches. In North America such a region is found in Soutbern California and Arizona, and there is a large district about Slave Lake where the annual precipita. tion is only about ten inches of water, and is apparently less than that amount. In South America such a region is found on the west side of the Andes. In Europe there is no district having so small a rainfall as ten inclies, except in Spain. In Asia there is such a region, 3,000 miles long and 1,000 broad. In the northeastern part of Asia there is also an extensive region where the precipitation scarcely exceeds ten inches. There are also large stretches of country nearly rainless in Africa and Australia. Thus we find that atoout one-fifth part of the entire land surface of the glohe has a rainfall less than ten inches, and a still larger portion has a rainfall so small as to render it valueless for agricultural purposes, except in thoselimited districts which allow irrigation.

